TMA4115-Calculus 3
 Lecture 9, Feb 13

Toke Meier Carlsen
Norwegian University of Science and Technology Spring 2013

Review of last week's lecture

Review of last week's lecture

Last week we

Review of last week's lecture

Last week we

- studied how to solve systems of linear equations,

Review of last week's lecture

Last week we

- studied how to solve systems of linear equations,
- introduced row reduction, echelon forms, pivot positions, the row reduction algorithm, and parametric descriptions of solution sets of systems of linear equations,

NTNU
Norwegian University of
Science and Technology

Review of last week's lecture

Last week we

- studied how to solve systems of linear equations,
- introduced row reduction, echelon forms, pivot positions, the row reduction algorithm, and parametric descriptions of solution sets of systems of linear equations,
- introduced and studied vectors, linear combinations of vectors, subsets spanned by vectors, vector equations, the product of a matrix and a vector, matrix equations.

Today's lecture

Today's lecture

Today we shall

- introduce and solve homogeneous and nonhomegeneous matrix equations,

Today's lecture

Today we shall

- introduce and solve homogeneous and nonhomegeneous matrix equations,
- learn how to write solution sets in parametric vector form,

Today's lecture

Today we shall

- introduce and solve homogeneous and nonhomegeneous matrix equations,
- learn how to write solution sets in parametric vector form,
- look at applications of linear systems.

Matrix equations

Theorem 3

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, and if \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation $A \mathbf{x}=\mathbf{b}$ has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots x_{n} \mathbf{a}_{n}=\mathbf{b},
$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$
\left[\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{n} \ldots \mathbf{b}\right] .
$$

D

Matrix equations

Theorem 3

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, and if \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation $A \mathbf{x}=\mathbf{b}$ has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots x_{n} \mathbf{a}_{n}=\mathbf{b},
$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$
\left[\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{n} \ldots \mathbf{b}\right] .
$$

Note that the matrix equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combinations of the columns of A, that is, if and only if \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$.

Homogeneous linear systems

NTNU
Norwegian University of
Science and Technology

Homogeneous linear systems

- A system of linear equations is said to be homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$, where A is an $m \times n$ matrix and $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.

Homogeneous linear systems

- A system of linear equations is said to be homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$, where A is an $m \times n$ matrix and $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.
- Such a system $A \mathbf{x}=\mathbf{0}$ always has at least one solution, namely, $\mathbf{x}=\mathbf{0}$, where $\mathbf{0}$ is the zero vector in \mathbb{R}^{n}.

Homogeneous linear systems

- A system of linear equations is said to be homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$, where A is an $m \times n$ matrix and $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.
- Such a system $A \mathbf{x}=\mathbf{0}$ always has at least one solution, namely, $\mathbf{x}=\mathbf{0}$, where $\mathbf{0}$ is the zero vector in \mathbb{R}^{n}.
- This zero solution is usually called the trivial solution.

Homogeneous linear systems

- A system of linear equations is said to be homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$, where A is an $m \times n$ matrix and $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.
- Such a system $A \mathbf{x}=\mathbf{0}$ always has at least one solution, namely, $\mathbf{x}=\mathbf{0}$, where $\mathbf{0}$ is the zero vector in \mathbb{R}^{n}.
- This zero solution is usually called the trivial solution.
- The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable.

0

Example

Let us describe the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$ where

$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right]
$$

0

Example

Let us describe the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$ where

$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right]
$$

We reduce the augmented matrix of the equation to its reduced echelon form.

Example

Let us describe the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$ where

$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right]
$$

We reduce the augmented matrix of the equation to its reduced echelon form.

$$
\left[\begin{array}{cccc}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right]
$$

Example

Let us describe the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$ where

$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right]
$$

We reduce the augmented matrix of the equation to its reduced echelon form.

$$
\left[\begin{array}{cccc}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
3 & 5 & -4 & 0 \\
0 & 3 & 0 & 0 \\
0 & -9 & 0 & 0
\end{array}\right]
$$

Example

Let us describe the solution set of the homogeneous

 equation $A \mathbf{x}=\mathbf{0}$ where$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right]
$$

We reduce the augmented matrix of the equation to its reduced echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
3 & 5 & -4 & 0 \\
0 & 3 & 0 & 0 \\
0 & -9 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
3 & 5 & -4 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \text { D }
\end{aligned}
$$

Example (cont.)

Example (cont.)

$$
\rightarrow\left[\begin{array}{cccc}
1 & 5 / 3 & -4 / 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -4 / 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Example (cont.)

$$
\rightarrow\left[\begin{array}{cccc}
1 & 5 / 3 & -4 / 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -4 / 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We see that

$$
\begin{aligned}
& x_{1}=\frac{4}{3} x_{3} \\
& x_{2}=0 \\
& x_{3} \text { is free }
\end{aligned}
$$

Example (cont.)

The general solution of $\mathbf{A x}=\mathbf{0}$ is thus

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{3} x_{3} \\
0 \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right]
$$

where x_{3} is a free parameter.

Parametric vector form

Parametric vector form

Whenever a solution set is written as

$$
\mathbf{x}=t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are vectors and t_{1}, \ldots, t_{p} are parameters, we say that the solution is in parametric vector form.

The solution set of a homogeneous equation

If the solution set of a homogeneous equation $A \mathbf{x}=\mathbf{0}$, where A is an $m \times n$ matrix, can be written in parametric vector form

$$
\mathbf{x}=t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are vectors and t_{1}, \ldots, t_{p} are parameters, then the solution set is equal to $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

0

Example

Let us write the general solution to the homogeneous equation $A \mathbf{x}=\mathbf{0}$ in parametric vector form where

$$
A=\left[\begin{array}{cccc}
1 & -3 & -8 & 5 \\
0 & 1 & 2 & -4
\end{array}\right]
$$

Example

Let us write the general solution to the homogeneous equation $A \mathbf{x}=\mathbf{0}$ in parametric vector form where

$$
A=\left[\begin{array}{cccc}
1 & -3 & -8 & 5 \\
0 & 1 & 2 & -4
\end{array}\right]
$$

We reduce the augmented matrix of the equation to its reduced echelon form.

Example

Let us write the general solution to the homogeneous equation $A \mathbf{x}=\mathbf{0}$ in parametric vector form where

$$
A=\left[\begin{array}{cccc}
1 & -3 & -8 & 5 \\
0 & 1 & 2 & -4
\end{array}\right]
$$

We reduce the augmented matrix of the equation to its reduced echelon form.

$$
\left[\begin{array}{ccccc}
1 & -3 & -8 & 5 & 0 \\
0 & 1 & 2 & -4 & 0
\end{array}\right]
$$

(

Example

Let us write the general solution to the homogeneous equation $A \mathbf{x}=\mathbf{0}$ in parametric vector form where

$$
A=\left[\begin{array}{cccc}
1 & -3 & -8 & 5 \\
0 & 1 & 2 & -4
\end{array}\right]
$$

We reduce the augmented matrix of the equation to its reduced echelon form.

$$
\left[\begin{array}{ccccc}
1 & -3 & -8 & 5 & 0 \\
0 & 1 & 2 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & -2 & -7 & 0 \\
0 & 1 & 2 & -4 & 0
\end{array}\right]
$$

D

Example (cont.)

We see that

$$
\begin{aligned}
& x_{1}=2 x_{3}+7 x_{4} \\
& x_{2}=-2 x_{3}+4 x_{4} \\
& x_{3} \text { is free } \\
& x_{4} \text { is free }
\end{aligned}
$$

0

Example (cont.)

The general solution of $\mathbf{A x}=\mathbf{0}$ is thus

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{3}+7 x_{4} \\
-2 x_{3}+4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
7 \\
4 \\
0 \\
1
\end{array}\right]
$$

where x_{3} and x_{4} are free parameters.

Solutions of nonhomogeneous systems

Let A be an $m \times n$ matrix and that \mathbf{b} is a vector in \mathbb{R}^{m}.

Solutions of nonhomogeneous

systems

Let A be an $m \times n$ matrix and that \mathbf{b} is a vector in \mathbb{R}^{m}. Suppose that $\mathbf{x}=\mathbf{p}$ is a solution to the nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$, and that the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$ is given by the parametric form

$$
\mathbf{x}=t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are vectors in \mathbb{R}^{n}, then the solution set of the nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$ is given by the parametric form

$$
\mathbf{x}=\mathbf{p}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}
$$

Proof

Proof

If $\mathbf{y}=\mathbf{p}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}$ where $t_{1}, t_{2}, \ldots, t_{p}$ are scalars,

Proof

If $\mathbf{y}=\mathbf{p}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}$ where $t_{1}, t_{2}, \ldots, t_{p}$ are scalars, then

$$
\begin{aligned}
A \mathbf{y} & =A\left(\mathbf{p}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}\right) \\
& =A \mathbf{p}+t_{1} A \mathbf{v}_{1}+t_{2} A \mathbf{v}_{2}+\cdots+t_{p} A \mathbf{v}_{p} \\
& =\mathbf{b}+t_{1} \mathbf{0}+t_{2} \mathbf{0}+\ldots t_{p} \mathbf{0}=\mathbf{b}
\end{aligned}
$$

0

Proof

If $\mathbf{y}=\mathbf{p}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}$ where $t_{1}, t_{2}, \ldots, t_{p}$ are scalars, then

$$
\begin{aligned}
A \mathbf{y} & =A\left(\mathbf{p}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}\right) \\
& =A \mathbf{p}+t_{1} A \mathbf{v}_{1}+t_{2} A \mathbf{v}_{2}+\cdots+t_{p} A \mathbf{v}_{p} \\
& =\mathbf{b}+t_{1} \mathbf{0}+t_{2} \mathbf{0}+\ldots t_{p} \mathbf{0}=\mathbf{b}
\end{aligned}
$$

so $\mathbf{x}=\mathbf{y}=\mathbf{p}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}$ is a solution to the equation $\mathbf{A x}=\mathbf{b}$.

Proof (cont.)

Assume that $\mathbf{x}=\mathbf{y}$ is a solution to the equation $A \mathbf{x}=\mathbf{b}$.

Proof (cont.)

Assume that $\mathbf{x}=\mathbf{y}$ is a solution to the equation $A \mathbf{x}=\mathbf{b}$. Then

$$
A(\mathbf{y}-\mathbf{p})=A \mathbf{y}-A \mathbf{p}=\mathbf{b}-\mathbf{b}=\mathbf{0},
$$

0

Proof (cont.)

Assume that $\mathbf{x}=\mathbf{y}$ is a solution to the equation $A \mathbf{x}=\mathbf{b}$. Then

$$
A(\mathbf{y}-\mathbf{p})=A \mathbf{y}-A \mathbf{p}=\mathbf{b}-\mathbf{b}=\mathbf{0},
$$

so $\mathbf{x}=\mathbf{y}-\mathbf{p}$ is a solution to the equation $A \mathbf{x}=\mathbf{0}$.

Proof (cont.)

Assume that $\mathbf{x}=\mathbf{y}$ is a solution to the equation $A \mathbf{x}=\mathbf{b}$. Then

$$
A(\mathbf{y}-\mathbf{p})=A \mathbf{y}-A \mathbf{p}=\mathbf{b}-\mathbf{b}=\mathbf{0},
$$

so $\mathbf{x}=\mathbf{y}-\mathbf{p}$ is a solution to the equation $A \mathbf{x}=\mathbf{0}$. It follows that $\mathbf{y}-\mathbf{p}=t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}$ for some scalars $t_{1}, t_{2}, \ldots, t_{p}$,

Proof (cont.)

Assume that $\mathbf{x}=\mathbf{y}$ is a solution to the equation $A \mathbf{x}=\mathbf{b}$. Then

$$
A(\mathbf{y}-\mathbf{p})=A \mathbf{y}-A \mathbf{p}=\mathbf{b}-\mathbf{b}=\mathbf{0}
$$

so $\mathbf{x}=\mathbf{y}-\mathbf{p}$ is a solution to the equation $A \mathbf{x}=\mathbf{0}$. It follows that $\mathbf{y}-\mathbf{p}=t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}$ for some scalars
$t_{1}, t_{2}, \ldots, t_{p}$, and thus that $\mathbf{y}=\mathbf{p}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{p} \mathbf{v}_{p}$.

Example

Let us write the general solution to the nonhomogeneous equation $\mathbf{A x}=\mathbf{b}$ in parametric vector form where

$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
7 \\
-1 \\
-4
\end{array}\right]
$$

Example

Let us write the general solution to the nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$ in parametric vector form where

$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
7 \\
-1 \\
-4
\end{array}\right]
$$

We reduce the augmented matrix of the equation to its reduced echelon form.

NTNU
Norwegian University of
Science and Technology

Example

Let us write the general solution to the nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$ in parametric vector form where

$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
7 \\
-1 \\
-4
\end{array}\right]
$$

We reduce the augmented matrix of the equation to its reduced echelon form.

$$
\left[\begin{array}{cccc}
3 & 5 & -4 & 7 \\
-3 & -2 & 4 & -1 \\
6 & 1 & -8 & -4
\end{array}\right]
$$

Example

Let us write the general solution to the nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$ in parametric vector form where

$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
7 \\
-1 \\
-4
\end{array}\right]
$$

We reduce the augmented matrix of the equation to its reduced echelon form.

$$
\left[\begin{array}{cccc}
3 & 5 & -4 & 7 \\
-3 & -2 & 4 & -1 \\
6 & 1 & -8 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
3 & 5 & -4 & 7 \\
0 & 3 & 0 & 6 \\
0 & -9 & 0 & -18
\end{array}\right]
$$

Example (cont.)

$$
\rightarrow\left[\begin{array}{cccc}
3 & 5 & -4 & 7 \\
0 & 3 & 0 & 6 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Example (cont.)

$$
\rightarrow\left[\begin{array}{cccc}
3 & 5 & -4 & 7 \\
0 & 3 & 0 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 5 / 3 & -4 / 3 & 7 / 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Example (cont.)

$$
\begin{aligned}
& \rightarrow\left[\begin{array}{cccc}
3 & 5 & -4 & 7 \\
0 & 3 & 0 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 5 / 3 & -4 / 3 & 7 / 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 0 & -4 / 3 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

We see that

$$
\begin{aligned}
& x_{1}=\frac{4}{3} x_{3}-1 \\
& x_{2}=2 \\
& x_{3} \text { is free }
\end{aligned}
$$

Example (cont.)

The general solution of $\mathbf{A x}=\mathbf{0}$ is thus

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{3} x_{3}-1 \\
2 \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]
$$

where x_{3} is a free parameter.

Writing a solution set of a consistent system in parametric vector form

Writing a solution set of a consistent system in parametric vector form

(1) Row reduce the augmented matrix to reduced echelon form.

Writing a solution set of a consistent system in parametric vector form

(1) Row reduce the augmented matrix to reduced echelon form.
(2) Express each basic variable in terms of any free variables appearing in an equation.

Writing a solution set of a consistent system in parametric vector form

(1) Row reduce the augmented matrix to reduced echelon form.
(2) Express each basic variable in terms of any free variables appearing in an equation.
(3) Write a typical solution \mathbf{x} as a vector whose entries depend on the free variables, if any.

0

Writing a solution set of a consistent system in parametric vector form

(1) Row reduce the augmented matrix to reduced echelon form.
(2) Express each basic variable in terms of any free variables appearing in an equation.
(3) Write a typical solution x as a vector whose entries depend on the free variables, if any.
(4) Decompose \mathbf{x} into a linear combination of vectors (with numeric entries) using the free variables as parameters.

0

Example

Let us write the general solution to the linear system

$$
\begin{aligned}
x_{1}+2 x_{2}-3 x_{3} & =2 \\
2 x_{1}+x_{2}-3 x_{3} & =2 \\
-x_{1}+x_{2} & =0
\end{aligned}
$$

in parametric vector form.

Example

Let us write the general solution to the linear system

$$
\begin{aligned}
x_{1}+2 x_{2}-3 x_{3} & =2 \\
2 x_{1}+x_{2}-3 x_{3} & =2 \\
-x_{1}+x_{2} & =0
\end{aligned}
$$

in parametric vector form.
We reduce the augmented matrix of the system to its reduced echelon form.

Example

Let us write the general solution to the linear system

$$
\begin{aligned}
x_{1}+2 x_{2}-3 x_{3} & =2 \\
2 x_{1}+x_{2}-3 x_{3} & =2 \\
-x_{1}+x_{2} & =0
\end{aligned}
$$

in parametric vector form.
We reduce the augmented matrix of the system to its reduced echelon form.

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 2 \\
2 & 1 & -3 & 2 \\
-1 & 1 & 0 & 0
\end{array}\right]
$$

0

Example

Let us write the general solution to the linear system

$$
\begin{aligned}
x_{1}+2 x_{2}-3 x_{3} & =2 \\
2 x_{1}+x_{2}-3 x_{3} & =2 \\
-x_{1}+x_{2} & =0
\end{aligned}
$$

in parametric vector form.
We reduce the augmented matrix of the system to its reduced echelon form.

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 2 \\
2 & 1 & -3 & 2 \\
-1 & 1 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & -3 & 3 & -2 \\
0 & 3 & -3 & 2 \\
\mathbf{c} \\
\begin{array}{c}
\text { NovU } \\
\text { Scregian University of } \\
\text { Science and Technology }
\end{array}
\end{array}\right.
$$

Example (cont.)

$$
\rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & -3 & 3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Example (cont.)

$$
\rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & -3 & 3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & 1 & -1 & 2 / 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Example (cont.)

$$
\begin{gathered}
\rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & -3 & 3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & 1 & -1 & 2 / 3 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\rightarrow\left[\begin{array}{cccc}
1 & 0 & -1 & 2 / 3 \\
0 & 1 & -1 & 2 / 3 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

We see that

$$
\begin{aligned}
& x_{1}=x_{3}+2 / 3 \\
& x_{2}=x_{3}+2 / 3 \\
& x_{3} \text { is free }
\end{aligned}
$$

NTNU
Norwegian University of Science and Technology

Example (cont.)

The general solution of $A \mathbf{x}=\mathbf{0}$ is thus

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{3}+2 / 3 \\
x_{3}+2 / 3 \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
2 / 3 \\
2 / 3 \\
0
\end{array}\right]
$$

where x_{3} is a free parameter.

0

Problem 3 from June 2005

Let $A=\left[\begin{array}{cccc}1 & -2 & 2 & -1 \\ -3 & 6 & -2 & -1 \\ 4 & -8 & 3 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}4 \\ 0 \\ c\end{array}\right]$ where c denotes an arbitrary real number.
(1) Solve the homogeneous equation $A \mathbf{x}=\mathbf{0}$.
(2) For which values of c does the inhomogeneous equation $A \mathbf{x}=\mathbf{b}$ have a solution? Find the solution when the equation has a solution.

Solution

Solution

We reduce the augmented matrix [$A 0]$ to its reduced echelon form.

Solution

We reduce the augmented matrix $[A 0]$ to its reduced echelon form.

$$
\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
-3 & 6 & -2 & -1 & 0 \\
4 & -8 & 3 & 1 & 0
\end{array}\right]
$$

Solution

We reduce the augmented matrix $[A 0]$ to its reduced echelon form.

$$
\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
-3 & 6 & -2 & -1 & 0 \\
4 & -8 & 3 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
0 & 0 & 4 & -4 & 0 \\
0 & 0 & -5 & 5 & 0
\end{array}\right]
$$

0

Solution

We reduce the augmented matrix $[A 0]$ to its reduced echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
-3 & 6 & -2 & -1 & 0 \\
4 & -8 & 3 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
0 & 0 & 4 & -4 & 0 \\
0 & 0 & -5 & 5 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
0 & 0 & 4 & -4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

0

Solution

We reduce the augmented matrix $[A 0]$ to its reduced echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
-3 & 6 & -2 & -1 & 0 \\
4 & -8 & 3 & 1 & 0
\end{array}\right] } \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
0 & 0 & 4 & -4 & 0 \\
0 & 0 & -5 & 5 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
0 & 0 & 4 & -4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

0

Solution

We reduce the augmented matrix $[A 0]$ to its reduced echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
-3 & 6 & -2 & -1 & 0 \\
4 & -8 & 3 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
0 & 0 & 4 & -4 & 0 \\
0 & 0 & -5 & 5 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
0 & 0 & 4 & -4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Solution (cont.)

We see that

$$
\begin{aligned}
& x_{1}=2 x_{2}-x_{4} \\
& x_{2}=\text { is free } \\
& x_{3}=x_{4} \\
& x_{4}=\text { is free }
\end{aligned}
$$

Solution (cont.)

We see that

$$
\begin{aligned}
& x_{1}=2 x_{2}-x_{4} \\
& x_{2}=\text { is free } \\
& x_{3}=x_{4} \\
& x_{4}=\text { is free }
\end{aligned}
$$

The general solution of $A \mathbf{x}=\mathbf{0}$ is thus

$$
\begin{aligned}
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2}-x_{4} \\
x_{2} \\
x_{4} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
1 \\
1
\end{array}\right] \\
& \text { where } x_{2} \text { and } x_{4} \text { are free parameters. } \quad \text { (} \begin{array}{c}
\text { NTVU } \\
\text { Scegian University of } \\
\text { Science and Technology }
\end{array}
\end{aligned}
$$

Solution (cont.)

Solution (cont.)

We reduce the augmented matrix $[A \mathbf{b}]$ to an echelon form.

Solution (cont.)

We reduce the augmented matrix $[A \mathbf{b}]$ to an echelon form.

$$
\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
-3 & 6 & -2 & -1 & 0 \\
4 & -8 & 3 & 1 & c
\end{array}\right]
$$

0

Solution (cont.)

We reduce the augmented matrix $[A \mathbf{b}]$ to an echelon form.

$$
\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
-3 & 6 & -2 & -1 & 0 \\
4 & -8 & 3 & 1 & c
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
0 & 0 & 4 & -4 & 12 \\
0 & 0 & -5 & 5 & c-16
\end{array}\right]
$$

Solution (cont.)

We reduce the augmented matrix $[A \mathbf{b}]$ to an echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
-3 & 6 & -2 & -1 & 0 \\
4 & -8 & 3 & 1 & c
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
0 & 0 & 4 & -4 & 12 \\
0 & 0 & -5 & 5 & c-16
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
0 & 0 & 1 & -1 & 3 \\
0 & 0 & -5 & 5 & c-16
\end{array}\right]
\end{aligned}
$$

Solution (cont.)

We reduce the augmented matrix $[A \mathbf{b}]$ to an echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
-3 & 6 & -2 & -1 & 0 \\
4 & -8 & 3 & 1 & c
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
0 & 0 & 4 & -4 & 12 \\
0 & 0 & -5 & 5 & c-16
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
0 & 0 & 1 & -1 & 3 \\
0 & 0 & -5 & 5 & c-16
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & c-1
\end{array}\right]
\end{aligned}
$$

Solution (cont.)

We reduce the augmented matrix $[A \mathbf{b}]$ to an echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
-3 & 6 & -2 & -1 & 0 \\
4 & -8 & 3 & 1 & c
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
0 & 0 & 4 & -4 & 12 \\
0 & 0 & -5 & 5 & c-16
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
0 & 0 & 1 & -1 & 3 \\
0 & 0 & -5 & 5 & c-16
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & -2 & 2 & -1 & 4 \\
0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & c-1
\end{array}\right]
\end{aligned}
$$

We see that the equation has a solution if and only if $c=1$.

Solution (cont.)

If $c=1$, then the reduced echelon form of $[A \mathbf{b}]$ is

$$
\left[\begin{array}{ccccc}
1 & -2 & 0 & 1 & -2 \\
0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

0

Solution (cont.)

If $c=1$, then the reduced echelon form of $[A \mathbf{b}]$ is

$$
\left[\begin{array}{ccccc}
1 & -2 & 0 & 1 & -2 \\
0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

It follows that

$$
\begin{aligned}
& x_{1}=2 x_{2}-x_{4}-2 \\
& x_{2}=\text { is free } \\
& x_{3}=x_{4}+3 \\
& x_{4}=\text { is free }
\end{aligned}
$$

Solution (cont.)

So when $c=1$, then the general solution of $A \mathbf{x}=\mathbf{b}$ is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2}-x_{4}-2 \\
x_{2} \\
x_{4}+3 \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-2 \\
0 \\
3 \\
0
\end{array}\right]
$$

where x_{2} and x_{4} are free parameters.

0

Example

Suppose an economy consist of the Coal, Electric, and Steel sectors, and the output of each sector is distributed among the various sectors as shown in the following table.

Coal	Electric	Steel	Purchased by:
0	.4	.6	Coal
.6	.1	.2	Electric
.4	.5	.2	Steel

If possible, let us find equilibrium prices that make each sector's income match its expenditures.

Solution

Solution

Let p_{C} be the price of the total annual output from the Coal sector, let p_{E} be the price of the total annual output from the Electric sector, and let p_{S} be the price of the total annual output from the Steel sector.

Solution

Let p_{C} be the price of the total annual output from the Coal sector, let p_{E} be the price of the total annual output from the Electric sector, and let p_{s} be the price of the total annual output from the Steel sector.
To have equilibrium we mush have

$$
\begin{aligned}
& p_{C}=0.4 p_{E}+0.6 p_{S} \\
& p_{E}=0.6 p_{C}+0.1 p_{E}+0.2 p_{S} \\
& p_{S}=0.4 p_{C}+0.5 p_{E}+0.2 p_{S}
\end{aligned}
$$

D

Solution

which is equivalent to

$$
\begin{aligned}
& p_{C}-0.4 p_{E}-0.6 p_{S}=0 \\
&-0.6 p_{C}+0.9 p_{E}-0.2 p_{S}=0 \\
&-0.4 p_{C}-0.5 p_{E}+0.8 p_{S}
\end{aligned}
$$

Solution

which is equivalent to

$$
\begin{aligned}
& p_{C}-0.4 p_{E}-0.6 p_{S}=0 \\
&-0.6 p_{C}+0.9 p_{E}-0.2 p_{S}=0 \\
&-0.4 p_{C}-0.5 p_{E}+0.8 p_{S}
\end{aligned}
$$

We write down the augmented matrix of the equation and row reduce it to reduced echelon form.

$$
\left[\begin{array}{cccc}
1 & -.4 & -.6 & 0 \\
-.6 & .9 & -.2 & 0 \\
-.4 & -.5 & .8 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -.4 & -.6 & 0 \\
0 & .66 & -.56 & 0 \\
0 & -.66 & .56 & 0
\end{array}\right] \rightarrow
$$

0
NTNU
Norwegian University of
Science and Technology

Solution

$$
\left[\begin{array}{cccc}
1 & -.4 & -.6 & 0 \\
0 & .66 & -.56 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -.4 & -.6 & 0 \\
0 & 1 & -.85 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -.94 & 0 \\
0 & 1 & -.85 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Solution

$$
\left[\begin{array}{cccc}
1 & -.4 & -.6 & 0 \\
0 & .66 & -.56 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -.4 & -.6 & 0 \\
0 & 1 & -.85 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc:c}
1 & 0 & -.94 & 0 \\
0 & 1 & -.85 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We see that we must have $p_{C}=0.94 p_{S}$ and $p_{E}=0.85 p_{S}$ in order to have equilibrium.

Example

When propane burns, the propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ combines with oxygen $\left(\mathrm{O}_{2}\right)$ to form carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Let us balance the chemical equation, that is find positive integers $x_{1}, x_{2}, x_{3}, x_{4}$ such that the total numbers of carbon (C), hydrogen (H), and oxygen (O) atoms are the same on the left match the corresponding numbers of atom on the right in the following equation.

$$
x_{1} \mathrm{C}_{3} \mathrm{H}_{8}+x_{2} \mathrm{O}_{2} \rightarrow x_{3} \mathrm{CO}_{2}+x_{4} \mathrm{H}_{2} \mathrm{O}
$$

Solution

Solution

We must have that

$$
\begin{aligned}
& 3 x_{1}=x_{3} \\
& 8 x_{1}=2 x_{4} \\
& 2 x_{2}=2 x_{3}+x_{4}
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
3 x_{1}-x_{3} & =0 \\
8 x_{1}-2 x_{4} & =0 \\
2 x_{2}-2 x_{3}-x_{4} & =0
\end{aligned}
$$

Solution

We write down the augmented matrix of the equation and row reduce it to reduced echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
3 & 0 & -1 & 0 & 0 \\
8 & 0 & 0 & -2 & 0 \\
0 & 2 & -2 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & -1 / 3 & 0 & 0 \\
0 & 0 & 8 / 3 & -2 & 0 \\
0 & 2 & -2 & -1 & 0
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{ccccc}
1 & 0 & -1 / 3 & 0 & 0 \\
0 & 2 & -2 & -1 & 0 \\
0 & 0 & 8 / 3 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & -1 / 3 & 0 & 0 \\
0 & 1 & -1 & -1 / 2 & 0 \\
0 & 0 & 1 & -3 / 4 & 0
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{lllll}
1 & 0 & 0 & -1 / 4 & 0 \\
0 & 1 & 0 & -5 / 4 & 0 \\
0 & 0 & 1 & -3 / 4 & 0
\end{array}\right]}
\end{aligned}
$$

Solution

We see that

$$
\begin{aligned}
& x_{1}=1 / 4 x_{4} \\
& x_{2}=5 / 4 x_{4} \\
& x_{3}=3 / 4 x_{4} \\
& x_{4} \text { is free }
\end{aligned}
$$

0

Solution

We see that

$$
\begin{aligned}
& x_{1}=1 / 4 x_{4} \\
& x_{2}=5 / 4 x_{4} \\
& x_{3}=3 / 4 x_{4} \\
& x_{4} \text { is free }
\end{aligned}
$$

Since the coefficients in a chemical equation must be integers, we let $x_{4}=4$ and then $x_{1}=1, x_{2}=5$ and $x_{3}=3$.

Example

The following network shows the traffic flow (in vehicles per hour) over several one-way streets in downtown Baltimore during a typical early afternoon.

Let us determine the general flow pattern for the network.

Solution

Solution

The number of cars that go into an intersection must be equal to the cars that leave the intersection. Also, the total number of cars that go into the network must be equal to the number of cars that leave the network.

NTNU
Norwegian University of
Science and Technology

Solution

The number of cars that go into an intersection must be equal to the cars that leave the intersection. Also, the total number of cars that go into the network must be equal to the number of cars that leave the network. Thus we have

$$
\begin{aligned}
300+500 & =x_{1}+x_{2} \\
x_{2}+x_{4} & =300+x_{3} \\
100+400 & =x_{4}+x_{5} \\
x_{1}+x_{5} & =600 \\
300+500+400+100 & =300+x_{3}+600
\end{aligned}
$$

Solution

which is equivalent to

$$
\begin{aligned}
x_{1}+x_{2} & =800 \\
x_{2}-x_{3}+x_{4} & =300 \\
x_{4}+x_{5} & =500 \\
x_{1}+x_{5} & =600 \\
x_{3} & =400
\end{aligned}
$$

Solution

We write down the augmented matrix of the equation and row reduce it to reduced echelon form.

$$
\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 800 \\
0 & 1 & -1 & 1 & 0 & 300 \\
0 & 0 & 0 & 1 & 1 & 500 \\
1 & 0 & 0 & 0 & 1 & 600 \\
0 & 0 & 1 & 0 & 0 & 400
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 600 \\
0 & 1 & 0 & 0 & -1 & 200 \\
0 & 0 & 1 & 0 & 0 & 400 \\
0 & 0 & 0 & 1 & 1 & 500 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

0

Solution

Thus we have

$$
\begin{aligned}
& x_{1}=600-x_{5} \\
& x_{2}=200+x_{5} \\
& x_{3}=400 \\
& x_{4}=500-x_{5} \\
& x_{5} \text { is free }
\end{aligned}
$$

Solution

Thus we have

$$
\begin{aligned}
& x_{1}=600-x_{5} \\
& x_{2}=200+x_{5} \\
& x_{3}=400 \\
& x_{4}=500-x_{5} \\
& x_{5} \text { is free }
\end{aligned}
$$

Since $x_{1}, x_{2}, x_{3}, x_{4}$ and x_{5} denote number of cars, they must be nonnegative integers, so x_{5} must be an integer between 0 and 500 .

Tomorrow's lecture

Tomorrow we shall introduce and study linear dependence and linear independence of vectors. Section 1.7 in "Linear Algebras and Its Applications" (pages 55-62).

