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Wave equation

We model small vibrations of an elastic homogeneous string,
assume that the string performs small motion in vertical direction
only.

Physical assumptions:

I The string is homogeneous and elastic.

I The gravitational force can be neglected.

I Each part of the string moves only vertically.

We are looking for a function u(x , t) that describes the motion.
The equation is

∂2u

∂t2
= c2

∂2u

∂x2
, c2 =

T

ρ

where T is the tension of the string and ρ is the density. The
equation is called one-dimensional wave-equation.
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D’Alembert solution

Consider the wave equation utt = c2uxx and introduce new
variables v = x + ct and w = x − ct. Then

ux = uvvx + uwwx = uv + uw , uxx = uvv + 2uvw + uww

ut = uvvt + uwwt = c(uv − uw ), utt = c2(uvv − 2uvw + uww)

In the new variables the equation is uvw = 0!

Integrating first with respect to v and then with respect to w we
get

u(x , t) = φ(v) + ψ(w) = φ(x + ct) + ψ(x − ct),

where φ and ψ are arbitrary functions.
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Heat equation on the line

Equation: ut = c2uxx , −∞ < x <∞, t ≥ 0; (∗)
Initial condition: u(x , 0) = f (x).

Assumption: f (x)→ 0, u(x , t)→ 0 as x → ±∞ fast enough

We can apply the Fourier transform in x ! Let

û(w , t) =
1√
2π

∫ ∞
−∞

u(x , t)e−iwxdx .

Then (∗)⇒

ût(w , t) = −c2w2û(w , t) ⇒ û(w , t) = C (w)e−c
2w2t

We find C (w) from the initial condition.
t = 0⇒ C (w) = û(w , 0) = f̂ (w) and finally

û(w , t) = e−c
2w2t f̂ (w)
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û(w , t) = e−c
2w2t f̂ (w)

Yurii Lyubarskii, NTNU TMA4120, Lecture 13



Inverting Fourier transform for the heat equation

Remind the convolution theorem:

F(f ∗ g) =
√

2πf̂ ĝ ;

F(e−ax
2
) =

1√
2a

e−
w2

4a .

⇒
u(x , t) =

1

2c
√
πt

∫ ∞
−∞

f (y)e−
(x−y)2

4c2t dy
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Heat kernel

The last formula has the following form

u(x , t) = f (y) ∗ k(y , t)

where

k(y , t) =
1

2c
√
πt

e−y
2/(4c2t)

it is called the heat kernel (in dimension one).
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