Vi bruker formelen \(\mathcal{L}(tf(t)) = -F'(s) = -\frac{d}{ds} \mathcal{L}(f(t)) \) med \(f'(t) \) og \(f''(t) \) i stedet for \(f(t) \), og får

\[
\mathcal{L}(tf'(t)) = -\frac{d}{ds} \mathcal{L}(f'(t)) = -\frac{d}{ds} (sF(s) - f(0)) = -F'(s) - sf''(s)
\]

\[
\mathcal{L}(tf''(t)) = -\frac{d}{ds} \mathcal{L}(f''(t)) = -\frac{d}{ds} (s^2F(s) - sf(0) - f'(0)) = -2sF(s) - s^2F'(s) + f(0).
\]

Bruker så dette på initialverdiproblemet \(ty'' + 2y' - ty = 1, y(0) = 1; \)

\[
-2sY(s) - s^2Y'(s) + 1 + 2(sY(s) - 1) + Y'(s) = -(s^2 - 1)Y'(s) - 1 = \mathcal{L}(1) = \frac{1}{s}
\]

\[
\implies -(s^2 - 1)Y'(s) - 1 = \frac{1}{s}, \text{ dvs. } Y'(s) = -\frac{s + 1}{s(s^2 - 1)} = -\frac{1}{s(s - 1)}.
\]

Siden \(Y'(s) = \mathcal{L}(-ty(t)), \) gir dette at \(\mathcal{L}(-ty(t)) = -\frac{1}{s(s - 1)} = \frac{1}{s} - \frac{1}{s - 1} = \mathcal{L}(1 - e^t), \) så

\[
y(t) = \frac{e^t - 1}{t}.
\]

2.

a) \[
a_0 = \frac{1}{\pi} \int_0^{\pi/2} 1 \cdot dx = \frac{1}{2}
\]

\[
a_n = \frac{2}{\pi} \int_0^{\pi/2} \cos nx \, dx = \frac{2}{n\pi} |\sin nx|_0^{\pi/2} = \frac{2}{n\pi} \sin(n\pi/2) \quad (n = 1, 2, 3, \ldots)
\]

\[
a_{2k} = 0, \quad a_{2k-1} = \frac{2}{\pi} \sin((2k - 1)\pi/2) = \frac{2}{\pi} (-1)^{k-1} \quad (k = 1, 2, 3, \ldots)
\]

Så Fourier-cosinusrekkene blir

\[
\frac{1}{2} + 2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2k - 1} \cos((2k - 1)x).
\]

b) \(u(x, t) = X(x)T(t) \) gir \(XT' + XT = X''T \). Divisjon med \(XT \) gir \(\frac{T'}{T} + 1 = \frac{X''}{X} = k \), hvor \(k \) er en konstant. For \(X \) gir dette \(X'' - kX = 0 \) og \(X''(0) = X'(0) = 0 \).

Hvis \(k = p^2 > 0 \), får vi \(X = A \cosh px + B \sinh px, \ X' = pA \sinh px + pB \cosh px. \)

\(X'(0) = pB \cosh 0 = 0 \) gir \(B = 0 \) (siden \(p \neq 0 \)), \(X'(\pi) = pA \sin p\pi = 0 \) gir \(A = 0 \) (siden \(\sin p\pi \neq 0 \)). Så \(A = B = 0 \), dvs., vi får bare null-løsningen.

\(k = 0 \) gir \(X = A + Bx, \) som sammen med randbetingelsene gir \(X = A = 0 \) konstant.

\(k = -p^2 < 0 \) gir \(X = A \cos px + B \sin px, \ X' = -pA \sin px + pB \cosh px. \)

\(X'(0) = pB = 0 \) gir \(B = 0, \ X'(\pi) = pA \sin p\pi = 0 \) gir \(p = n = 1, 2, 3, \ldots \). Så for \(k < 0 \) har vi følgende muligheter for \(X \): \(X_n(x) = A_n \cos nx, \ n = 1, 2, 3, \ldots \). Disse kan slås sammen med tilfellet \(k = 0 \) til \(X_n(x) = A_n \cos nx, \ n = 0, 1, 2, 3, \ldots \).
Så \(k = -n^2 \), \(n = 0, 1, 2, 3, \ldots \) er de eneste verdiene av separasjonskonstanten \(k \) som gir ikke-trivielle løsninger.

For \(T \) gir dette: \(\frac{T}{T} + 1 = k = -n^2 \), dvs., \(\frac{T}{T} = -(n^2 + 1) \), som gir \(T = e^{-(n^2+1)t} \) (trenger ingen konstant foran \(e^{-(n^2+1)t} \) siden den blir absorbert av konstanten foran \(\cos nx \)).

Dermed har vi at alle løsninger av differensialligningen (1) og randbetingelsene (2) på formen \(u_n(x, t) = X(x)T(t) \) er gitt ved

\[
 u_n(x, t) = A_n \cos nx \cdot e^{-(n^2+1)t}, \quad n = 0, 1, 2, 3, \ldots
\]

c) Vi søker en løsning på formen \(u(x, t) = \sum_{n=0}^{\infty} u_n(x, t) = \sum_{n=0}^{\infty} A_n \cos nx \cdot e^{-(n^2+1)t} \) som i tillegg til (1) og (2) også oppfyller initialbetingelsen \(u(x, 0) = f(x) \), hvor \(f(x) \) er funksjonen fra a). Vi får

\[
 u(x, 0) = \sum_{n=0}^{\infty} A_n \cos nx = f(x),
\]

og det betyr at \(A_n = a_n \), hvor \(a_n \) er kjoeffisientene funnet i a), dvs., \(A_0 = 1/2, A_2k = 0, A_{2k-1} = \frac{1}{\pi} \frac{1}{2k-1}, k = 1, 2, 3, \ldots \) Så den søkte løsningen blir

\[
 u(x, t) = u_0(x, t) + \sum_{k=1}^{\infty} u_{2k-1}(x, t)
\]

\[
 = \frac{1}{2} e^{-t} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2k-1} \cos(2k-1)x \cdot e^{-(2k-1)^2+1)t}
\]

\[
 = \left(\frac{1}{2} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2k-1} \cos(2k-1)x \cdot e^{-(2k-1)^2+1)t} \right) e^{-t}.
\]

\[
 a)
\]

\[
 \hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-|x|} e^{-iwx} \, dx
\]

\[
 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^x e^{-iwx} \, dx + \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-x} e^{-iwx} \, dx
\]

\[
 = \frac{1}{\sqrt{2\pi}} \left[\frac{1}{1-iw} e^{(1-iw)x} \right]_{x=-\infty}^{x=0} + \frac{1}{\sqrt{2\pi}} \left[\frac{-1}{1+iw} e^{-(1+iw)x} \right]_{x=0}^{x=\infty}
\]

\[
 = \frac{1}{\sqrt{2\pi}} \left(\frac{1}{1-iw} + \frac{1}{1+iw} \right) = \frac{\sqrt{2}}{\pi} \frac{1}{1+w^2}.
\]

\[
 \hat{g}(w) = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-iwx} \, dx = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} (\cos wx + i \sin wx) \, dx
\]

\[
 = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} \cos wx \, dx + \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} i \sin wx \, dx
\]

\[
 = \frac{1}{\sqrt{2\pi}} \left[\frac{\sin wx}{w} \right]_{x=-1}^{x=1} = \frac{\sqrt{2} \sin w}{\pi w},
\]

hvor vi har brukt at \(\cos wx \) (resp. \(\sin wx \)) er en like (resp. odde)funksjon av \(x \).

\[
 b)
\]

\[
 h(0) = \int_{-\infty}^{\infty} f(-p)g(p) \, dp = \int_{-1}^{1} f(-p) = 2 \int_{0}^{1} f(p) = 2 \int_{0}^{1} e^{-p} \, dp
\]

\[
 = 2(1 - e^{-1}) = 2 \left(\frac{e - 1}{e} \right),
\]
hvor vi har brukt at \(f(p) = e^{-|pl|} \) er en like funksjon av \(p \).
Siden \(h = f \ast g \), følger at \(\mathcal{F}(h) = \sqrt{2\pi} \mathcal{F}(f) \mathcal{F}(g) \). Bruk av invers Fourier-transform på begge sider gir \(h = \sqrt{2\pi} \mathcal{F}^{-1}(\mathcal{F}(f) \mathcal{F}(g)) = \sqrt{2\pi} \mathcal{F}^{-1} \left(\hat{f} \cdot \hat{g} \right) \), dvs.,
\[
h(x) = \sqrt{\frac{2\pi}{2\pi}} \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w) \hat{g}(w) e^{iwx} dw = \int_{-\infty}^{\infty} \hat{f}(w) \hat{g}(w) e^{iwx} dw,
\]
som for \(x = 0 \) gir
\[
h(0) = \int_{-\infty}^{\infty} \hat{f}(w) \hat{g}(w) dw = \int_{-\infty}^{\infty} \sqrt{\frac{2\pi}{\pi}} \frac{1}{1 + w^2} \sqrt{\frac{2\pi}{\pi}} \sin w dw.
\]
Fra konvolusjonsformelen har vi \(h(0) = 2 \cdot \frac{-1}{e} \), og alt dette gir til sammen:
\[
2 \cdot \frac{e - 1}{e} = \int_{-\infty}^{\infty} \sqrt{\frac{2\pi}{\pi}} \frac{1}{1 + w^2} \sqrt{\frac{2\pi}{\pi}} \sin w dw
\]
dvs.,
\[
\int_{-\infty}^{\infty} \frac{\sin w}{w(1 + w^2)} dw = \frac{\pi}{e} (e - 1).
\]

4) Via identiteten \(\sin \theta = \frac{1}{2i} (e^{i\theta} - e^{-i\theta}) \) og substitusjonen \(z = e^{i\theta} \) får vi:
\[
\int_{0}^{2\pi} \frac{1}{2 + \sin \theta} d\theta = \int_{C} \frac{1}{2 + \frac{1}{\sqrt{3}}(z - 1/z)} \frac{dz}{iz} = 2 \cdot \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}},
\]
hvor \(C \) er enhetssirkelen gjennomlopt én gang mot urviseren. Sett \(f(z) = \frac{2}{z^2 + 4iz - 1} \). Nevr-
neren \(z^2 + 4iz - 1 \) har første ordens nullpunkter i \(z = z_1 = (-2 + \sqrt{3})i \) og \(z = z_2 = (-2 - \sqrt{3})i \), så \(f(z) \) har første ordens poler i disse punktene. Bare \(z_1 \) ligger innenfor enhetssirkelen. Vi skriver \(f(z) \) på formen \(f(z) = \frac{2}{(z - z_1)(z - z_2)} \) og beregner residuet i \(z_1 \):
\[
\text{Res}_{z=z_1} f(z) = \lim_{z \to z_1} ((z - z_1) f(z)) = \frac{2}{z_1 - z_2} = \frac{2}{2\sqrt{3}i} = \frac{2}{\sqrt{3}},
\]
i.e.,
\[
\int_{0}^{2\pi} \frac{1}{2 + \sin \theta} d\theta = \int_{C} f(z) dz = 2\pi i \text{Res}_{f(z)} f(z) = 2\pi i \frac{2}{\sqrt{3}} = \frac{2\pi}{\sqrt{3}} = \frac{2}{\sqrt{3}i}.
\]
Residuet kan også beregnes slik: \(\text{Res}_{z=z_1} f(z) = \frac{2}{\pi i (z^2 + 4iz - 1)_{z=z_1}} = \frac{2}{(2z + 4i)_{z=z_1}} = \frac{2}{2\sqrt{3}i} = \frac{1}{\sqrt{3}} \).

5) a) Mulige singulære punkter er der hvor nevner er lik 0, nemlig \(z = 0 \) og \(z = \pi/4 \).
Punktet \(z = 0 \) er imidlertid en hevbar singularitet fordi
\[
\lim_{z \to 0} \frac{1 - \cos^2 z}{z^2} = \lim_{z \to 0} \frac{\sin^2 z}{z^2} = \left(\lim_{z \to 0} \frac{\sin z}{z} \right)^2 = \left(\lim_{z \to 0} \frac{\cos z}{1} \right)^2 = 1
\]
ved L'Hôpitals regel, så uttrykket \(\frac{1 - \cos^2 z}{z^2} \) blir analytisk i 0 dersom vi gir det verdien 1 der. Alternativt kunne vi brukt Maclaurin-rekken til sin z:\n\[
1 - \cos^2 z = \sin^2 z = \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots \right)^2 = \frac{z^2(1 - z^2/3! + z^4/5! - \cdots)^2}{z^2} = \left(1 - z^{2}/3! + z^4/5! - \cdots \right)^2
\]
og kommet til samme resultat.
\(z = \pi/4 \) er et enkelt nullpunkt for nevneren til \(f(z) \), og siden telleren er forskjellig fra 0 der, er \(z = \pi/4 \) en enkel pol for \(f(z) \).

Oppsummert: \(z = 0 \) er en hevbar singularitet. \(z = \pi/4 \) er en enkel pol.
b) Polen $z = \pi / 4$ ligger innerfor enhetsirkelen. Vi beregner residyet:

$$\text{Res}_{z = \pi / 4} f(z) = \lim_{z \to \pi / 4} ((z - \pi / 4)f(z)) = \frac{1 - \cos^2 z}{z^2 \cdot 4} \bigg|_{z = \pi / 4} = \frac{1 - 1/2}{(\pi / 4)^2 \cdot 4} = \frac{2}{\pi^2}.$$

Alternativt:

$$\text{Res}_{z = \pi / 4} f(z) = \frac{1 - \cos^2 z}{\frac{d}{dz}(z^2(4z - \pi))} \bigg|_{z = \pi / 4} = \frac{1 - 1/2}{(12z^2 - 2\pi z)|_{z = \pi / 4}} = \frac{1/2}{12\pi^2/16 - 2\pi \cdot \pi / 4} = \frac{2}{\pi^2}.$$

Dette gir:

$$\int_C f(z) \, dz = 2\pi i \left(\text{Res}_{z = \pi / 4} f(z) \right) = 2\pi i \frac{2}{\pi^2} = \frac{4i}{\pi}.$$