

TMA4115 - Calculus 3 Lecture 6, Jan 31

Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 2

Yesterday we

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 2

Yesterday we

• studied harmonic motions,

Yesterday we

- studied harmonic motions,
- studied solutions of second-order linear inhomogeneous differential equations,

Yesterday we

- studied harmonic motions,
- studied solutions of second-order linear inhomogeneous differential equations,
- looked at the method of undetermined coefficients.

Today's lecture

Today we shall

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 3

Today's lecture

Today we shall

• look at variation of parameters,

Today's lecture

Today we shall

- look at variation of parameters,
- study forced harmonic motions.

General solutions to inhomogeneous equations

If y_p is a particular solution to the inhomogeneous equation y'' + py' + qy = f and y_1 and y_2 form a fundamental set of solutions to the homogeneous equation y'' + py' + qy = 0, then the general solution to the inhomogeneous equation y'' + py' + qy = f is

$$y = y_p + c_1 y_1 + c_2 y_2$$

where c_1 and c_2 are constants.

The method of undetermined coefficients

Consider the inhomogeneous second-order linear differential equation

$$y'' + py' + qy = f.$$

If the function f has a form that is replicated under differentiation, then look for a solution with the same general form as f.

Problem 2 from June 2012

- Find a particular solution of $y'' 4y' + y = te^t + t$.
- Find the solution of $y'' 4y' + y = te^t + t$, where y'(0) = y(0) = 0.

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 7

www.ntnu.no

Let $y(t) = ate^t + be^t + ct + d$.

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 7

Let
$$y(t) = ate^t + be^t + ct + d$$
. Then
 $y'(t) = ae^t + ate^t + be^t + c = ate^t + (a+b)e^t + c$,

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 7

Let
$$y(t) = ate^{t} + be^{t} + ct + d$$
. Then
 $y'(t) = ae^{t} + ate^{t} + be^{t} + c = ate^{t} + (a+b)e^{t} + c$,
 $y''(t) = ae^{t} + ate^{t} + (a+b)e^{t} = ate^{t} + (2a+b)e^{t}$,

Let
$$y(t) = ate^{t} + be^{t} + ct + d$$
. Then
 $y'(t) = ae^{t} + ate^{t} + be^{t} + c = ate^{t} + (a + b)e^{t} + c$,
 $y''(t) = ae^{t} + ate^{t} + (a + b)e^{t} = ate^{t} + (2a + b)e^{t}$, and
 $y''(t) - 4y'(t) + y(t) = ate^{t} + (2a + b)e^{t}$
 $- 4(ate^{t} + (a + b)e^{t} + c)$
 $+ ate^{t} + be^{t} + ct + d$
 $= -2ate^{t} - (2a + 2b)e^{t} + ct + d - 4c$

Let
$$y(t) = ate^{t} + be^{t} + ct + d$$
. Then
 $y'(t) = ae^{t} + ate^{t} + be^{t} + c = ate^{t} + (a+b)e^{t} + c$,
 $y''(t) = ae^{t} + ate^{t} + (a+b)e^{t} = ate^{t} + (2a+b)e^{t}$, and
 $y''(t) - 4y'(t) + y(t) = ate^{t} + (2a+b)e^{t}$
 $- 4(ate^{t} + (a+b)e^{t} + c)$
 $+ ate^{t} + be^{t} + ct + d$
 $= -2ate^{t} - (2a+2b)e^{t} + ct + d - 4c$
so $y(t) = ate^{t} + be^{t} + ct + d$ is a solution of

 $y'' - 4y' + y = te^t + t$ if and only if $a = -\frac{1}{2}$, $b = -a = \frac{1}{2}$, c = 1and d = c4 = 4.

NTNU Norwegian University of Science and Technology

Let
$$y(t) = ate^{t} + be^{t} + ct + d$$
. Then
 $y'(t) = ae^{t} + ate^{t} + be^{t} + c = ate^{t} + (a+b)e^{t} + c$,
 $y''(t) = ae^{t} + ate^{t} + (a+b)e^{t} = ate^{t} + (2a+b)e^{t}$, and
 $y''(t) - 4y'(t) + y(t) = ate^{t} + (2a+b)e^{t}$
 $-4(ate^{t} + (a+b)e^{t} + c)$
 $+ ate^{t} + be^{t} + ct + d$
 $= -2ate^{t} - (2a+2b)e^{t} + ct + d - 4c$

so $y(t) = ate^{t} + be^{t} + ct + d$ is a solution of $y'' - 4y' + y = te^{t} + t$ if and only if $a = -\frac{1}{2}$, $b = -a = \frac{1}{2}$, c = 1and d = c4 = 4. So $y(t) = \frac{-1}{2}te^{t} + \frac{1}{2}e^{t} + t + 4$ is a particular solution of $y'' - 4y' + y = te^{t} + t$.

To find the solution of $y'' - 4y' + y = te^t + t$ where y'(0) = y(0) = 0, we will first find the general solution of $y'' - 4y' + y = te^t + t$.

To find the solution of $y'' - 4y' + y = te^t + t$ where y'(0) = y(0) = 0, we will first find the general solution of $y'' - 4y' + y = te^t + t$. To do that, we will first find the general solution of y'' - 4y' + y = 0.

To find the solution of $y'' - 4y' + y = te^t + t$ where y'(0) = y(0) = 0, we will first find the general solution of $y'' - 4y' + y = te^t + t$. To do that, we will first find the general solution of y'' - 4y' + y = 0. The characteristic polynomial of y'' - 4y' + y = 0 is $\lambda^2 - 4\lambda + 1$,

To find the solution of $y'' - 4y' + y = te^t + t$ where y'(0) = y(0) = 0, we will first find the general solution of $y'' - 4y' + y = te^t + t$. To do that, we will first find the general solution of y'' - 4y' + y = 0. The characteristic polynomial of y'' - 4y' + y = 0 is $\lambda^2 - 4\lambda + 1$, and the characteristic roots are $\lambda = \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3}$,

To find the solution of $y'' - 4y' + y = te^t + t$ where y'(0) = y(0) = 0, we will first find the general solution of $y'' - 4y' + y = te^t + t$. To do that, we will first find the general solution of y'' - 4y' + y = 0. The characteristic polynomial of y'' - 4y' + y = 0 is $\lambda^2 - 4\lambda + 1$, and the characteristic roots are $\lambda = \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3}$, so the general solution of y'' - 4y' + y = 0 is $y(t) = c_1 e^{(2 + \sqrt{3})t} + c_2 e^{(2 - \sqrt{3})t}$.

To find the solution of $y'' - 4y' + y = te^t + t$ where v'(0) = v(0) = 0, we will first find the general solution of $y'' - 4y' + y = te^t + t$. To do that, we will first find the general solution of y'' - 4y' + y = 0. The characteristic polynomial of y'' - 4y' + y = 0 is $\lambda^2 - 4\lambda + 1$, and the characteristic roots are $\lambda = \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3}$, so the general solution of y'' - 4y' + y = 0 is $y(t) = c_1 e^{(2+\sqrt{3})t} + c_2 e^{(2-\sqrt{3})t}$. It follows that $y(t) = c_1 e^{(2+\sqrt{3})t} + c_2 e^{(2-\sqrt{3})t} + \frac{-1}{2}te^t + \frac{1}{2}e^t + t + 4$ is the general solution of $v'' - 4v' + v = te^{t} + t$.

NTNU Norwegian University of Science and Technology

If $y(t) = c_1 e^{(2+\sqrt{3})t} + c_2 e^{(2-\sqrt{3})t} + \frac{-1}{2}te^t + \frac{1}{2}e^t + t + 4$, then $y'(t) = c_1(2+\sqrt{3})e^{(2+\sqrt{3})t} + c_2(2-\sqrt{3})e^{(2-\sqrt{3})t} + \frac{-1}{2}te^t + 1$,

If $y(t) = c_1 e^{(2+\sqrt{3})t} + c_2 e^{(2-\sqrt{3})t} + \frac{-1}{2}te^t + \frac{1}{2}e^t + t + 4$, then $y'(t) = c_1(2+\sqrt{3})e^{(2+\sqrt{3})t} + c_2(2-\sqrt{3})e^{(2-\sqrt{3})t} + \frac{-1}{2}te^t + 1$, $y(0) = c_1 + c_2 + \frac{9}{2}$,

If $y(t) = c_1 e^{(2+\sqrt{3})t} + c_2 e^{(2-\sqrt{3})t} + \frac{-1}{2}te^t + \frac{1}{2}e^t + t + 4$, then $y'(t) = c_1(2+\sqrt{3})e^{(2+\sqrt{3})t} + c_2(2-\sqrt{3})e^{(2-\sqrt{3})t} + \frac{-1}{2}te^t + 1$, $y(0) = c_1 + c_2 + \frac{9}{2}$, and $y'(0) = c_1(2+\sqrt{3}) + c_2(2-\sqrt{3}) + 1$,

If
$$y(t) = c_1 e^{(2+\sqrt{3})t} + c_2 e^{(2-\sqrt{3})t} + \frac{-1}{2}te^t + \frac{1}{2}e^t + t + 4$$
, then
 $y'(t) = c_1(2+\sqrt{3})e^{(2+\sqrt{3})t} + c_2(2-\sqrt{3})e^{(2-\sqrt{3})t} + \frac{-1}{2}te^t + 1$,
 $y(0) = c_1 + c_2 + \frac{9}{2}$, and $y'(0) = c_1(2+\sqrt{3}) + c_2(2-\sqrt{3}) + 1$,
so $y'(0) = y(0) = 0$ if and only if $c_1 + c_2 = -\frac{9}{2}$ and
 $c_1(2+\sqrt{3}) + c_2(2-\sqrt{3}) = -1$.

If
$$y(t) = c_1 e^{(2+\sqrt{3})t} + c_2 e^{(2-\sqrt{3})t} + \frac{-1}{2}te^t + \frac{1}{2}e^t + t + 4$$
, then
 $y'(t) = c_1(2+\sqrt{3})e^{(2+\sqrt{3})t} + c_2(2-\sqrt{3})e^{(2-\sqrt{3})t} + \frac{-1}{2}te^t + 1$,
 $y(0) = c_1 + c_2 + \frac{9}{2}$, and $y'(0) = c_1(2+\sqrt{3}) + c_2(2-\sqrt{3}) + 1$,
so $y'(0) = y(0) = 0$ if and only if $c_1 + c_2 = -\frac{9}{2}$ and
 $c_1(2+\sqrt{3}) + c_2(2-\sqrt{3}) = -1$.
The solution of the linear system

$$c_1 + c_2 = -\frac{9}{2}$$

$$c_1(2 + \sqrt{3}) + c_2(2 - \sqrt{3}) = -1$$
is $c_1 = \frac{4}{\sqrt{3}} - \frac{9}{4}$ and $c_2 = \frac{-4}{\sqrt{3}} - \frac{9}{4}$.

Thus

$$y(t) = \left(\frac{4}{\sqrt{3}} - \frac{9}{4}\right) e^{(2+\sqrt{3})t} + \left(\frac{-4}{\sqrt{3}} - \frac{9}{4}\right) e^{(2-\sqrt{3})t} + \frac{-1}{2}te^{t} + \frac{1}{2}e^{t} + t + 4$$

is a solution of $y'' - 4y' + y = te^{t} + t$ which satisfies that
 $y'(0) = y(0) = 0.$

www.ntnu.no

Forced harmonic motion

We will now apply the technique of undetermined coefficients to analyze harmonic motion with an external sinusoidal forcing term.

Forced harmonic motion

We will now apply the technique of undetermined coefficients to analyze harmonic motion with an external sinusoidal forcing term.

The equation we need to solve is

$$\mathbf{y}'' + 2\mathbf{c}\mathbf{y}' + \omega_0^2 \mathbf{y} = \mathbf{A}\cos(\omega t).$$

Forced undamped harmonic motion

Let us first assume that c = 0.

Forced undamped harmonic motion

Let us first assume that c = 0. Then the equation becomes

$$y'' + \omega_0^2 y = A\cos(\omega t).$$

Forced undamped harmonic motion

Let us first assume that c = 0. Then the equation becomes

$$y'' + \omega_0^2 y = A\cos(\omega t).$$

The general solution to the homogeneous solution $y'' + \omega_0^2 y = 0$ is $y_h = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t)$.

Forced undamped harmonic motion

Let us first assume that c = 0. Then the equation becomes

$$y'' + \omega_0^2 y = A\cos(\omega t).$$

The general solution to the homogeneous solution $y'' + \omega_0^2 y = 0$ is $y_h = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t)$. Let us find a particular solution by using the method of undetermined coefficients.

Forced undamped harmonic motion

Let us first assume that c = 0. Then the equation becomes

$$y'' + \omega_0^2 y = A\cos(\omega t).$$

The general solution to the homogeneous solution $y'' + \omega_0^2 y = 0$ is $y_h = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t)$. Let us find a particular solution by using the method of undetermined coefficients. We will first look at the case where $\omega \neq \omega_0$, and then at the case where $\omega = \omega_0$.

The case $\omega \neq \omega_0$

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 13

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ of the form $y_p = a\cos(\omega t) + b\sin(\omega t)$.

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ of the form $y_p = a\cos(\omega t) + b\sin(\omega t)$.

 $y_p''(t) + \omega_0^2 y_p(t)$

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ of the form $y_p = a\cos(\omega t) + b\sin(\omega t)$.

$$\begin{aligned} y_{\rho}''(t) + \omega_0^2 y_{\rho}(t) &= -a\omega^2 \cos(\omega t) - b\omega^2 \sin(\omega t) \\ &+ a\omega_0^2 \cos(\omega t) + b\omega_0^2 \sin(\omega t) \end{aligned}$$

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ of the form $y_p = a\cos(\omega t) + b\sin(\omega t)$.

$$y_{\rho}''(t) + \omega_0^2 y_{\rho}(t) = -a\omega^2 \cos(\omega t) - b\omega^2 \sin(\omega t) + a\omega_0^2 \cos(\omega t) + b\omega_0^2 \sin(\omega t) = a(\omega_0^2 - \omega^2) \cos(\omega t) + b(\omega_0^2 - \omega^2) \sin(\omega t)$$

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ of the form $y_p = a\cos(\omega t) + b\sin(\omega t)$.

$$y_{\rho}''(t) + \omega_0^2 y_{\rho}(t) = -a\omega^2 \cos(\omega t) - b\omega^2 \sin(\omega t) + a\omega_0^2 \cos(\omega t) + b\omega_0^2 \sin(\omega t) = a(\omega_0^2 - \omega^2) \cos(\omega t) + b(\omega_0^2 - \omega^2) \sin(\omega t)$$

so y_p is a particular solution if and only if $a = \frac{a}{\omega_0^2 - \omega^2}$ and b = 0.

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ of the form $y_p = a\cos(\omega t) + b\sin(\omega t)$.

$$y_{\rho}''(t) + \omega_0^2 y_{\rho}(t) = -a\omega^2 \cos(\omega t) - b\omega^2 \sin(\omega t) + a\omega_0^2 \cos(\omega t) + b\omega_0^2 \sin(\omega t) = a(\omega_0^2 - \omega^2) \cos(\omega t) + b(\omega_0^2 - \omega^2) \sin(\omega t)$$

so y_p is a particular solution if and only if $a = \frac{A}{\omega_0^2 - \omega^2}$ and b = 0. Thus $y_p(t) = \frac{A}{\omega_0^2 - \omega^2} \cos(\omega t)$ is a particular solution,

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ of the form $y_p = a\cos(\omega t) + b\sin(\omega t)$.

$$egin{aligned} y_{
ho}''(t)+\omega_0^2 y_{
ho}(t)&=-a\omega^2\cos(\omega t)-b\omega^2\sin(\omega t)\ &+a\omega_0^2\cos(\omega t)+b\omega_0^2\sin(\omega t)\ &=a(\omega_0^2-\omega^2)\cos(\omega t)+b(\omega_0^2-\omega^2)\sin(\omega t) \end{aligned}$$

so y_p is a particular solution if and only if $a = \frac{A}{\omega_0^2 - \omega^2}$ and b = 0. Thus $y_p(t) = \frac{A}{\omega_0^2 - \omega^2} \cos(\omega t)$ is a particular solution, and the general solution is $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{A}{\omega_0^2 - \omega^2} \cos(\omega t)$.

NTNU Norwegian University of Science and Technology

The general solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ is $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{A}{\omega_0^2 - \omega^2} \cos(\omega t)$.

The general solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ is $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{A}{\omega_0^2 - \omega^2} \cos(\omega t)$. Let us look at the solution where the motion starts at

equilibrium.

The general solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ is $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{A}{\omega_0^2 - \omega^2} \cos(\omega t)$. Let us look at the solution where the motion starts at equilibrium. This means that y(0) = y'(0) = 0.

The general solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ is $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{A}{\omega_0^2 - \omega^2} \cos(\omega t)$. Let us look at the solution where the motion starts at equilibrium. This means that y(0) = y'(0) = 0. We then have that $0 = y(0) = c_1 + \frac{A}{\omega_0^2 - \omega^2}$ and $0 = y'(0) = c_2 \omega_0$,

The general solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$ is $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{A}{\omega_0^2 - \omega^2} \cos(\omega t)$. Let us look at the solution where the motion starts at equilibrium. This means that y(0) = y'(0) = 0. We then have that $0 = y(0) = c_1 + \frac{A}{\omega_0^2 - \omega^2}$ and $0 = y'(0) = c_2\omega_0$, so $y(t) = \frac{A}{\omega_0^2 - \omega^2} (\cos(\omega t) - \cos(\omega_0 t))$.

Consider the solution $y(t) = \frac{A}{\omega_0^2 - \omega^2} (\cos(\omega t) - \cos(\omega_0 t)).$

Consider the solution $y(t) = \frac{A}{\omega_0^2 - \omega^2} (\cos(\omega t) - \cos(\omega_0 t)).$ Let $\overline{\omega} = (\omega_0 + \omega)/2$ and $\delta = (\omega_0 - \omega)/2.$

Consider the solution $y(t) = \frac{A}{\omega_0^2 - \omega^2} (\cos(\omega t) - \cos(\omega_0 t))$. Let $\overline{\omega} = (\omega_0 + \omega)/2$ and $\delta = (\omega_0 - \omega)/2$. $\overline{\omega}$ is called the *mean frequency*, and δ is called the *half difference*.

Consider the solution $y(t) = \frac{A}{\omega_0^2 - \omega^2} (\cos(\omega t) - \cos(\omega_0 t))$. Let $\overline{\omega} = (\omega_0 + \omega)/2$ and $\delta = (\omega_0 - \omega)/2$. $\overline{\omega}$ is called the *mean* frequency, and δ is called the *half difference*. We then have that

$$y(t) = \frac{A}{\omega_0^2 - \omega^2} (\cos(\omega t) - \cos(\omega_0 t))$$

Consider the solution $y(t) = \frac{A}{\omega_0^2 - \omega^2} (\cos(\omega t) - \cos(\omega_0 t))$. Let $\overline{\omega} = (\omega_0 + \omega)/2$ and $\delta = (\omega_0 - \omega)/2$. $\overline{\omega}$ is called the *mean* frequency, and δ is called the *half difference*. We then have that

$$egin{aligned} y(t) &= rac{A}{\omega_0^2 - \omega^2}(\cos(\omega t) - \cos(\omega_0 t)) \ &= rac{A}{4\overline{\omega}\delta}(\cos((\overline{\omega} - \delta)t) - \cos((\overline{\omega} + \delta)t)) \end{aligned}$$

Consider the solution $y(t) = \frac{A}{\omega_0^2 - \omega^2} (\cos(\omega t) - \cos(\omega_0 t))$. Let $\overline{\omega} = (\omega_0 + \omega)/2$ and $\delta = (\omega_0 - \omega)/2$. $\overline{\omega}$ is called the *mean frequency*, and δ is called the *half difference*. We then have that

$$egin{aligned} y(t) &= rac{A}{\omega_0^2 - \omega^2}(\cos(\omega t) - \cos(\omega_0 t)) \ &= rac{A}{4\overline{\omega}\delta}(\cos((\overline{\omega} - \delta)t) - \cos((\overline{\omega} + \delta)t)) \ &= rac{A\sin(\delta t)}{2\overline{\omega}\delta}\sin(\overline{\omega}t). \end{aligned}$$

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 18

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega_0 t)$.

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega_0 t)$. Since $A\cos(\omega_0 t)$ is a solution to the homogeneous equation $y'' + 2cy' + \omega_0^2 y = 0$, we will look for a solution of the form $y_p = t(a\cos(\omega_0 t) + b\sin(\omega_0 t))$.

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega_0 t)$. Since $A\cos(\omega_0 t)$ is a solution to the homogeneous equation $y'' + 2cy' + \omega_0^2 y = 0$, we will look for a solution of the form $y_p = t(a\cos(\omega_0 t) + b\sin(\omega_0 t))$.

$$egin{aligned} y_p''(t) + \omega_0^2 y_p(t) &= 2\omega_0(-a\sin(\omega_0 t) + b\cos(\omega_0 t)) \ &+ t\omega_0^2(-a\cos(\omega_0 t) - b\sin(\omega_0 t)) \ &+ \omega_0^2 t(a\cos(\omega_0 t) + b\sin(\omega_0 t)) \end{aligned}$$

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega_0 t)$. Since $A\cos(\omega_0 t)$ is a solution to the homogeneous equation $y'' + 2cy' + \omega_0^2 y = 0$, we will look for a solution of the form $y_p = t(a\cos(\omega_0 t) + b\sin(\omega_0 t))$.

$$egin{aligned} &y_{
ho}''(t)+\omega_0^2 y_{
ho}(t)=2\omega_0(-a\sin(\omega_0 t)+b\cos(\omega_0 t))\ &+t\omega_0^2(-a\cos(\omega_0 t)-b\sin(\omega_0 t))\ &+\omega_0^2 t(a\cos(\omega_0 t)+b\sin(\omega_0 t))\ &=2\omega_0(-a\sin(\omega_0 t)+b\cos(\omega_0 t)). \end{aligned}$$

We will look for a solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega_0 t)$. Since $A\cos(\omega_0 t)$ is a solution to the homogeneous equation $y'' + 2cy' + \omega_0^2 y = 0$, we will look for a solution of the form $y_p = t(a\cos(\omega_0 t) + b\sin(\omega_0 t))$.

$$egin{aligned} &y_{
ho}''(t)+\omega_0^2 y_{
ho}(t)=2\omega_0(-a\sin(\omega_0 t)+b\cos(\omega_0 t))\ &+t\omega_0^2(-a\cos(\omega_0 t)-b\sin(\omega_0 t))\ &+\omega_0^2 t(a\cos(\omega_0 t)+b\sin(\omega_0 t))\ &=2\omega_0(-a\sin(\omega_0 t)+b\cos(\omega_0 t)). \end{aligned}$$

So y_p is a particular solution if and only if a = 0 and $b = \frac{A}{2\omega_0}$.

NTNU Norwegian University of Science and Technology

Thus $y_{\rho}(t) = \frac{A}{2\omega_0} t \sin(\omega_0 t)$ is a particular solution,

Thus $y_p(t) = \frac{A}{2\omega_0} t \sin(\omega_0 t)$ is a particular solution, and the general solution is $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{A}{2\omega_0} t \sin(\omega_0 t)$.

Thus $y_p(t) = \frac{A}{2\omega_0} t \sin(\omega_0 t)$ is a particular solution, and the general solution is $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{A}{2\omega_0} t \sin(\omega_0 t)$. Let us look at the solution where the motion starts at equilibrium.

Thus $y_p(t) = \frac{A}{2\omega_0}t\sin(\omega_0 t)$ is a particular solution, and the general solution is $y(t) = c_1\cos(\omega_0 t) + c_2\sin(\omega_0 t) + \frac{A}{2\omega_0}t\sin(\omega_0 t)$. Let us look at the solution where the motion starts at equilibrium. This means that y(0) = y'(0) = 0.

Thus $y_p(t) = \frac{A}{2\omega_0} t \sin(\omega_0 t)$ is a particular solution, and the general solution is $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{A}{2\omega_0} t \sin(\omega_0 t)$. Let us look at the solution where the motion starts at equilibrium. This means that y(0) = y'(0) = 0. We then have that $0 = y(0) = c_1$ and $0 = y'(0) = c_2\omega_0$,

Thus $y_p(t) = \frac{A}{2\omega_0} t \sin(\omega_0 t)$ is a particular solution, and the general solution is $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + \frac{A}{2\omega_0} t \sin(\omega_0 t)$. Let us look at the solution where the motion starts at equilibrium. This means that y(0) = y'(0) = 0. We then have that $0 = y(0) = c_1$ and $0 = y'(0) = c_2\omega_0$, so $y(t) = \frac{A}{2\omega_0} t \sin(\omega_0 t)$.

The case $\omega = \omega_0$ $y(t) = \frac{A}{2\omega_0} t \sin(\omega_0 t)$ У t NTNU Norwegian University of Science and Technology

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 21

If we add a damping term to the system we get the equation

 $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t).$

If we add a damping term to the system we get the equation

$$\mathbf{y}'' + 2\mathbf{c}\mathbf{y}' + \omega_0^2 \mathbf{y} = \mathbf{A}\cos(\omega t).$$

Let us assume that $c < \omega_0$.

If we add a damping term to the system we get the equation

$$\mathbf{y}'' + 2\mathbf{c}\mathbf{y}' + \omega_0^2\mathbf{y} = \mathbf{A}\cos(\omega t).$$

Let us assume that $c < \omega_0$. Then the general solution to the homogeneous equation $y'' + 2cy' + \omega_0^2 y = 0$ is $y_h(t) = e^{-ct}(c_1 \cos(\eta t) + c_2 \sin(\eta t))$ where $\eta = \sqrt{\omega_0^2 - c^2}$.

If we add a damping term to the system we get the equation

$$\mathbf{y}'' + 2\mathbf{c}\mathbf{y}' + \omega_0^2 \mathbf{y} = \mathbf{A}\cos(\omega t).$$

Let us assume that $c < \omega_0$. Then the general solution to the homogeneous equation $y'' + 2cy' + \omega_0^2 y = 0$ is

 $y_h(t) = e^{-ct}(c_1 \cos(\eta t) + c_2 \sin(\eta t))$ where $\eta = \sqrt{\omega_0^2 - c^2}$. To find a particular solution we will use the technique of undetermined coefficients and the complex method.

If we add a damping term to the system we get the equation

$$\mathbf{y}'' + 2\mathbf{c}\mathbf{y}' + \omega_0^2\mathbf{y} = \mathbf{A}\cos(\omega t).$$

Let us assume that $c < \omega_0$. Then the general solution to the homogeneous equation $y'' + 2cy' + \omega_0^2 y = 0$ is

 $y_h(t) = e^{-ct}(c_1 \cos(\eta t) + c_2 \sin(\eta t))$ where $\eta = \sqrt{\omega_0^2 - c^2}$. To find a particular solution we will use the technique of undetermined coefficients and the complex method. This means that we will be looking for a solution $z(t) = ae^{i\omega t}$ to the equation $z'' + 2cz' + \omega_0^2 z = Ae^{i\omega t}$.

Science and Technology

If
$$z(t) = ae^{i\omega t}$$
,

If $z(t) = ae^{i\omega t}$, then $z''(t)+2cz(t)'+\omega_0^2 z(t) =$

If $z(t) = ae^{i\omega t}$, then

 $z''(t)+2cz(t)'+\omega_0^2 z(t) = ((i\omega)^2+2c(i\omega)+\omega_0^2)ae^{i\omega t}$

If $z(t) = ae^{i\omega t}$, then $z''(t)+2cz(t)'+\omega_0^2 z(t) = ((i\omega)^2+2c(i\omega)+\omega_0^2)ae^{i\omega t} = P(i\omega)ae^{i\omega t}$ where $P(\lambda) = \lambda^2 + 2c\lambda + \omega_0^2$ is the characteristic polynomial.

If $z(t) = ae^{i\omega t}$, then $z''(t)+2cz(t)'+\omega_0^2 z(t) = ((i\omega)^2+2c(i\omega)+\omega_0^2)ae^{i\omega t} = P(i\omega)ae^{i\omega t}$ where $P(\lambda) = \lambda^2 + 2c\lambda + \omega_0^2$ is the characteristic polynomial. Thus $z(t) = \frac{A}{P(i\omega)}e^{i\omega t} = H(i\omega)Ae^{i\omega t}$ is a solution to $z'' + 2cz' + \omega_0^2 z = Ae^{i\omega t}$ where $H(i\omega) = \frac{1}{P(i\omega)}$.

If $z(t) = ae^{i\omega t}$, then $z''(t)+2cz(t)'+\omega_0^2 z(t) = ((i\omega)^2+2c(i\omega)+\omega_0^2)ae^{i\omega t} = P(i\omega)ae^{i\omega t}$ where $P(\lambda) = \lambda^2 + 2c\lambda + \omega_0^2$ is the characteristic polynomial. Thus $z(t) = \frac{A}{P(i\omega)}e^{i\omega t} = H(i\omega)Ae^{i\omega t}$ is a solution to $z'' + 2cz' + \omega_0^2 z = Ae^{i\omega t}$ where $H(i\omega) = \frac{1}{P(i\omega)}$. The function $H(i\omega)$ is called the *transfer function*.

If $z(t) = ae^{i\omega t}$, then $z''(t)+2cz(t)'+\omega_0^2 z(t) = ((i\omega)^2+2c(i\omega)+\omega_0^2)ae^{i\omega t} = P(i\omega)ae^{i\omega t}$ where $P(\lambda) = \lambda^2 + 2c\lambda + \omega_0^2$ is the characteristic polynomial. Thus $z(t) = \frac{A}{P(i\omega)}e^{i\omega t} = H(i\omega)Ae^{i\omega t}$ is a solution to $z'' + 2cz' + \omega_0^2 z = Ae^{i\omega t}$ where $H(i\omega) = \frac{1}{P(i\omega)}$. The function $H(i\omega)$ is called the *transfer function*. Let $R = |P(i\omega)|$ and $\phi = \operatorname{Arg}(P(i\omega))$.

If $z(t) = ae^{i\omega t}$, then $z''(t)+2cz(t)'+\omega_0^2 z(t) = ((i\omega)^2+2c(i\omega)+\omega_0^2)ae^{i\omega t} = P(i\omega)ae^{i\omega t}$ where $P(\lambda) = \lambda^2 + 2c\lambda + \omega_0^2$ is the characteristic polynomial. Thus $z(t) = \frac{A}{P(i\omega)}e^{i\omega t} = H(i\omega)Ae^{i\omega t}$ is a solution to $z'' + 2cz' + \omega_0^2 z = Ae^{i\omega t}$ where $H(i\omega) = \frac{1}{P(i\omega)}$. The function $H(i\omega)$ is called the *transfer function*. Let $R = |P(i\omega)|$ and $\phi = \operatorname{Arg}(P(i\omega))$. Then $P(i\omega) = Re^{i\phi}$ and $H(i\omega) = \frac{1}{P}e^{-i\phi}.$

NTNU Norwegian University of Science and Technology

So
$$z(t) = H(i\omega)Ae^{i\omega t} = \frac{1}{R}e^{-i\phi}Ae^{i\omega t} = \frac{A}{R}e^{i(\omega t-\phi)}$$

So $z(t) = H(i\omega)Ae^{i\omega t} = \frac{1}{R}e^{-i\phi}Ae^{i\omega t} = \frac{A}{R}e^{i(\omega t-\phi)}$, and $y_{\rho}(t) = \operatorname{Re}(z(t)) = \frac{A}{R}\cos(\omega t - \phi)$ is a particular solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$.

So $z(t) = H(i\omega)Ae^{i\omega t} = \frac{1}{R}e^{-i\phi}Ae^{i\omega t} = \frac{A}{R}e^{i(\omega t-\phi)}$, and $y_{\rho}(t) = \operatorname{Re}(z(t)) = \frac{A}{R}\cos(\omega t - \phi)$ is a particular solution to $y'' + 2cy' + \omega_0^2 y = A\cos(\omega t)$. The general solution to

$$\mathbf{y}'' + 2\mathbf{c}\mathbf{y}' + \omega_0^2 \mathbf{y} = \mathbf{A}\cos(\omega t).$$

is $y(t) = e^{-ct}(c_1 \cos(\eta t) + c_2 \sin(\eta t)) + \frac{A}{R} \cos(\omega t - \phi).$

Steady-state and transient terms

The general solution to

$$\mathbf{y}'' + 2\mathbf{c}\mathbf{y}' + \omega_0^2 \mathbf{y} = \mathbf{A}\cos(\omega t).$$

is $y(t) = e^{-ct}(c_1 \cos(\eta t) + c_2 \sin(\eta t)) + \frac{A}{R} \cos(\omega t - \phi).$

Steady-state and transient terms

The general solution to

$$\mathbf{y}'' + 2\mathbf{c}\mathbf{y}' + \omega_0^2 \mathbf{y} = \mathbf{A}\cos(\omega t).$$

is $y(t) = e^{-ct}(c_1 \cos(\eta t) + c_2 \sin(\eta t)) + \frac{A}{B} \cos(\omega t - \phi)$. The term $e^{-ct}(c_1 \cos(\eta t) + c_2 \sin(\eta t))$ is called the *transition term*, and the term $\frac{A}{B} \cos(\omega t - \phi)$ is called the *steady-state* term.

Variation of parameters

We are looking for a particular solution to an inhomogeneous second-order linear differential equation

$$y'' + p(t)y' + q(t)y = f(t).$$

Variation of parameters

We are looking for a particular solution to an inhomogeneous second-order linear differential equation

$$y'' + p(t)y' + q(t)y = f(t).$$

Suppose that y_1 and y_2 form a fundamental set of solutions to the homogeneous equation y'' + p(t)y' + q(t)y = 0.

Variation of parameters

We are looking for a particular solution to an inhomogeneous second-order linear differential equation

$$\mathbf{y}'' + \mathbf{p}(t)\mathbf{y}' + \mathbf{q}(t)\mathbf{y} = f(t).$$

Suppose that y_1 and y_2 form a fundamental set of solutions to the homogeneous equation y'' + p(t)y' + q(t)y = 0. The idea behind the *variation of parameters* method is to look for a particular solution of the form $y(t) = v_1(t)y_1(t) + v_2(t)y_2(t)$ where v_1 and v_2 are unknown functions.

Let us find a particular solution to the equation

$$y'' + y = \tan(t).$$

Let us find a particular solution to the equation

$$y'' + y = \tan(t).$$

The functions $y_1(t) = \cos(t)$ and $y_2(t) = \sin(t)$ form a fundamental set of solutions of the equation y'' + y = 0,

Let us find a particular solution to the equation

$$y'' + y = \tan(t).$$

The functions $y_1(t) = \cos(t)$ and $y_2(t) = \sin(t)$ form a fundamental set of solutions of the equation y'' + y = 0, so we let

Let us find a particular solution to the equation

$$y'' + y = \tan(t).$$

The functions $y_1(t) = \cos(t)$ and $y_2(t) = \sin(t)$ form a fundamental set of solutions of the equation y'' + y = 0, so we let

$$y(t) = v_1(t)y_1(t) + v_2(t)y_2(t) = v_1(t)\cos(t) + v_2(t)\sin(t).$$

Then

 $y'(t) = v'_1(t)\cos(t) - v_1(t)\sin(t) + v'_2(t)\sin(t) + v_2(t)\cos(t).$

Let us find a particular solution to the equation

$$y'' + y = \tan(t).$$

The functions $y_1(t) = \cos(t)$ and $y_2(t) = \sin(t)$ form a fundamental set of solutions of the equation y'' + y = 0, so we let

 $y(t) = v_1(t)y_1(t) + v_2(t)y_2(t) = v_1(t)\cos(t) + v_2(t)\sin(t).$ Then

 $y'(t) = v'_1(t)\cos(t) - v_1(t)\sin(t) + v'_2(t)\sin(t) + v_2(t)\cos(t).$ Let us assume that $v'_1(t)\cos(t) + v'_2(t)\sin(t) = 0.$

Let us find a particular solution to the equation

$$y'' + y = \tan(t).$$

The functions $y_1(t) = \cos(t)$ and $y_2(t) = \sin(t)$ form a fundamental set of solutions of the equation y'' + y = 0, so we let

 $y(t) = v_1(t)y_1(t) + v_2(t)y_2(t) = v_1(t)\cos(t) + v_2(t)\sin(t).$ Then

 $y'(t) = v'_1(t)\cos(t) - v_1(t)\sin(t) + v'_2(t)\sin(t) + v_2(t)\cos(t).$ Let us assume that $v'_1(t)\cos(t) + v'_2(t)\sin(t) = 0.$ Then $y'(t) = -v_1(t)\sin(t) + v_2(t)\cos(t),$

NTNU Norwegian University of Science and Technology

and

$$y''(t) + y(t) = -v'_1(t)\sin(t) - v_1(t)\cos(t) + v'_2(t)\cos(t) - v_2(t)\sin(t) + v_1(t)\cos(t) + v_2(t)\sin(t) = -v'_1(t)\sin(t) + v'_2(t)\cos(t).$$

and

$$y''(t) + y(t) = -v'_{1}(t)\sin(t) - v_{1}(t)\cos(t) + v'_{2}(t)\cos(t) - v_{2}(t)\sin(t) + v_{1}(t)\cos(t) + v_{2}(t)\sin(t) = -v'_{1}(t)\sin(t) + v'_{2}(t)\cos(t).$$

So $y(t) = v_1(t)y_1(t) + v_2(t)y_2(t)$ is a solution to $y'' + y = \tan(t)$ if $v'_1(t)\cos(t) + v'_2(t)\sin(t) = 0$ and $-v_1(t)\sin(t) + v_2(t)\cos(t) = \tan(t)$.

The solution of the linear system

$$v'_1(t)\cos(t) + v'_2(t)\sin(t) = 0$$

 $-v_1(t)\sin(t) + v_2(t)\cos(t) = \tan(t)$

is

$$v_1'(t) = \frac{-\tan(t)\sin(t)}{\cos^2(t) + \sin^2(t)} = -\tan(t)\sin(t) = \frac{-\sin^2(t)}{\cos(t)}$$
$$v_2'(t) = \frac{\tan(t)\cos(t)}{\cos^2(t) + \sin^2(t)} = \tan(t)\cos(t) = \sin(t).$$

So if we let

$$v_1(t) = \int \frac{-\sin^2(t)}{\cos(t)} dt = \int \frac{\cos^2(t) - 1}{\cos(t)} dt$$
$$= \int \cos(t) - \frac{1}{\cos(t)} = \sin(t) - \ln|\sec(t) + \tan(t)|$$

So if we let

$$v_{1}(t) = \int \frac{-\sin^{2}(t)}{\cos(t)} dt = \int \frac{\cos^{2}(t) - 1}{\cos(t)} dt$$
$$= \int \cos(t) - \frac{1}{\cos(t)} = \sin(t) - \ln|\sec(t) + \tan(t)|$$

and

$$v_2(t) = \int \sin(t) dt = -\cos(t)$$

then

$$y(t) = v_1(t)y_1(t) + v_2(t)y_2(t) = (\sin(t) - \ln|\sec(t) + \tan(t)|)\cos(t) - \cos(t)\sin(t) + \tan(t)|)$$

is a particular solution to the equation y'' + y = tan(t).

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 32

www.ntnu.no

To find a particular solution to y'' + py' + qy = f using the method of variation of parameters we follow these steps.

• Find a fundamental set of solutions y_1 , y_2 to the homogeneous equation y'' + py' + qy = 0.

- Find a fundamental set of solutions y_1 , y_2 to the homogeneous equation y'' + py' + qy = 0.
- 2 Let $y_p = v_1y_1 + v_2y_2$ where v_1 and v_2 are functions to be determined.

- Find a fundamental set of solutions y_1 , y_2 to the homogeneous equation y'' + py' + qy = 0.
- 2 Let $y_p = v_1y_1 + v_2y_2$ where v_1 and v_2 are functions to be determined.
- **③** Find v'_1 and v'_2 such that

$$v'_1y_1 + v'_2y_2 = 0$$

 $v'_1y'_1 + v'_2y'_2 = f.$

- Find a fundamental set of solutions y_1 , y_2 to the homogeneous equation y'' + py' + qy = 0.
- 2 Let $y_p = v_1y_1 + v_2y_2$ where v_1 and v_2 are functions to be determined.
- **③** Find v'_1 and v'_2 such that

$$v'_{1}y_{1} + v'_{2}y_{2} = 0$$

$$v'_{1}y'_{1} + v'_{2}y'_{2} = f.$$
3 Let $v_{1}(t) = \int v'_{1}(t) dt$ and $v_{2}(t) = \int v'_{2}(t) dt$.

To find a particular solution to y'' + py' + qy = f using the method of variation of parameters we follow these steps.

- Find a fundamental set of solutions y_1 , y_2 to the homogeneous equation y'' + py' + qy = 0.
- 2 Let $y_p = v_1y_1 + v_2y_2$ where v_1 and v_2 are functions to be determined.
- **③** Find v'_1 and v'_2 such that

$$v'_{1}y_{1} + v'_{2}y_{2} = 0$$

$$v'_{1}y'_{1} + v'_{2}y'_{2} = f.$$

$$Uter v_{1}(t) = \int v'_{1}(t) dt \text{ and } v_{2}(t) = \int v'_{2}(t) dt.$$

Substitute v_1 and v_2 into $y_p = v_1y_1 + v_2y_2$.

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 33

$v_1(t) = \int \frac{-y_2(t)f(t)}{W(t)} dt$

and

lf

$$v_2(t) = \int \frac{y_1(t)f(t)}{W(t)} dt$$

where W(t) is the Wronskian of y_1 and y_2 ,

$$v_1(t)=\intrac{-y_2(t)f(t)}{W(t)}\;dt$$

and

$$v_2(t) = \int rac{y_1(t)f(t)}{W(t)} dt$$

where W(t) is the Wronskian of y_1 and y_2 , then

$$y(t) = v_1(t)y_1(t) + v_2(t)y_2(t)$$

is a solution of y'' + py' + qy = f.

Problem 2 August 2012

Find the solution of $y'' - 2y' + y = \frac{e^x}{x}$ for x > 0 which satisfies y(1) = y'(1) = 0.

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 35

www.ntnu.no

We will us variation of parameters to find a particular solution of $y'' - 2y' + y = \frac{e^x}{x}$, so we first have to find a fundamental set of solutions to y'' - 2y + y = 0.

We will us variation of parameters to find a particular solution of $y'' - 2y' + y = \frac{e^x}{x}$, so we first have to find a fundamental set of solutions to y'' - 2y + y = 0. The characteristic polynomial of y'' - 2y + y = 0 is $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$,

We will us variation of parameters to find a particular solution of $y'' - 2y' + y = \frac{e^x}{x}$, so we first have to find a fundamental set of solutions to y'' - 2y + y = 0. The characteristic polynomial of y'' - 2y + y = 0 is $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$, so $y_1(x) = e^x$ and $y_2(x) = xe^x$ form a fundamental set of solutions to y'' - 2y + y = 0.

We will us variation of parameters to find a particular solution of $y'' - 2y' + y = \frac{e^x}{x}$, so we first have to find a fundamental set of solutions to y'' - 2y + y = 0. The characteristic polynomial of y'' - 2y + y = 0 is $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$, so $y_1(x) = e^x$ and $y_2(x) = xe^x$ form a fundamental set of solutions to y'' - 2y + y = 0. The Wronskian of y_1 and y_2 is

$$W(x) = y_1(x)y'_2(x) - y'_1(x)y_2(x) = e^x(e^x + xe^x) - e^xxe^x = e^{2x}$$

It follows that if we let

$$V_1(x) = \int \frac{-y_2(x)f(x)}{W(x)} dx = \int \frac{-xe^x e^x/x}{e^{2x}} dx = \int -dx = -x^{-1}$$

It follows that if we let

$$W_1(x) = \int \frac{-y_2(x)f(x)}{W(x)} dx = \int \frac{-xe^x e^x/x}{e^{2x}} dx = \int -dx = -x$$

and

$$W_2(x) = \int \frac{y_1(x)f(x)}{W(x)} dx = \int \frac{e^x e^x/x}{e^{2x}} dx = \int \frac{1}{x} dx = \ln(x),$$

It follows that if we let

$$v_1(x) = \int \frac{-y_2(x)f(x)}{W(x)} dx = \int \frac{-xe^x e^x/x}{e^{2x}} dx = \int -dx = -x$$

and

$$v_2(x) = \int \frac{y_1(x)f(x)}{W(x)} dx = \int \frac{e^x e^x/x}{e^{2x}} dx = \int \frac{1}{x} dx = \ln(x),$$

then

$$y(x) = v_1(x)y_1(x) + v_2(x)y_2(x) = -xe^x + xe^x \ln(x)$$

is a particular solution of $y'' - 2y' + y = \frac{e^x}{x}$.

It follows that the general solution of $y'' - 2y' + y = \frac{e^x}{x}$ is

$$y(x) = c_1 e^x + c_2 x e^x - x e^x + x e^x \ln(x).$$

It follows that the general solution of $y'' - 2y' + y = \frac{e^x}{x}$ is $y(x) = c_1 e^x + c_2 x e^x + x e^x \ln(x)$

$$y(x) = c_1 e^x + c_2 x e^x - x e^x + x e^x \ln(x).$$

lf

$$y(x) = c_1 e^x + c_2 x e^x - x e^x + x e^x \ln(x)$$

= $c_1 e^x + (c_2 - 1 + \ln(x)) x e^x$,

then

$$y'(x) = c_1 e^x + \frac{1}{x} x e^x + (c_2 - 1 + \ln(x)) e^x + (c_2 - 1 + \ln(x)) x e^x,$$

$$y(1) = c_1 e + (c_2 - 1)e = (c_1 + c_2 - 1)e^{-1}$$

and

$$y'(1) = c_1e + e + (c_2 - 1)e + (c_2 - 1)e = (c_1 + 2c_2 - 1)e$$

$$y(1) = c_1 e + (c_2 - 1)e = (c_1 + c_2 - 1)e^{-2}$$

and

$$y'(1) = c_1e + e + (c_2 - 1)e + (c_2 - 1)e = (c_1 + 2c_2 - 1)e,$$

so $y(x) = c_1e^x + (c_2 - 1 + \ln(x))xe^x$ satisfies
 $y(1) = y'(1) = 0$ if and only if $c_1 + c_2 = 1$ and $c_1 + 2c_2 = 1$.

$$y(1) = c_1 e + (c_2 - 1)e = (c_1 + c_2 - 1)e^{-1}$$

and

$$y'(1) = c_1e + e + (c_2 - 1)e + (c_2 - 1)e = (c_1 + 2c_2 - 1)e$$

so $y(x) = c_1 e^x + (c_2 - 1 + \ln(x))xe^x$ satisfies y(1) = y'(1) = 0 if and only if $c_1 + c_2 = 1$ and $c_1 + 2c_2 = 1$. The solution of the linear system

$$c_1 + c_2 = 1$$

 $c_1 + 2c_2 = 1$

is $c_1 = 1$ and $c_2 = 0$.

So $y(x) = e^x - xe^x + \ln(x)xe^x$ is a solution of $y'' - 2y' + y = \frac{e^x}{x}$ on $(0, \infty)$ which satisfies y(1) = y'(1) = 0.

Problem 2 December 2010

The motion of a mechanical system is described by the differential equation

$$y'' + 6y' + 18y = 0.$$

Determine whether the motion is under-damped, is over-damped or is critically damped. Find a particular solution y(t) that satisfies the initial conditions y(0) = 0, y'(0) = 0.6.

Pind the steady-state solution of the equation

$$y'' + 6y' + 18y = 45\cos 3t.$$

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 41

www.ntnu.no

The characteristic polynomial of y'' + 6y' + 18y = 0 is $\lambda^2 + 6\lambda + 18$,

The characteristic polynomial of y'' + 6y' + 18y = 0 is $\lambda^2 + 6\lambda + 18$, and the characteristic roots are $\lambda = \frac{-6 \pm \sqrt{36 - 72}}{2} = -3 \pm 3i$.

www.ntnu.no

The characteristic polynomial of y'' + 6y' + 18y = 0 is $\lambda^2 + 6\lambda + 18$, and the characteristic roots are $\lambda = \frac{-6 \pm \sqrt{36 - 72}}{2} = -3 \pm 3i$. It follows that the system is under-damped and that the general solution of y'' + 6y' + 18y = 0 is $y(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t}$.

The characteristic polynomial of y'' + 6y' + 18y = 0 is $\lambda^2 + 6\lambda + 18$, and the characteristic roots are $\lambda = \frac{-6 \pm \sqrt{36 - 72}}{2} = -3 \pm 3i$. It follows that the system is under-damped and that the general solution of y'' + 6y' + 18y = 0 is $y(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t}$. If $y(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t}$, then $y(0) = c_1 + c_2$,

The characteristic polynomial of y'' + 6y' + 18y = 0 is $\lambda^2 + 6\lambda + 18$, and the characteristic roots are $\lambda = \frac{-6 \pm \sqrt{36 - 72}}{2} = -3 \pm 3i$. It follows that the system is under-damped and that the general solution of y'' + 6y' + 18y = 0 is $y(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t}$. If $y(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t}$, then $y(0) = c_1 + c_2$, so y(0) = 0 if and only if $c_2 = -c_1$.

The characteristic polynomial of y'' + 6y' + 18y = 0 is $\lambda^2 + 6\lambda + 18$, and the characteristic roots are $\lambda = \frac{-6 \pm \sqrt{36 - 72}}{2} = -3 \pm 3i$. It follows that the system is under-damped and that the general solution of y'' + 6y' + 18y = 0 is $y(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t}$. If $v(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t}$, then $v(0) = c_1 + c_2$, so y(0) = 0 if and only if $c_2 = -c_1$. If $y(t) = c_1(e^{(-3+3i)t} - e^{(-3-3i)t})$, then $y'(t) = c_1((-3+3i)e^{(-3+3i)t} - (-3-3i)e^{(-3-3i)t})$ and $v'(0) = c_1((-3+3i) - (-3-3i)) = 6c_1i,$

Norwegian University of Science and Technology

The characteristic polynomial of y'' + 6y' + 18y = 0 is $\lambda^2 + 6\lambda + 18$, and the characteristic roots are $\lambda = \frac{-6 \pm \sqrt{36 - 72}}{2} = -3 \pm 3i$. It follows that the system is under-damped and that the general solution of y'' + 6y' + 18y = 0 is $y(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t}$. If $v(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t}$, then $v(0) = c_1 + c_2$, so y(0) = 0 if and only if $c_2 = -c_1$. If $y(t) = c_1(e^{(-3+3i)t} - e^{(-3-3i)t})$, then $y'(t) = c_1((-3+3i)e^{(-3+3i)t} - (-3-3i)e^{(-3-3i)t})$ and $y'(0) = c_1((-3+3i) - (-3-3i)) = 6c_1i$, so y'(0) = 0.6 if and only if $c_1 = \frac{1}{10i}$. Norwegian University of

Science and Technology

So $y(t) = \frac{1}{10i} (e^{(-3+3i)t} - e^{(-3-3i)t}) = \frac{1}{5}e^{-3t}\sin(3t)$ is a particular solution y(t) that satisfies the initial conditions y(0) = 0, y'(0) = 0.6.

So $y(t) = \frac{1}{10i} (e^{(-3+3i)t} - e^{(-3-3i)t}) = \frac{1}{5}e^{-3t}\sin(3t)$ is a particular solution y(t) that satisfies the initial conditions y(0) = 0, y'(0) = 0.6. To find the steady-state solution of the equation $y'' + 6y' + 18y = 45\cos 3t$, we will first find the general solution of $y'' + 6y' + 18y = 45\cos 3t$.

So $y(t) = \frac{1}{10i} (e^{(-3+3i)t} - e^{(-3-3i)t}) = \frac{1}{5}e^{-3t}\sin(3t)$ is a particular solution y(t) that satisfies the initial conditions y(0) = 0, y'(0) = 0.6. To find the steady-state solution of the equation $y'' + 6y' + 18y = 45\cos 3t$, we will first find the general solution of $y'' + 6y' + 18y = 45\cos 3t$. We have already seen that the general solution of y'' + 6y' + 18y = 0 is $y(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t}$, so we just have to find a particular solution of $y'' + 6y' + 18y = 45\cos 3t$.

We will use the method of undetermined coefficient to find a particular solution of $y'' + 6y' + 18y = 45 \cos 3t$.

We will use the method of undetermined coefficient to find a particular solution of $y'' + 6y' + 18y = 45 \cos 3t$. Let $y(t) = A \cos 3t + B \sin 3t$.

We will use the method of undetermined coefficient to find a particular solution of $y'' + 6y' + 18y = 45\cos 3t$. Let $y(t) = A\cos 3t + B\sin 3t$. Then

$$y''(t) + 6y'(t) + 18y(t) = -9A\cos 3t - 9B\sin 3t$$

 $-18A\sin 3t + 18B\cos 3t$

+ 18A cos 3t + 18B sin 3t

$$= (9A + 18B) \cos 3t + (-18A + 9B) \sin 3t,$$

We will use the method of undetermined coefficient to find a particular solution of $y'' + 6y' + 18y = 45 \cos 3t$. Let $y(t) = A \cos 3t + B \sin 3t$. Then

$$y''(t) + 6y'(t) + 18y(t) = -9A\cos 3t - 9B\sin 3t$$

 $-18A\sin 3t + 18B\cos 3t$

+ 18A cos 3t + 18B sin 3t

$$= (9A + 18B)\cos 3t$$

 $+(-18A+9B)\sin 3t$,

so $y(t) = A\cos 3t + B\sin 3t$ is a particular solution of $y'' + 6y' + 18y = 45\cos 3t$ if and only if 9A + 18B = 45 and -18A + 9B = 0.

The solution of the linear system

9A + 18B = 45-18A + 9B = 0

is A = 1 and B = 2,

The solution of the linear system

9A + 18B = 45-18A + 9B = 0

is A = 1 and B = 2, so $y(t) = \cos 3t + 2 \sin 3t$ is a particular solution of $y'' + 6y' + 18y = 45 \cos 3t$.

The solution of the linear system

9A + 18B = 45-18A + 9B = 0

is A = 1 and B = 2, so $y(t) = \cos 3t + 2 \sin 3t$ is a particular, solution of $y'' + 6y' + 18y = 45 \cos 3t$. It follows that the general solution of $y'' + 6y' + 18y = 45 \cos 3t$ is $y(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t} + \cos 3t + 2 \sin 3t$.

The solution of the linear system

9A + 18B = 45-18A + 9B = 0

is A = 1 and B = 2, so $y(t) = \cos 3t + 2 \sin 3t$ is a particular, solution of $y'' + 6y' + 18y = 45 \cos 3t$. It follows that the general solution of $y'' + 6y' + 18y = 45 \cos 3t$ is $y(t) = c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t} + \cos 3t + 2 \sin 3t$. Since $c_1 e^{(-3+3i)t} + c_2 e^{(-3-3i)t} \rightarrow 0$ as $t \rightarrow \infty$, it follows that $y(t) = \cos 3t + 2 \sin 3t$ is the steady-state solution of the equation $y'' + 6y' + 18y = 45 \cos 3t$.

Plan for next week

TMA4115 - Calculus 3, Lecture 6, Jan 31, page 45

www.ntnu.no

Plan for next week

Wednesday we shall

- study how to solve systems of linear equations,
- introduce row reduction, echelon forms, pivot positions, the row reduction algorithm, and parametric descriptions of solution sets of systems of linear equations.
 Section 1.1-1.2 in "Linear Algebras and Its Applications"

(pages 1-23).

Plan for next week

Wednesday we shall

- study how to solve systems of linear equations,
- introduce row reduction, echelon forms, pivot positions, the row reduction algorithm, and parametric descriptions of solution sets of systems of linear equations.
- Section 1.1-1.2 in "Linear Algebras and Its Applications" (pages 1-23).

Thursday we shall introduce and study

- vectors,
- linear combinations of vectors,
- subsets spanned by vectors,
- vector equations.

Section 1.3 in "Linear Algebras and Its Applications" (pages 24-34).