
TMA4115 - Calculus 3
Lecture 6, Jan 31

Toke Meier Carlsen
Norwegian University of Science and Technology
Spring 2013

www.ntnu.no TMA4115 - Calculus 3, Lecture 6, Jan 31



Review of yesterday’s lecture

Yesterday we

studied harmonic motions,
studied solutions of second-order linear inhomogeneous
differential equations,
looked at the method of undetermined coefficients.
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Today’s lecture

Today we shall

look at variation of parameters,
study forced harmonic motions.
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General solutions to
inhomogeneous equations

If yp is a particular solution to the inhomogeneous equation
y ′′ + py ′ + qy = f and y1 and y2 form a fundamental set of
solutions to the homogeneous equation y ′′ + py ′ + qy = 0,
then the general solution to the inhomogeneous equation
y ′′ + py ′ + qy = f is

y = yp + c1y1 + c2y2

where c1 and c2 are constants.
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The method of undetermined
coefficients

Consider the inhomogeneous second-order linear differential
equation

y ′′ + py ′ + qy = f .

If the function f has a form that is replicated under
differentiation, then look for a solution with the same general
form as f .
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Problem 2 from June 2012

1 Find a particular solution of y ′′ − 4y ′ + y = tet + t .
2 Find the solution of y ′′ − 4y ′ + y = tet + t , where

y ′(0) = y(0) = 0.
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Solution

Let y(t) = atet + bet + ct + d . Then
y ′(t) = aet + atet + bet + c = atet + (a + b)et + c,
y ′′(t) = aet + atet + (a + b)et = atet + (2a + b)et , and

y ′′(t)− 4y ′(t) + y(t) = atet + (2a + b)et

− 4(atet + (a + b)et + c)

+ atet + bet + ct + d

= −2atet − (2a + 2b)et + ct + d − 4c

so y(t) = atet + bet + ct + d is a solution of
y ′′− 4y ′ + y = tet + t if and only if a = −1

2 , b = −a = 1
2 , c = 1

and d = c4 = 4. So y(t) = −1
2 tet + 1

2et + t + 4 is a particular
solution of y ′′ − 4y ′ + y = tet + t .
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Solution

To find the solution of y ′′ − 4y ′ + y = tet + t where
y ′(0) = y(0) = 0, we will first find the general solution of
y ′′ − 4y ′ + y = tet + t .

To do that, we will first find the general
solution of y ′′ − 4y ′ + y = 0. The characteristic polynomial of
y ′′ − 4y ′ + y = 0 is λ2 − 4λ+ 1, and the characteristic roots

are λ =
4±
√

16− 4
2

= 2±
√

3, so the general solution of

y ′′ − 4y ′ + y = 0 is y(t) = c1e(2+
√

3)t + c2e(2−
√

3)t . It follows
that y(t) = c1e(2+

√
3)t + c2e(2−

√
3)t + −1

2 tet + 1
2et + t + 4 is the

general solution of y ′′ − 4y ′ + y = tet + t .
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Solution

If y(t) = c1e(2+
√

3)t + c2e(2−
√

3)t + −1
2 tet + 1

2et + t + 4, then
y ′(t) = c1(2 +

√
3)e(2+

√
3)t + c2(2−

√
3)e(2−

√
3)t + −1

2 tet + 1,

y(0) = c1 + c2 +
9
2 , and y ′(0) = c1(2 +

√
3) + c2(2−

√
3) + 1,

so y ′(0) = y(0) = 0 if and only if c1 + c2 = −9
2 and

c1(2 +
√

3) + c2(2−
√

3) = −1.
The solution of the linear system

c1 + c2 = −9
2

c1(2 +
√

3) + c2(2−
√

3) = −1

is c1 = 4√
3
− 9

4 and c2 = −4√
3
− 9

4 .
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Solution

Thus
y(t) =

(
4√
3
− 9

4

)
e(2+

√
3)t+

(
−4√

3
− 9

4

)
e(2−

√
3)t+−1

2 tet+ 1
2et+t+4

is a solution of y ′′ − 4y ′ + y = tet + t which satisfies that
y ′(0) = y(0) = 0.
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Forced harmonic motion

We will now apply the technique of undetermined coefficients
to analyze harmonic motion with an external sinusoidal
forcing term.

The equation we need to solve is

y ′′ + 2cy ′ + ω2
0y = A cos(ωt).
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Forced undamped harmonic
motion

Let us first assume that c = 0.

Then the equation becomes

y ′′ + ω2
0y = A cos(ωt).

The general solution to the homogeneous solution
y ′′ + ω2

0y = 0 is yh = c1 cos(ω0t) + c2 sin(ω0t).
Let us find a particular solution by using the method of
undetermined coefficients. We will first look at the case
where ω 6= ω0, and then at the case where ω = ω0.
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The case ω 6= ω0

We will look for a solution to y ′′ + 2cy ′ + ω2
0y = A cos(ωt) of

the form yp = a cos(ωt) + b sin(ωt).

y ′′p (t) + ω2
0yp(t)

= −aω2 cos(ωt)− bω2 sin(ωt)

+ aω2
0 cos(ωt) + bω2

0 sin(ωt)

= a(ω2
0 − ω2) cos(ωt) + b(ω2

0 − ω2) sin(ωt)

so yp is a particular solution if and only if a = A
ω2

0−ω2 and

b = 0. Thus yp(t) = A
ω2

0−ω2 cos(ωt) is a particular solution, and
the general solution is
y(t) = c1 cos(ω0t) + c2 sin(ω0t) + A

ω2
0−ω2 cos(ωt).
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The case ω 6= ω0

The general solution to y ′′ + 2cy ′ + ω2
0y = A cos(ωt) is

y(t) = c1 cos(ω0t) + c2 sin(ω0t) + A
ω2

0−ω2 cos(ωt).

Let us look at the solution where the motion starts at
equilibrium. This means that y(0) = y ′(0) = 0. We then have
that 0 = y(0) = c1 +

A
ω2

0−ω2 and 0 = y ′(0) = c2ω0, so

y(t) = A
ω2

0−ω2 (cos(ωt)− cos(ω0t)).
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The case ω 6= ω0

t

y
y(t) = A

ω2
0−ω2 (cos(ωt)− cos(ω0t))
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The case ω 6= ω0

Consider the solution y(t) = A
ω2

0−ω2 (cos(ωt)− cos(ω0t)).

Let ω = (ω0 + ω)/2 and δ = (ω0 − ω)/2. ω is called the mean
frequency, and δ is called the half difference. We then have
that

y(t) =
A

ω2
0 − ω2

(cos(ωt)− cos(ω0t))

=
A

4ωδ
(cos((ω − δ)t)− cos((ω + δ)t))

=
A sin(δt)

2ωδ
sin(ωt).
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The case ω 6= ω0

t

y

y(t) = A sin(δt)
2ωδ sin(ωt)
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The case ω = ω0

We will look for a solution to y ′′ + 2cy ′ + ω2
0y = A cos(ω0t).

Since A cos(ω0t) is a solution to the homogeneous equation
y ′′ + 2cy ′ + ω2

0y = 0, we will look for a solution of the form
yp = t(a cos(ω0t) + b sin(ω0t)).

y ′′p (t) + ω2
0yp(t)

= 2ω0(−a sin(ω0t) + b cos(ω0t))

+ tω2
0(−a cos(ω0t)− b sin(ω0t))

+ ω2
0t(a cos(ω0t) + b sin(ω0t))

= 2ω0(−a sin(ω0t) + b cos(ω0t)).

So yp is a particular solution if and only if a = 0 and b = A
2ω0

.
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The case ω = ω0

Thus yp(t) = A
2ω0

t sin(ω0t) is a particular solution,

and the
general solution is
y(t) = c1 cos(ω0t) + c2 sin(ω0t) + A

2ω0
t sin(ω0t).

Let us look at the solution where the motion starts at
equilibrium. This means that y(0) = y ′(0) = 0. We then have
that 0 = y(0) = c1 and 0 = y ′(0) = c2ω0, so
y(t) = A

2ω0
t sin(ω0t).
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The case ω = ω0

t

y y(t) = A
2ω0

t sin(ω0t)
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The forced damped harmonic
motion

If we add a damping term to the system we get the equation

y ′′ + 2cy ′ + ω2
0y = A cos(ωt).

Let us assume that c < ω0. Then the general solution to the
homogeneous equation y ′′ + 2cy ′ + ω2

0y = 0 is

yh(t) = e−ct(c1 cos(ηt) + c2 sin(ηt)) where η =
√
ω2

0 − c2.
To find a particular solution we will use the technique of
undetermined coefficients and the complex method. This
means that we will be looking for a solution z(t) = aeiωt to
the equation z ′′ + 2cz ′ + ω2

0z = Aeiωt .
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The forced damped harmonic
motion

If z(t) = aeiωt ,

then

z ′′(t)+2cz(t)′+ω2
0z(t) =

((iω)2+2c(iω)+ω2
0)aeiωt = P(iω)aeiωt

where P(λ) = λ2 + 2cλ+ ω2
0 is the characteristic polynomial.

Thus z(t) = A
P(iω)e

iωt = H(iω)Aeiωt is a solution to
z ′′ + 2cz ′ + ω2

0z = Aeiωt where H(iω) = 1
P(iω) . The function

H(iω) is called the transfer function.
Let R = |P(iω)| and φ = Arg(P(iω)). Then P(iω) = Reiφ and
H(iω) = 1

R e−iφ.
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The forced damped harmonic
motion

So z(t) = H(iω)Aeiωt = 1
R e−iφAeiωt = A

R ei(ωt−φ),

and
yp(t) = Re(z(t)) = A

R cos(ωt − φ) is a particular solution to
y ′′ + 2cy ′ + ω2

0y = A cos(ωt).
The general solution to

y ′′ + 2cy ′ + ω2
0y = A cos(ωt).

is y(t) = e−ct(c1 cos(ηt) + c2 sin(ηt)) + A
R cos(ωt − φ).
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The forced damped harmonic
motion

t

y
y(t) = e−ct(c1 cos(ηt) + c2 sin(ηt)) + A

R cos(ωt − φ)

y(t) = A
R cos(ωt − φ)
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Steady-state and transient terms

The general solution to

y ′′ + 2cy ′ + ω2
0y = A cos(ωt).

is y(t) = e−ct(c1 cos(ηt) + c2 sin(ηt)) + A
R cos(ωt − φ).

The term e−ct(c1 cos(ηt) + c2 sin(ηt)) is called the transition
term, and the term A

R cos(ωt − φ) is called the steady-state
term.
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Variation of parameters

We are looking for a particular solution to an inhomogeneous
second-order linear differential equation

y ′′ + p(t)y ′ + q(t)y = f (t).

Suppose that y1 and y2 form a fundamental set of solutions
to the homogeneous equation y ′′ + p(t)y ′ + q(t)y = 0.
The idea behind the variation of parameters method is to
look for a particular solution of the form
y(t) = v1(t)y1(t) + v2(t)y2(t) where v1 and v2 are unknown
functions.
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Example

Let us find a particular solution to the equation

y ′′ + y = tan(t).

The functions y1(t) = cos(t) and y2(t) = sin(t) form a
fundamental set of solutions of the equation y ′′ + y = 0,
so we let
y(t) = v1(t)y1(t) + v2(t)y2(t) = v1(t) cos(t) + v2(t) sin(t).
Then
y ′(t) = v ′1(t) cos(t)− v1(t) sin(t) + v ′2(t) sin(t) + v2(t) cos(t).
Let us assume that v ′1(t) cos(t) + v ′2(t) sin(t) = 0. Then
y ′(t) = −v1(t) sin(t) + v2(t) cos(t),
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Example

and

y ′′(t) + y(t) = −v ′1(t) sin(t)− v1(t) cos(t)
+ v ′2(t) cos(t)− v2(t) sin(t)
+ v1(t) cos(t) + v2(t) sin(t)

= −v ′1(t) sin(t) + v ′2(t) cos(t).

So y(t) = v1(t)y1(t) + v2(t)y2(t) is a solution to
y ′′ + y = tan(t) if v ′1(t) cos(t) + v ′2(t) sin(t) = 0 and
−v1(t) sin(t) + v2(t) cos(t) = tan(t).
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Example

The solution of the linear system

v ′1(t) cos(t) + v ′2(t) sin(t) = 0
−v1(t) sin(t) + v2(t) cos(t) = tan(t)

is

v ′1(t) =
− tan(t) sin(t)

cos2(t) + sin2(t)
= − tan(t) sin(t) =

− sin2(t)
cos(t)

v ′2(t) =
tan(t) cos(t)

cos2(t) + sin2(t)
= tan(t) cos(t) = sin(t).
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Example

So if we let

v1(t) =
∫
− sin2(t)
cos(t)

dt =
∫

cos2(t)− 1
cos(t)

dt

=

∫
cos(t)− 1

cos(t)
= sin(t)− ln | sec(t) + tan(t)|

and
v2(t) =

∫
sin(t)dt = − cos(t)
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Example

then

y(t) = v1(t)y1(t) + v2(t)y2(t)
=
(
sin(t)− ln | sec(t) + tan(t)|

)
cos(t)− cos(t) sin(t)

is a particular solution to the equation y ′′ + y = tan(t).
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Variation of parameters

To find a particular solution to y ′′ + py ′ + qy = f using the
method of variation of parameters we follow these steps.

1 Find a fundamental set of solutions y1, y2 to the
homogeneous equation y ′′ + py ′ + qy = 0.

2 Let yp = v1y1 + v2y2 where v1 and v2 are functions to be
determined.

3 Find v ′1 and v ′2 such that

v ′1y1 + v ′2y2 = 0
v ′1y ′1 + v ′2y ′2 = f .

4 Let v1(t) =
∫

v ′1(t) dt and v2(t) =
∫

v ′2(t) dt .

5 Substitute v1 and v2 into yp = v1y1 + v2y2.
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method of variation of parameters we follow these steps.
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∫
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∫

v ′2(t) dt .

5 Substitute v1 and v2 into yp = v1y1 + v2y2.
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Variation of parameters

If
v1(t) =

∫
−y2(t)f (t)

W (t)
dt

and
v2(t) =

∫
y1(t)f (t)

W (t)
dt

where W (t) is the Wronskian of y1 and y2, then

y(t) = v1(t)y1(t) + v2(t)y2(t)

is a solution of y ′′ + py ′ + qy = f .
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Problem 2 August 2012

Find the solution of y ′′ − 2y ′ + y = ex

x for x > 0 which
satisfies y(1) = y ′(1) = 0.
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Solution

We will us variation of parameters to find a particular solution
of y ′′ − 2y ′ + y = ex

x , so we first have to find a fundamental
set of solutions to y ′′ − 2y + y = 0.
The characteristic polynomial of y ′′ − 2y + y = 0 is
λ2 − 2λ+ 1 = (λ− 1)2, so y1(x) = ex and y2(x) = xex form a
fundamental set of solutions to y ′′ − 2y + y = 0.
The Wronskian of y1 and y2 is

W (x) = y1(x)y ′2(x)− y ′1(x)y2(x)

= ex(ex + xex)− exxex = e2x .
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Solution

It follows that if we let

v1(x) =
∫
−y2(x)f (x)

W (x)
dx =

∫
−xexex/x

e2x dx =

∫
−dx = −x

and

v2(x) =
∫

y1(x)f (x)
W (x)

dx =

∫
exex/x

e2x dx =

∫
1
x

dx = ln(x),

then

y(x) = v1(x)y1(x) + v2(x)y2(x) = −xex + xex ln(x)

is a particular solution of y ′′ − 2y ′ + y = ex

x .
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Solution

It follows that the general solution of y ′′ − 2y ′ + y = ex

x is

y(x) = c1ex + c2xex − xex + xex ln(x).

If

y(x) = c1ex + c2xex − xex + xex ln(x)
= c1ex + (c2 − 1 + ln(x))xex ,

then

y ′(x) = c1ex +
1
x

xex + (c2 − 1 + ln(x))ex

+ (c2 − 1 + ln(x))xex ,
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Solution
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then

y ′(x) = c1ex +
1
x

xex + (c2 − 1 + ln(x))ex

+ (c2 − 1 + ln(x))xex ,
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Solution

y(1) = c1e + (c2 − 1)e = (c1 + c2 − 1)e
and

y ′(1) = c1e + e + (c2 − 1)e + (c2 − 1)e = (c1 + 2c2 − 1)e,

so y(x) = c1ex + (c2 − 1 + ln(x))xex satisfies
y(1) = y ′(1) = 0 if and only if c1 + c2 = 1 and c1 + 2c2 = 1.
The solution of the linear system

c1 + c2 = 1
c1 + 2c2 = 1

is c1 = 1 and c2 = 0.

www.ntnu.no TMA4115 - Calculus 3, Lecture 6, Jan 31, page 38



Solution
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Solution

So y(x) = ex − xex + ln(x)xex is a solution of
y ′′ − 2y ′ + y = ex

x on (0,∞) which satisfies y(1) = y ′(1) = 0.
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Problem 2 December 2010

1 The motion of a mechanical system is described by the
differential equation

y ′′ + 6y ′ + 18y = 0.

Determine whether the motion is under-damped, is
over-damped or is critically damped. Find a particular
solution y(t) that satisfies the initial conditions y(0) = 0,
y ′(0) = 0.6.

2 Find the steady-state solution of the equation

y ′′ + 6y ′ + 18y = 45 cos 3t .
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Solution

The characteristic polynomial of y ′′ + 6y ′ + 18y = 0 is
λ2 + 6λ+ 18, and the characteristic roots are

λ =
−6±

√
36− 72
2

= −3± 3i . It follows that the system is
under-damped and that the general solution of
y ′′ + 6y ′ + 18y = 0 is y(t) = c1e(−3+3i)t + c2e(−3−3i)t .
If y(t) = c1e(−3+3i)t + c2e(−3−3i)t , then y(0) = c1 + c2, so
y(0) = 0 if and only if c2 = −c1.
If y(t) = c1

(
e(−3+3i)t − e(−3−3i)t

)
, then

y ′(t) = c1
(
(−3 + 3i)e(−3+3i)t − (−3− 3i)e(−3−3i)t

)
and

y ′(0) = c1
(
(−3 + 3i)− (−3− 3i)

)
= 6c1i , so y ′(0) = 0.6 if

and only if c1 = 1
10i .
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Solution

So y(t) = 1
10i

(
e(−3+3i)t − e(−3−3i)t

)
= 1

5e−3t sin(3t) is a
particular solution y(t) that satisfies the initial conditions
y(0) = 0, y ′(0) = 0.6.

To find the steady-state solution of the equation
y ′′ + 6y ′ + 18y = 45 cos 3t , we will first find the general
solution of y ′′ + 6y ′ + 18y = 45 cos 3t . We have already seen
that the general solution of y ′′ + 6y ′ + 18y = 0 is
y(t) = c1e(−3+3i)t + c2e(−3−3i)t , so we just have to find a
particular solution of y ′′ + 6y ′ + 18y = 45 cos 3t .
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Solution

So y(t) = 1
10i
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To find the steady-state solution of the equation
y ′′ + 6y ′ + 18y = 45 cos 3t , we will first find the general
solution of y ′′ + 6y ′ + 18y = 45 cos 3t .

We have already seen
that the general solution of y ′′ + 6y ′ + 18y = 0 is
y(t) = c1e(−3+3i)t + c2e(−3−3i)t , so we just have to find a
particular solution of y ′′ + 6y ′ + 18y = 45 cos 3t .
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Solution

So y(t) = 1
10i

(
e(−3+3i)t − e(−3−3i)t

)
= 1

5e−3t sin(3t) is a
particular solution y(t) that satisfies the initial conditions
y(0) = 0, y ′(0) = 0.6.
To find the steady-state solution of the equation
y ′′ + 6y ′ + 18y = 45 cos 3t , we will first find the general
solution of y ′′ + 6y ′ + 18y = 45 cos 3t . We have already seen
that the general solution of y ′′ + 6y ′ + 18y = 0 is
y(t) = c1e(−3+3i)t + c2e(−3−3i)t , so we just have to find a
particular solution of y ′′ + 6y ′ + 18y = 45 cos 3t .
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Solution

We will use the method of undetermined coefficient to find a
particular solution of y ′′ + 6y ′ + 18y = 45 cos 3t .

Let y(t) = A cos 3t + B sin 3t . Then

y ′′(t) + 6y ′(t) + 18y(t) = −9A cos 3t − 9B sin 3t
− 18A sin 3t + 18B cos 3t
+ 18A cos 3t + 18B sin 3t

= (9A + 18B) cos 3t
+ (−18A + 9B) sin 3t ,

so y(t) = A cos 3t + B sin 3t is a particular solution of
y ′′ + 6y ′ + 18y = 45 cos 3t if and only if 9A + 18B = 45 and
−18A + 9B = 0.
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Solution

The solution of the linear system

9A + 18B = 45
−18A + 9B = 0

is A = 1 and B = 2,

so y(t) = cos 3t + 2 sin 3t is a particular
solution of y ′′ + 6y ′ + 18y = 45 cos 3t .
It follows that the general solution of
y ′′ + 6y ′ + 18y = 45 cos 3t is

y(t) = c1e(−3+3i)t + c2e(−3−3i)t + cos 3t + 2 sin 3t .

Since c1e(−3+3i)t + c2e(−3−3i)t → 0 as t →∞, it follows that
y(t) = cos 3t + 2 sin 3t is the steady-state solution of the
equation y ′′ + 6y ′ + 18y = 45 cos 3t .
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Plan for next week

Wednesday we shall

study how to solve systems of linear equations,
introduce row reduction, echelon forms, pivot positions,
the row reduction algorithm, and parametric descriptions
of solution sets of systems of linear equations.

Section 1.1-1.2 in “Linear Algebras and Its Applications”
(pages 1-23).
Thursday we shall introduce and study

vectors,
linear combinations of vectors,
subsets spanned by vectors,
vector equations.

Section 1.3 in “Linear Algebras and Its Applications” (pages
24-34).
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