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Review of last week’s lecture

Last week we

studied how to solve systems of linear equations,
introduced row reduction, echelon forms, pivot positions,
the row reduction algorithm, and parametric descriptions
of solution sets of systems of linear equations,
introduced and studied vectors, linear combinations of
vectors, subsets spanned by vectors, vector equations,
the product of a matrix and a vector, matrix equations.
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Today’s lecture

Today we shall

introduce and solve homogeneous and
nonhomegeneous matrix equations,
learn how to write solution sets in parametric vector
form,
look at applications of linear systems.
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Matrix equations
Theorem 3
If A is an m × n matrix, with columns a1, . . . ,an, and if b is in
Rm, then the matrix equation Ax = b has the same solution
set as the vector equation

x1a1 + x2a2 + . . . xnan = b,

which, in turn, has the same solution set as the system of
linear equations whose augmented matrix is

[a1 a2 . . . an . . .b].

Note that the matrix equation Ax = b has a solution if and
only if b is a linear combinations of the columns of A, that is,
if and only if b is in Span{a1,a2, . . . ,an}.
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Homogeneous linear systems

A system of linear equations is said to be homogeneous
if it can be written in the form Ax = 0, where A is an
m × n matrix and 0 is the zero vector in Rm.
Such a system Ax = 0 always has at least one solution,
namely, x = 0, where 0 is the zero vector in Rn.

This zero solution is usually called the trivial solution.
The homogeneous equation Ax = 0 has a nontrivial
solution if and only if the equation has at least one free
variable.
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Example

Let us describe the solution set of the homogeneous
equation Ax = 0 where

A =

 3 5 −4
−3 −2 4
6 1 −8



We reduce the augmented matrix of the equation to its
reduced echelon form. 3 5 −4 0
−3 −2 4 0
6 1 −8 0



→

3 5 −4 0
0 3 0 0
0 −9 0 0

 →
3 5 −4 0

0 3 0 0
0 0 0 0


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Example (cont.)

→

1 5/3 −4/3 0
0 1 0 0
0 0 0 0



→

1 0 −4/3 0
0 1 0 0
0 0 0 0


We see that

x1 =
4
3

x3

x2 = 0
x3 is free
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Example (cont.)

The general solution of Ax = 0 is thus

x =

x1

x2

x3

 =

4
3x3

0
x3

 = x3

4/3
0
1


where x3 is a free parameter.
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Parametric vector form

Whenever a solution set is written as

x = t1v1 + t2v2 + · · ·+ tpvp

where v1, . . . ,vp are vectors and t1, . . . , tp are parameters, we
say that the solution is in parametric vector form.
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The solution set of a
homogeneous equation

If the solution set of a homogeneous equation Ax = 0, where
A is an m× n matrix, can be written in parametric vector form

x = t1v1 + t2v2 + · · ·+ tpvp

where v1, . . . ,vp are vectors and t1, . . . , tp are parameters,
then the solution set is equal to Span{v1, . . . ,vp}.
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Example

Let us write the general solution to the homogeneous
equation Ax = 0 in parametric vector form where

A =

[
1 −3 −8 5
0 1 2 −4

]

We reduce the augmented matrix of the equation to its
reduced echelon form.[

1 −3 −8 5 0
0 1 2 −4 0

]

→
[
1 0 −2 −7 0
0 1 2 −4 0

]
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Example (cont.)

We see that

x1 = 2x3 + 7x4

x2 = −2x3 + 4x4

x3 is free
x4 is free
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Example (cont.)

The general solution of Ax = 0 is thus

x =


x1

x2

x3

x4

 =


2x3 + 7x4

−2x3 + 4x4

x3

x4

 = x3


2
−2
1
0

+ x4


7
4
0
1


where x3 and x4 are free parameters.
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Solutions of nonhomogeneous
systems

Let A be an m × n matrix and that b is a vector in Rm.

Suppose that x = p is a solution to the nonhomogeneous
equation Ax = b, and that the solution set of the
homogeneous equation Ax = 0 is given by the parametric
form

x = t1v1 + t2v2 + · · ·+ tpvp

where v1, . . . ,vp are vectors in Rn, then the solution set of the
nonhomogeneous equation Ax = b is given by the
parametric form

x = p + t1v1 + t2v2 + · · ·+ tpvp.
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Proof

If y = p + t1v1 + t2v2 + · · ·+ tpvp where t1, t2, . . . , tp are
scalars, then

Ay = A(p + t1v1 + t2v2 + · · ·+ tpvp)

= Ap + t1Av1 + t2Av2 + · · ·+ tpAvp

= b + t10 + t20 + . . . tp0 = b,

so x = y = p + t1v1 + t2v2 + · · ·+ tpvp is a solution to the
equation Ax = b.
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Proof (cont.)

Assume that x = y is a solution to the equation Ax = b.

Then

A(y− p) = Ay− Ap = b− b = 0,

so x = y− p is a solution to the equation Ax = 0. It follows
that y− p = t1v1 + t2v2 + · · ·+ tpvp for some scalars
t1, t2, . . . , tp, and thus that y = p + t1v1 + t2v2 + · · ·+ tpvp.
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Example

Let us write the general solution to the nonhomogeneous
equation Ax = b in parametric vector form where

A =

 3 5 −4
−3 −2 4
6 1 −8

 and b =

 7
−1
−4



We reduce the augmented matrix of the equation to its
reduced echelon form. 3 5 −4 7

−3 −2 4 −1
6 1 −8 −4



→

3 5 −4 7
0 3 0 6
0 −9 0 −18


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Example (cont.)

→

3 5 −4 7
0 3 0 6
0 0 0 0



→

1 5/3 −4/3 7/3
0 1 0 2
0 0 0 0



→

1 0 −4/3 −1
0 1 0 2
0 0 0 0



We see that

x1 =
4
3

x3 − 1

x2 = 2
x3 is free
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Example (cont.)
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Example (cont.)

The general solution of Ax = 0 is thus

x =

x1

x2

x3

 =

4
3x3 − 1

2
x3

 = x3

4/3
0
1

+

−1
2
0


where x3 is a free parameter.
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Writing a solution set of a
consistent system in parametric
vector form

1 Row reduce the augmented matrix to reduced echelon
form.

2 Express each basic variable in terms of any free
variables appearing in an equation.

3 Write a typical solution x as a vector whose entries
depend on the free variables, if any.

4 Decompose x into a linear combination of vectors (with
numeric entries) using the free variables as parameters.
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Example

Let us write the general solution to the linear system

x1 + 2x2−3x3 = 2
2x1 + x2 −3x3 = 2
−x1 + x2 = 0

in parametric vector form.

We reduce the augmented matrix of the system to its
reduced echelon form. 1 2 −3 2

2 1 −3 2
−1 1 0 0



→

1 2 −3 2
0 −3 3 −2
0 3 −3 2


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Example (cont.)

→

1 2 −3 2
0 −3 3 −2
0 0 0 0



→

1 2 −3 2
0 1 −1 2/3
0 0 0 0



→

1 0 −1 2/3
0 1 −1 2/3
0 0 0 0



We see that

x1 = x3 + 2/3
x2 = x3 + 2/3
x3 is free
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Example (cont.)

→
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Example (cont.)
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Example (cont.)

The general solution of Ax = 0 is thusx1

x2

x3

 =

x3 + 2/3
x3 + 2/3

x3

 = x3

1
1
1

+

2/3
2/3
0


where x3 is a free parameter.
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Problem 3 from June 2005

Let A =

 1 −2 2 −1
−3 6 −2 −1
4 −8 3 1

 and b =

4
0
c

 where c denotes

an arbitrary real number.
1 Solve the homogeneous equation Ax = 0.
2 For which values of c does the inhomogeneous equation

Ax = b have a solution? Find the solution when the
equation has a solution.
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Solution

We reduce the augmented matrix [A 0] to its reduced
echelon form. 1 −2 2 −1 0

−3 6 −2 −1 0
4 −8 3 1 0



→

1 −2 2 −1 0
0 0 4 −4 0
0 0 −5 5 0


→

1 −2 2 −1 0
0 0 4 −4 0
0 0 0 0 0

 →
1 −2 2 −1 0

0 0 1 −1 0
0 0 0 0 0


→

1 −2 0 1 0
0 0 1 −1 0
0 0 0 0 0


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Solution (cont.)

We see that

x1 = 2x2 − x4

x2 = is free
x3 = x4

x4 = is free

The general solution of Ax = 0 is thus
x1

x2

x3

x4

 =


2x2 − x4

x2

x4

x4

 = x2


2
1
0
0

+ x4


−1
0
1
1


where x2 and x4 are free parameters.
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Solution (cont.)

We reduce the augmented matrix [A b] to an echelon form. 1 −2 2 −1 4
−3 6 −2 −1 0
4 −8 3 1 c



→

1 −2 2 −1 4
0 0 4 −4 12
0 0 −5 5 c − 16



→

1 −2 2 −1 4
0 0 1 −1 3
0 0 −5 5 c − 16

 →
1 −2 2 −1 4

0 0 1 −1 3
0 0 0 0 c − 1



We see that the equation has a solution if and only if c = 1.
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Solution (cont.)

If c = 1, then the reduced echelon form of [A b] is1 −2 0 1 −2
0 0 1 −1 3
0 0 0 0 0



It follows that

x1 = 2x2 − x4 − 2
x2 = is free
x3 = x4 + 3
x4 = is free
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Solution (cont.)
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Solution (cont.)

So when c = 1, then the general solution of Ax = b is
x1

x2

x3

x4

 =


2x2 − x4 − 2

x2

x4 + 3
x4

 = x2


2
1
0
0

+ x4


−1
0
1
1

+


−2
0
3
0


where x2 and x4 are free parameters.
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Example

Suppose an economy consist of the Coal, Electric, and Steel
sectors, and the output of each sector is distributed among
the various sectors as shown in the following table.

Coal Electric Steel Purchased by:
0 .4 .6 Coal
.6 .1 .2 Electric
.4 .5 .2 Steel

If possible, let us find equilibrium prices that make each
sector’s income match its expenditures.
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Solution

Let pC be the price of the total annual output from the Coal
sector, let pE be the price of the total annual output from the
Electric sector, and let pS be the price of the total annual
output from the Steel sector.
To have equilibrium we mush have

pC = 0.4pE + 0.6pS

pE = 0.6pC + 0.1pE + 0.2pS

pS = 0.4pC + 0.5pE + 0.2pS
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Solution

which is equivalent to

pC − 0.4pE − 0.6pS = 0
−0.6pC + 0.9pE − 0.2pS = 0
−0.4pC − 0.5pE + 0.8pS

We write down the augmented matrix of the equation and
row reduce it to reduced echelon form. 1 −.4 −.6 0

−.6 .9 −.2 0
−.4 −.5 .8 0

→
1 −.4 −.6 0

0 .66 −.56 0
0 −.66 .56 0

→
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Solution

1 −.4 −.6 0
0 .66 −.56 0
0 0 0 0

→
1 −.4 −.6 0

0 1 −.85 0
0 0 0 0

→
1 0 −.94 0

0 1 −.85 0
0 0 0 0



We see that we must have pC = 0.94pS and pE = 0.85pS in
order to have equilibrium.
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Solution

1 −.4 −.6 0
0 .66 −.56 0
0 0 0 0

→
1 −.4 −.6 0

0 1 −.85 0
0 0 0 0

→
1 0 −.94 0

0 1 −.85 0
0 0 0 0


We see that we must have pC = 0.94pS and pE = 0.85pS in
order to have equilibrium.

www.ntnu.no TMA4115 - Calculus 3, Lecture 9, Feb 13, page 33



Example

When propane burns, the propane (C3H8) combines with
oxygen (O2) to form carbon dioxide (CO2) and water (H2O).
Let us balance the chemical equation, that is find positive
integers x1 , x2 , x3, x4 such that the total numbers of carbon
(C), hydrogen (H), and oxygen (O) atoms are the same on
the left match the corresponding numbers of atom on the
right in the following equation.

x1C3H8 + x2O2 → x3CO2 + x4H2O
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Solution

We must have that

3x1 = x3

8x1 = 2x4

2x2 = 2x3 + x4

which is equivalent to

3x1 − x3 = 0
8x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0
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Solution

We write down the augmented matrix of the equation and
row reduce it to reduced echelon form.3 0 −1 0 0

8 0 0 −2 0
0 2 −2 −1 0

→
1 0 −1/3 0 0

0 0 8/3 −2 0
0 2 −2 −1 0

→
1 0 −1/3 0 0

0 2 −2 −1 0
0 0 8/3 −2 0

→
1 0 −1/3 0 0

0 1 −1 −1/2 0
0 0 1 −3/4 0

→
1 0 0 −1/4 0

0 1 0 −5/4 0
0 0 1 −3/4 0


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Solution

We see that

x1 = 1/4x4

x2 = 5/4x4

x3 = 3/4x4

x4 is free

Since the coefficients in a chemical equation must be
integers, we let x4 = 4 and then x1 = 1, x2 = 5 and x3 = 3.
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Example

The following network shows the traffic flow (in vehicles per
hour) over several one-way streets in downtown Baltimore
during a typical early afternoon.

300 x1 600
A D

300 x4 400B C

x2 x5

500

x3 100

Let us determine the general flow pattern for the network.
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Solution

The number of cars that go into an intersection must be
equal to the cars that leave the intersection. Also, the total
number of cars that go into the network must be equal to the
number of cars that leave the network. Thus we have

300 + 500 = x1 + x2

x2 + x4 = 300 + x3

100 + 400 = x4 + x5

x1 + x5 = 600
300 + 500 + 400 + 100 = 300 + x3 + 600
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Solution

which is equivalent to

x1 + x2 = 800
x2 − x3 + x4 = 300

x4 + x5 = 500
x1 + x5 = 600

x3 = 400
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Solution

We write down the augmented matrix of the equation and
row reduce it to reduced echelon form.

1 1 0 0 0 800
0 1 −1 1 0 300
0 0 0 1 1 500
1 0 0 0 1 600
0 0 1 0 0 400

→


1 0 0 0 1 600
0 1 0 0 −1 200
0 0 1 0 0 400
0 0 0 1 1 500
0 0 0 0 0 0


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Solution

Thus we have

x1 = 600− x5

x2 = 200 + x5

x3 = 400
x4 = 500− x5

x5 is free

Since x1, x2, x3, x4 and x5 denote number of cars, they must
be nonnegative integers, so x5 must be an integer between 0
and 500.
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Tomorrow’s lecture

Tomorrow we shall introduce and study linear dependence
and linear independence of vectors.
Section 1.7 in “Linear Algebras and Its Applications” (pages
55-62).
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