TMA4115-Calculus 3
 Lecture 6, Jan 31

Toke Meier Carlsen
Norwegian University of Science and Technology Spring 2013

Review of yesterday's lecture

NTNU
Norwegian University of
Science and Technology

Review of yesterday's lecture

Yesterday we

Norwegian University of
Science and Technology

Review of yesterday's lecture

Yesterday we

- studied harmonic motions,

Review of yesterday's lecture

Yesterday we

- studied harmonic motions,
- studied solutions of second-order linear inhomogeneous differential equations,

Review of yesterday's lecture

Yesterday we

- studied harmonic motions,
- studied solutions of second-order linear inhomogeneous differential equations,
- looked at the method of undetermined coefficients.

Today's lecture

Today we shall

Today's lecture

Today we shall

- look at variation of parameters,

Today's lecture

Today we shall

- look at variation of parameters,
- study forced harmonic motions.

NTNU
Norwegian University of
Science and Technology

General solutions to inhomogeneous equations

If y_{p} is a particular solution to the inhomogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=f$ and y_{1} and y_{2} form a fundamental set of solutions to the homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=0$, then the general solution to the inhomogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=f$ is

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}
$$

where c_{1} and c_{2} are constants.

The method of undetermined coefficients

Consider the inhomogeneous second-order linear differential equation

$$
y^{\prime \prime}+p y^{\prime}+q y=f
$$

If the function f has a form that is replicated under differentiation, then look for a solution with the same general form as f.

Problem 2 from June 2012

(1) Find a particular solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$.
(2) Find the solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$, where $y^{\prime}(0)=y(0)=0$.

Solution

Solution

Let $y(t)=a t e^{t}+b e^{t}+c t+d$.

Solution

Let $y(t)=a t e^{t}+b e^{t}+c t+d$. Then
$y^{\prime}(t)=a e^{t}+a t e^{t}+b e^{t}+c=a t e^{t}+(a+b) e^{t}+c$,

Solution

Let $y(t)=a t e^{t}+b e^{t}+c t+d$. Then
$y^{\prime}(t)=a e^{t}+a t e^{t}+b e^{t}+c=a t e^{t}+(a+b) e^{t}+c$, $y^{\prime \prime}(t)=a e^{t}+a t e^{t}+(a+b) e^{t}=a t e^{t}+(2 a+b) e^{t}$,

Solution

$$
\begin{aligned}
& \text { Let } y(t)=a t e^{t}+b e^{t}+c t+d \text {. Then } \\
& y^{\prime}(t)=a e^{t}+a t e^{t}+b e^{t}+c=a t e^{t}+(a+b) e^{t}+c, \\
& y^{\prime \prime}(t)=a e^{t}+a t e^{t}+(a+b) e^{t}=a t e^{t}+(2 a+b) e^{t} \text {, and } \\
& y^{\prime \prime}(t)-4 y^{\prime}(t)+y(t)=a t e^{t}+(2 a+b) e^{t} \\
& -4\left(a t e^{t}+(a+b) e^{t}+c\right) \\
& +a t e^{t}+b e^{t}+c t+d \\
& =-2 a t e^{t}-(2 a+2 b) e^{t}+c t+d-4 c
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \text { Let } y(t)=a t e^{t}+b e^{t}+c t+d \text {. Then } \\
& y^{\prime}(t)=a e^{t}+a t e^{t}+b e^{t}+c=a t e^{t}+(a+b) e^{t}+c, \\
& y^{\prime \prime}(t)=a e^{t}+a t e^{t}+(a+b) e^{t}=a t e^{t}+(2 a+b) e^{t} \text {, and } \\
& y^{\prime \prime}(t)-4 y^{\prime}(t)+y(t)=a t e^{t}+(2 a+b) e^{t} \\
& -4\left(a t e^{t}+(a+b) e^{t}+c\right) \\
& +a t e^{t}+b e^{t}+c t+d \\
& =-2 a t e^{t}-(2 a+2 b) e^{t}+c t+d-4 c
\end{aligned}
$$

so $y(t)=a t e^{t}+b e^{t}+c t+d$ is a solution of
$y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$ if and only if $a=-\frac{1}{2}, b=-a=\frac{1}{2}, c=1$ and $d=c 4=4$.

Solution

$$
\begin{aligned}
& \text { Let } y(t)=a t e^{t}+b e^{t}+c t+d . \text { Then } \\
& \begin{aligned}
& y^{\prime}(t)=a e^{t}+a t e^{t}+b e^{t}+c=a t e^{t}+(a+b) e^{t}+c \\
& y^{\prime \prime}(t)=a e^{t}+a t e^{t}+(a+b) e^{t}=a t e^{t}+(2 a+b) e^{t}, \text { and } \\
& \begin{aligned}
y^{\prime \prime}(t)-4 y^{\prime}(t)+y(t)= & a t e^{t}+(2 a+b) e^{t} \\
& -4\left(a t e^{t}+(a+b) e^{t}+c\right) \\
& +a t e^{t}+b e^{t}+c t+d \\
= & -2 a t e^{t}-(2 a+2 b) e^{t}+c t+d-4 c
\end{aligned}
\end{aligned} . \begin{aligned}
\end{aligned} \\
&
\end{aligned}
$$

so $y(t)=a t e^{t}+b e^{t}+c t+d$ is a solution of
$y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$ if and only if $a=-\frac{1}{2}, b=-a=\frac{1}{2}, c=1$ and $d=c 4=4$. So $y(t)=\frac{-1}{2} t e^{t}+\frac{1}{2} e^{t}+t+4$ is a particular solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$.

0

Solution

To find the solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$ where $y^{\prime}(0)=y(0)=0$, we will first find the general solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$.

Solution

To find the solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$ where $y^{\prime}(0)=y(0)=0$, we will first find the general solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$. To do that, we will first find the general solution of $y^{\prime \prime}-4 y^{\prime}+y=0$.

Solution

To find the solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$ where $y^{\prime}(0)=y(0)=0$, we will first find the general solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$. To do that, we will first find the general solution of $y^{\prime \prime}-4 y^{\prime}+y=0$. The characteristic polynomial of $y^{\prime \prime}-4 y^{\prime}+y=0$ is $\lambda^{2}-4 \lambda+1$,

Solution

To find the solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$ where $y^{\prime}(0)=y(0)=0$, we will first find the general solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$. To do that, we will first find the general solution of $y^{\prime \prime}-4 y^{\prime}+y=0$. The characteristic polynomial of $y^{\prime \prime}-4 y^{\prime}+y=0$ is $\lambda^{2}-4 \lambda+1$, and the characteristic roots are $\lambda=\frac{4 \pm \sqrt{16-4}}{2}=2 \pm \sqrt{3}$,

Solution

To find the solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$ where $y^{\prime}(0)=y(0)=0$, we will first find the general solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$. To do that, we will first find the general solution of $y^{\prime \prime}-4 y^{\prime}+y=0$. The characteristic polynomial of $y^{\prime \prime}-4 y^{\prime}+y=0$ is $\lambda^{2}-4 \lambda+1$, and the characteristic roots are $\lambda=\frac{4 \pm \sqrt{16-4}}{2}=2 \pm \sqrt{3}$, so the general solution of $y^{\prime \prime}-4 y^{\prime}+y=0$ is $y(t)=c_{1} e^{(2+\sqrt{3}) t}+c_{2} e^{(2-\sqrt{3}) t}$.

Solution

To find the solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$ where $y^{\prime}(0)=y(0)=0$, we will first find the general solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$. To do that, we will first find the general solution of $y^{\prime \prime}-4 y^{\prime}+y=0$. The characteristic polynomial of $y^{\prime \prime}-4 y^{\prime}+y=0$ is $\lambda^{2}-4 \lambda+1$, and the characteristic roots are $\lambda=\frac{4 \pm \sqrt{16-4}}{2}=2 \pm \sqrt{3}$, so the general solution of $y^{\prime \prime}-4 y^{\prime}+y=0$ is $y(t)=c_{1} e^{(2+\sqrt{3}) t}+c_{2} e^{(2-\sqrt{3}) t}$. It follows that $y(t)=c_{1} e^{(2+\sqrt{3}) t}+c_{2} e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+\frac{1}{2} e^{t}+t+4$ is the general solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$.

Solution

If $y(t)=c_{1} e^{(2+\sqrt{3}) t}+c_{2} e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+\frac{1}{2} e^{t}+t+4$, then $y^{\prime}(t)=c_{1}(2+\sqrt{3}) e^{(2+\sqrt{3}) t}+c_{2}(2-\sqrt{3}) e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+1$,

Solution

If $y(t)=c_{1} e^{(2+\sqrt{3}) t}+c_{2} e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+\frac{1}{2} e^{t}+t+4$, then $y^{\prime}(t)=c_{1}(2+\sqrt{3}) e^{(2+\sqrt{3}) t}+c_{2}(2-\sqrt{3}) e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+1$, $y(0)=c_{1}+c_{2}+\frac{9}{2}$,

Solution

If $y(t)=c_{1} e^{(2+\sqrt{3}) t}+c_{2} e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+\frac{1}{2} e^{t}+t+4$, then $y^{\prime}(t)=c_{1}(2+\sqrt{3}) e^{(2+\sqrt{3}) t}+c_{2}(2-\sqrt{3}) e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+1$, $y(0)=c_{1}+c_{2}+\frac{9}{2}$, and $y^{\prime}(0)=c_{1}(2+\sqrt{3})+c_{2}(2-\sqrt{3})+1$,

Solution

If $y(t)=c_{1} e^{(2+\sqrt{3}) t}+c_{2} e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+\frac{1}{2} e^{t}+t+4$, then $y^{\prime}(t)=c_{1}(2+\sqrt{3}) e^{(2+\sqrt{3}) t}+c_{2}(2-\sqrt{3}) e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+1$, $y(0)=c_{1}+c_{2}+\frac{9}{2}$, and $y^{\prime}(0)=c_{1}(2+\sqrt{3})+c_{2}(2-\sqrt{3})+1$, so $y^{\prime}(0)=y(0)=0$ if and only if $c_{1}+c_{2}=-\frac{9}{2}$ and $c_{1}(2+\sqrt{3})+c_{2}(2-\sqrt{3})=-1$.

Solution

If $y(t)=c_{1} e^{(2+\sqrt{3}) t}+c_{2} e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+\frac{1}{2} e^{t}+t+4$, then $y^{\prime}(t)=c_{1}(2+\sqrt{3}) e^{(2+\sqrt{3}) t}+c_{2}(2-\sqrt{3}) e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+1$, $y(0)=c_{1}+c_{2}+\frac{9}{2}$, and $y^{\prime}(0)=c_{1}(2+\sqrt{3})+c_{2}(2-\sqrt{3})+1$, so $y^{\prime}(0)=y(0)=0$ if and only if $c_{1}+c_{2}=-\frac{9}{2}$ and
$c_{1}(2+\sqrt{3})+c_{2}(2-\sqrt{3})=-1$.
The solution of the linear system

$$
\begin{gathered}
c_{1}+c_{2}=-\frac{9}{2} \\
c_{1}(2+\sqrt{3})+c_{2}(2-\sqrt{3})=-1
\end{gathered}
$$

is $C_{1}=\frac{4}{\sqrt{3}}-\frac{9}{4}$ and $C_{2}=\frac{-4}{\sqrt{3}}-\frac{9}{4}$.

Solution

Thus
$y(t)=\left(\frac{4}{\sqrt{3}}-\frac{9}{4}\right) e^{(2+\sqrt{3}) t}+\left(\frac{-4}{\sqrt{3}}-\frac{9}{4}\right) e^{(2-\sqrt{3}) t}+\frac{-1}{2} t e^{t}+\frac{1}{2} e^{t}+t+4$
is a solution of $y^{\prime \prime}-4 y^{\prime}+y=t e^{t}+t$ which satisfies that $y^{\prime}(0)=y(0)=0$.

Forced harmonic motion

We will now apply the technique of undetermined coefficients to analyze harmonic motion with an external sinusoidal forcing term.

Forced harmonic motion

We will now apply the technique of undetermined coefficients to analyze harmonic motion with an external sinusoidal forcing term.
The equation we need to solve is

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)
$$

Forced undamped harmonic motion

Let us first assume that $c=0$.

Forced undamped harmonic motion

Let us first assume that $c=0$. Then the equation becomes

$$
y^{\prime \prime}+\omega_{0}^{2} y=A \cos (\omega t)
$$

0

Forced undamped harmonic motion

Let us first assume that $c=0$. Then the equation becomes

$$
y^{\prime \prime}+\omega_{0}^{2} y=A \cos (\omega t)
$$

The general solution to the homogeneous solution $y^{\prime \prime}+\omega_{0}^{2} y=0$ is $y_{h}=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)$.

Forced undamped harmonic motion

Let us first assume that $c=0$. Then the equation becomes

$$
y^{\prime \prime}+\omega_{0}^{2} y=A \cos (\omega t)
$$

The general solution to the homogeneous solution $y^{\prime \prime}+\omega_{0}^{2} y=0$ is $y_{n}=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)$. Let us find a particular solution by using the method of undetermined coefficients.

Forced undamped harmonic motion

Let us first assume that $c=0$. Then the equation becomes

$$
y^{\prime \prime}+\omega_{0}^{2} y=A \cos (\omega t)
$$

The general solution to the homogeneous solution $y^{\prime \prime}+\omega_{0}^{2} y=0$ is $y_{n}=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)$. Let us find a particular solution by using the method of undetermined coefficients. We will first look at the case where $\omega \neq \omega_{0}$, and then at the case where $\omega=\omega_{0}$.

The case $\omega \neq \omega_{0}$

The case $\omega \neq \omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ of the form $y_{p}=a \cos (\omega t)+b \sin (\omega t)$.

The case $\omega \neq \omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ of the form $y_{p}=a \cos (\omega t)+b \sin (\omega t)$.

$$
y_{p}^{\prime \prime}(t)+\omega_{0}^{2} y_{p}(t)
$$

The case $\omega \neq \omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ of the form $y_{p}=a \cos (\omega t)+b \sin (\omega t)$.

$$
\begin{aligned}
y_{p}^{\prime \prime}(t)+\omega_{0}^{2} y_{p}(t)= & -a \omega^{2} \cos (\omega t)-b \omega^{2} \sin (\omega t) \\
& +a \omega_{0}^{2} \cos (\omega t)+b \omega_{0}^{2} \sin (\omega t)
\end{aligned}
$$

0

The case $\omega \neq \omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ of the form $y_{p}=a \cos (\omega t)+b \sin (\omega t)$.

$$
\begin{aligned}
y_{p}^{\prime \prime}(t)+\omega_{0}^{2} y_{p}(t)= & -a \omega^{2} \cos (\omega t)-b \omega^{2} \sin (\omega t) \\
& +a \omega_{0}^{2} \cos (\omega t)+b \omega_{0}^{2} \sin (\omega t) \\
= & a\left(\omega_{0}^{2}-\omega^{2}\right) \cos (\omega t)+b\left(\omega_{0}^{2}-\omega^{2}\right) \sin (\omega t)
\end{aligned}
$$

The case $\omega \neq \omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ of the form $y_{p}=a \cos (\omega t)+b \sin (\omega t)$.

$$
\begin{aligned}
y_{p}^{\prime \prime}(t)+\omega_{0}^{2} y_{p}(t)= & -a \omega^{2} \cos (\omega t)-b \omega^{2} \sin (\omega t) \\
& +a \omega_{0}^{2} \cos (\omega t)+b \omega_{0}^{2} \sin (\omega t) \\
= & a\left(\omega_{0}^{2}-\omega^{2}\right) \cos (\omega t)+b\left(\omega_{0}^{2}-\omega^{2}\right) \sin (\omega t)
\end{aligned}
$$

so y_{p} is a particular solution if and only if $a=\frac{A}{\omega_{0}^{2}-\omega^{2}}$ and $b=0$.

The case $\omega \neq \omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ of the form $y_{p}=a \cos (\omega t)+b \sin (\omega t)$.

$$
\begin{aligned}
y_{p}^{\prime \prime}(t)+\omega_{0}^{2} y_{p}(t)= & -a \omega^{2} \cos (\omega t)-b \omega^{2} \sin (\omega t) \\
& +a \omega_{0}^{2} \cos (\omega t)+b \omega_{0}^{2} \sin (\omega t) \\
= & a\left(\omega_{0}^{2}-\omega^{2}\right) \cos (\omega t)+b\left(\omega_{0}^{2}-\omega^{2}\right) \sin (\omega t)
\end{aligned}
$$

so y_{p} is a particular solution if and only if $a=\frac{A}{\omega_{0}^{2}-\omega^{2}}$ and $b=0$. Thus $y_{p}(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)$ is a particular solution,

The case $\omega \neq \omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ of the form $y_{p}=a \cos (\omega t)+b \sin (\omega t)$.

$$
\begin{aligned}
y_{p}^{\prime \prime}(t)+\omega_{0}^{2} y_{p}(t)= & -a \omega^{2} \cos (\omega t)-b \omega^{2} \sin (\omega t) \\
& +a \omega_{0}^{2} \cos (\omega t)+b \omega_{0}^{2} \sin (\omega t) \\
= & a\left(\omega_{0}^{2}-\omega^{2}\right) \cos (\omega t)+b\left(\omega_{0}^{2}-\omega^{2}\right) \sin (\omega t)
\end{aligned}
$$

so y_{p} is a particular solution if and only if $a=\frac{A}{\omega_{0}^{2}-\omega^{2}}$ and $b=0$. Thus $y_{p}(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)$ is a particular solution, and the general solution is
$y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{A}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)$.

The case $\omega \neq \omega_{0}$

The general solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ is $y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{A}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)$.

The case $\omega \neq \omega_{0}$

The general solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ is $y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{A}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)$.
Let us look at the solution where the motion starts at equilibrium.

The case $\omega \neq \omega_{0}$

The general solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ is $y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{A}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)$.
Let us look at the solution where the motion starts at equilibrium. This means that $y(0)=y^{\prime}(0)=0$.

The case $\omega \neq \omega_{0}$

The general solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ is $y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{A}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)$.
Let us look at the solution where the motion starts at equilibrium. This means that $y(0)=y^{\prime}(0)=0$. We then have that $0=y(0)=c_{1}+\frac{A}{\omega_{0}^{2}-\omega^{2}}$ and $0=y^{\prime}(0)=c_{2} \omega_{0}$,

The case $\omega \neq \omega_{0}$

The general solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$ is $y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{A}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)$.
Let us look at the solution where the motion starts at equilibrium. This means that $y(0)=y^{\prime}(0)=0$. We then have that $0=y(0)=c_{1}+\frac{A}{\omega_{0}^{2}-\omega^{2}}$ and $0=y^{\prime}(0)=c_{2} \omega_{0}$, so $y(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)$.

The case $\omega \neq \omega_{0}$

$$
y(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)
$$

The case $\omega \neq \omega_{0}$

Consider the solution $y(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)$.

The case $\omega \neq \omega_{0}$

Consider the solution $y(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)$.
Let $\bar{\omega}=\left(\omega_{0}+\omega\right) / 2$ and $\delta=\left(\omega_{0}-\omega\right) / 2$.

The case $\omega \neq \omega_{0}$

Consider the solution $y(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)$. Let $\bar{\omega}=\left(\omega_{0}+\omega\right) / 2$ and $\delta=\left(\omega_{0}-\omega\right) / 2$. $\bar{\omega}$ is called the mean frequency, and δ is called the half difference.

The case $\omega \neq \omega_{0}$

Consider the solution $y(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)$. Let $\bar{\omega}=\left(\omega_{0}+\omega\right) / 2$ and $\delta=\left(\omega_{0}-\omega\right) / 2$. $\bar{\omega}$ is called the mean frequency, and δ is called the half difference. We then have that

$$
y(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)
$$

The case $\omega \neq \omega_{0}$

Consider the solution $y(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)$. Let $\bar{\omega}=\left(\omega_{0}+\omega\right) / 2$ and $\delta=\left(\omega_{0}-\omega\right) / 2$. $\bar{\omega}$ is called the mean frequency, and δ is called the half difference. We then have that

$$
\begin{aligned}
y(t) & =\frac{A}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right) \\
& =\frac{A}{4 \bar{\omega} \delta}(\cos ((\bar{\omega}-\delta) t)-\cos ((\bar{\omega}+\delta) t))
\end{aligned}
$$

The case $\omega \neq \omega_{0}$

Consider the solution $y(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)$. Let $\bar{\omega}=\left(\omega_{0}+\omega\right) / 2$ and $\delta=\left(\omega_{0}-\omega\right) / 2$. $\bar{\omega}$ is called the mean frequency, and δ is called the half difference. We then have that

$$
\begin{aligned}
y(t) & =\frac{A}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right) \\
& =\frac{A}{4 \bar{\omega} \delta}(\cos ((\bar{\omega}-\delta) t)-\cos ((\bar{\omega}+\delta) t)) \\
& =\frac{A \sin (\delta t)}{2 \bar{\omega} \delta} \sin (\bar{\omega} t) .
\end{aligned}
$$

The case $\omega \neq \omega_{0}$

The case $\omega=\omega_{0}$

The case $\omega=\omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos \left(\omega_{0} t\right)$.

The case $\omega=\omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos \left(\omega_{0} t\right)$. Since $A \cos \left(\omega_{0} t\right)$ is a solution to the homogeneous equation $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0$, we will look for a solution of the form $y_{p}=t\left(a \cos \left(\omega_{0} t\right)+b \sin \left(\omega_{0} t\right)\right)$.

The case $\omega=\omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos \left(\omega_{0} t\right)$. Since $A \cos \left(\omega_{0} t\right)$ is a solution to the homogeneous equation $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0$, we will look for a solution of the form $y_{p}=t\left(a \cos \left(\omega_{0} t\right)+b \sin \left(\omega_{0} t\right)\right)$.

$$
\begin{aligned}
y_{p}^{\prime \prime}(t)+\omega_{0}^{2} y_{p}(t)= & 2 \omega_{0}\left(-a \sin \left(\omega_{0} t\right)+b \cos \left(\omega_{0} t\right)\right) \\
& +t \omega_{0}^{2}\left(-a \cos \left(\omega_{0} t\right)-b \sin \left(\omega_{0} t\right)\right) \\
& +\omega_{0}^{2} t\left(a \cos \left(\omega_{0} t\right)+b \sin \left(\omega_{0} t\right)\right)
\end{aligned}
$$

The case $\omega=\omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos \left(\omega_{0} t\right)$. Since $A \cos \left(\omega_{0} t\right)$ is a solution to the homogeneous equation $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0$, we will look for a solution of the form $y_{p}=t\left(a \cos \left(\omega_{0} t\right)+b \sin \left(\omega_{0} t\right)\right)$.

$$
\begin{aligned}
y_{p}^{\prime \prime}(t)+\omega_{0}^{2} y_{p}(t)= & 2 \omega_{0}\left(-a \sin \left(\omega_{0} t\right)+b \cos \left(\omega_{0} t\right)\right) \\
& +t \omega_{0}^{2}\left(-a \cos \left(\omega_{0} t\right)-b \sin \left(\omega_{0} t\right)\right) \\
& +\omega_{0}^{2} t\left(a \cos \left(\omega_{0} t\right)+b \sin \left(\omega_{0} t\right)\right) \\
= & 2 \omega_{0}\left(-a \sin \left(\omega_{0} t\right)+b \cos \left(\omega_{0} t\right)\right) .
\end{aligned}
$$

The case $\omega=\omega_{0}$

We will look for a solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos \left(\omega_{0} t\right)$. Since $A \cos \left(\omega_{0} t\right)$ is a solution to the homogeneous equation $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0$, we will look for a solution of the form $y_{p}=t\left(a \cos \left(\omega_{0} t\right)+b \sin \left(\omega_{0} t\right)\right)$.

$$
\begin{aligned}
y_{p}^{\prime \prime}(t)+\omega_{0}^{2} y_{p}(t)= & 2 \omega_{0}\left(-a \sin \left(\omega_{0} t\right)+b \cos \left(\omega_{0} t\right)\right) \\
& +t \omega_{0}^{2}\left(-a \cos \left(\omega_{0} t\right)-b \sin \left(\omega_{0} t\right)\right) \\
& +\omega_{0}^{2} t\left(a \cos \left(\omega_{0} t\right)+b \sin \left(\omega_{0} t\right)\right) \\
= & 2 \omega_{0}\left(-a \sin \left(\omega_{0} t\right)+b \cos \left(\omega_{0} t\right)\right) .
\end{aligned}
$$

So y_{p} is a particular solution if and only if $a=0$ and $b=\frac{A}{2 \omega_{0}}$.

The case $\omega=\omega_{0}$

Thus $y_{p}(t)=\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$ is a particular solution,

The case $\omega=\omega_{0}$

Thus $y_{p}(t)=\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$ is a particular solution, and the general solution is $y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$.

The case $\omega=\omega_{0}$

Thus $y_{p}(t)=\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$ is a particular solution, and the general solution is $y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$. Let us look at the solution where the motion starts at equilibrium.

The case $\omega=\omega_{0}$

Thus $y_{p}(t)=\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$ is a particular solution, and the general solution is $y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$. Let us look at the solution where the motion starts at equilibrium. This means that $y(0)=y^{\prime}(0)=0$.

The case $\omega=\omega_{0}$

Thus $y_{p}(t)=\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$ is a particular solution, and the general solution is $y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$.
Let us look at the solution where the motion starts at equilibrium. This means that $y(0)=y^{\prime}(0)=0$. We then have that $0=y(0)=c_{1}$ and $0=y^{\prime}(0)=c_{2} \omega_{0}$,

The case $\omega=\omega_{0}$

Thus $y_{p}(t)=\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$ is a particular solution, and the general solution is $y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)+\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$.
Let us look at the solution where the motion starts at equilibrium. This means that $y(0)=y^{\prime}(0)=0$. We then have that $0=y(0)=c_{1}$ and $0=y^{\prime}(0)=c_{2} \omega_{0}$, so $y(t)=\frac{A}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)$.

The case $\omega=\omega_{0}$

The forced damped harmonic motion

The forced damped harmonic motion

If we add a damping term to the system we get the equation

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t) .
$$

0

The forced damped harmonic motion

If we add a damping term to the system we get the equation

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t) .
$$

Let us assume that $c<\omega_{0}$.

The forced damped harmonic motion

If we add a damping term to the system we get the equation

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t) .
$$

Let us assume that $c<\omega_{0}$. Then the general solution to the homogeneous equation $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0$ is
$y_{h}(t)=e^{-c t}\left(c_{1} \cos (\eta t)+c_{2} \sin (\eta t)\right)$ where $\eta=\sqrt{\omega_{0}^{2}-c^{2}}$.

The forced damped harmonic motion

If we add a damping term to the system we get the equation

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)
$$

Let us assume that $c<\omega_{0}$. Then the general solution to the homogeneous equation $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0$ is $y_{h}(t)=e^{-c t}\left(c_{1} \cos (\eta t)+c_{2} \sin (\eta t)\right)$ where $\eta=\sqrt{\omega_{0}^{2}-c^{2}}$. To find a particular solution we will use the technique of undetermined coefficients and the complex method.

The forced damped harmonic motion

If we add a damping term to the system we get the equation

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)
$$

Let us assume that $c<\omega_{0}$. Then the general solution to the homogeneous equation $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0$ is $y_{h}(t)=e^{-c t}\left(c_{1} \cos (\eta t)+c_{2} \sin (\eta t)\right)$ where $\eta=\sqrt{\omega_{0}^{2}-c^{2}}$. To find a particular solution we will use the technique of undetermined coefficients and the complex method. This means that we will be looking for a solution $z(t)=a e^{i \omega t}$ to the equation $z^{\prime \prime}+2 c z^{\prime}+\omega_{0}^{2} z=A e^{i \omega t}$.

The forced damped harmonic motion

If $z(t)=a e^{i \omega t}$,

The forced damped harmonic motion

If $z(t)=a e^{i \omega t}$, then
$z^{\prime \prime}(t)+2 c z(t)^{\prime}+\omega_{0}^{2} z(t)=$

The forced damped harmonic motion

If $z(t)=a e^{i \omega t}$, then
$z^{\prime \prime}(t)+2 c z(t)^{\prime}+\omega_{0}^{2} z(t)=\left((i \omega)^{2}+2 c(i \omega)+\omega_{0}^{2}\right) a e^{i \omega t}$

0

The forced damped harmonic motion

If $z(t)=a e^{i \omega t}$, then
$z^{\prime \prime}(t)+2 c z(t)^{\prime}+\omega_{0}^{2} z(t)=\left((i \omega)^{2}+2 c(i \omega)+\omega_{0}^{2}\right) a e^{i \omega t}=P(i \omega) a e^{i \omega t}$ where $P(\lambda)=\lambda^{2}+2 c \lambda+\omega_{0}^{2}$ is the characteristic polynomial.

The forced damped harmonic motion

If $z(t)=a e^{i \omega t}$, then
$z^{\prime \prime}(t)+2 c z(t)^{\prime}+\omega_{0}^{2} z(t)=\left((i \omega)^{2}+2 c(i \omega)+\omega_{0}^{2}\right) a e^{i \omega t}=P(i \omega) a e^{i \omega t}$ where $P(\lambda)=\lambda^{2}+2 c \lambda+\omega_{0}^{2}$ is the characteristic polynomial. Thus $z(t)=\frac{A}{P(i \omega)} e^{i \omega t}=H(i \omega) A e^{i \omega t}$ is a solution to
$z^{\prime \prime}+2 c z^{\prime}+\omega_{0}^{2} z=A e^{i \omega t}$ where $H(i \omega)=\frac{1}{P(i \omega)}$.

The forced damped harmonic motion

If $z(t)=a e^{i \omega t}$, then
$z^{\prime \prime}(t)+2 c z(t)^{\prime}+\omega_{0}^{2} z(t)=\left((i \omega)^{2}+2 c(i \omega)+\omega_{0}^{2}\right) a e^{i \omega t}=P(i \omega) a e^{i \omega t}$ where $P(\lambda)=\lambda^{2}+2 c \lambda+\omega_{0}^{2}$ is the characteristic polynomial. Thus $z(t)=\frac{A}{P(i \omega)} e^{i \omega t}=H(i \omega) A e^{i \omega t}$ is a solution to
$z^{\prime \prime}+2 c z^{\prime}+\omega_{0}^{2} z=A e^{i \omega t}$ where $H(i \omega)=\frac{1}{P(i \omega)}$. The function $H(i \omega)$ is called the transfer function.

The forced damped harmonic motion

If $z(t)=a e^{i \omega t}$, then
$z^{\prime \prime}(t)+2 c z(t)^{\prime}+\omega_{0}^{2} z(t)=\left((i \omega)^{2}+2 c(i \omega)+\omega_{0}^{2}\right) a e^{i \omega t}=P(i \omega) a e^{i \omega t}$ where $P(\lambda)=\lambda^{2}+2 c \lambda+\omega_{0}^{2}$ is the characteristic polynomial. Thus $z(t)=\frac{A}{P(i \omega)} e^{i \omega t}=H(i \omega) A e^{i \omega t}$ is a solution to
$z^{\prime \prime}+2 c z^{\prime}+\omega_{0}^{2} z=A e^{i \omega t}$ where $H(i \omega)=\frac{1}{P(i \omega)}$. The function $H(i \omega)$ is called the transfer function.
Let $R=|P(i \omega)|$ and $\phi=\operatorname{Arg}(P(i \omega))$.

The forced damped harmonic motion

If $z(t)=a e^{i \omega t}$, then
$z^{\prime \prime}(t)+2 c z(t)^{\prime}+\omega_{0}^{2} z(t)=\left((i \omega)^{2}+2 c(i \omega)+\omega_{0}^{2}\right) a e^{i \omega t}=P(i \omega) a e^{i \omega t}$ where $P(\lambda)=\lambda^{2}+2 c \lambda+\omega_{0}^{2}$ is the characteristic polynomial. Thus $z(t)=\frac{A}{P(i \omega)} e^{i \omega t}=H(i \omega) A e^{i \omega t}$ is a solution to
$z^{\prime \prime}+2 c z^{\prime}+\omega_{0}^{2} z=A e^{i \omega t}$ where $H(i \omega)=\frac{1}{P(i \omega)}$. The function $H(i \omega)$ is called the transfer function.
Let $R=|P(i \omega)|$ and $\phi=\operatorname{Arg}(P(i \omega))$. Then $P(i \omega)=R e^{i \phi}$ and $H(i \omega)=\frac{1}{R} e^{-i \phi}$.

The forced damped harmonic motion

$$
\text { So } z(t)=H(i \omega) A e^{i \omega t}=\frac{1}{R} e^{-i \phi} A e^{i \omega t}=\frac{A}{R} e^{i(\omega t-\phi)}
$$

The forced damped harmonic motion

So $z(t)=H(i \omega) A e^{i \omega t}=\frac{1}{R} e^{-i \phi} A e^{i \omega t}=\frac{A}{R} e^{i(\omega t-\phi)}$, and
$y_{p}(t)=\operatorname{Re}(z(t))=\frac{A}{R} \cos (\omega t-\phi)$ is a particular solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$.

The forced damped harmonic motion

So $z(t)=H(i \omega) A e^{i \omega t}=\frac{1}{R} e^{-i \phi} A e^{i \omega t}=\frac{A}{R} e^{i(\omega t-\phi)}$, and
$y_{p}(t)=\operatorname{Re}(z(t))=\frac{A}{R} \cos (\omega t-\phi)$ is a particular solution to $y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)$.
The general solution to

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)
$$

is $y(t)=e^{-c t}\left(c_{1} \cos (\eta t)+c_{2} \sin (\eta t)\right)+\frac{A}{R} \cos (\omega t-\phi)$.

The forced damped harmonic motion

The forced damped harmonic motion

Steady-state and transient terms

The general solution to

$$
\begin{gathered}
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t) \\
\text { is } y(t)=e^{-c t}\left(c_{1} \cos (\eta t)+c_{2} \sin (\eta t)\right)+\frac{A}{R} \cos (\omega t-\phi) .
\end{gathered}
$$

0

Steady-state and transient terms

The general solution to

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=A \cos (\omega t)
$$

is $y(t)=e^{-c t}\left(c_{1} \cos (\eta t)+c_{2} \sin (\eta t)\right)+\frac{A}{R} \cos (\omega t-\phi)$.
The term $e^{-c t}\left(c_{1} \cos (\eta t)+c_{2} \sin (\eta t)\right)$ is called the transition term, and the term $\frac{A}{R} \cos (\omega t-\phi)$ is called the steady-state term.

Variation of parameters

We are looking for a particular solution to an inhomogeneous second-order linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

0

Variation of parameters

We are looking for a particular solution to an inhomogeneous second-order linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

Suppose that y_{1} and y_{2} form a fundamental set of solutions to the homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.

Variation of parameters

We are looking for a particular solution to an inhomogeneous second-order linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

Suppose that y_{1} and y_{2} form a fundamental set of solutions to the homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. The idea behind the variation of parameters method is to look for a particular solution of the form $y(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$ where v_{1} and v_{2} are unknown functions.

Example

Let us find a particular solution to the equation

$$
y^{\prime \prime}+y=\tan (t)
$$

Example

Let us find a particular solution to the equation

$$
y^{\prime \prime}+y=\tan (t)
$$

The functions $y_{1}(t)=\cos (t)$ and $y_{2}(t)=\sin (t)$ form a fundamental set of solutions of the equation $y^{\prime \prime}+y=0$,

Example

Let us find a particular solution to the equation

$$
y^{\prime \prime}+y=\tan (t)
$$

The functions $y_{1}(t)=\cos (t)$ and $y_{2}(t)=\sin (t)$ form a fundamental set of solutions of the equation $y^{\prime \prime}+y=0$, so we let
$y(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)=v_{1}(t) \cos (t)+v_{2}(t) \sin (t)$.

Example

Let us find a particular solution to the equation

$$
y^{\prime \prime}+y=\tan (t)
$$

The functions $y_{1}(t)=\cos (t)$ and $y_{2}(t)=\sin (t)$ form a fundamental set of solutions of the equation $y^{\prime \prime}+y=0$, so we let
$y(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)=v_{1}(t) \cos (t)+v_{2}(t) \sin (t)$.
Then
$y^{\prime}(t)=v_{1}^{\prime}(t) \cos (t)-v_{1}(t) \sin (t)+v_{2}^{\prime}(t) \sin (t)+v_{2}(t) \cos (t)$.

Example

Let us find a particular solution to the equation

$$
y^{\prime \prime}+y=\tan (t)
$$

The functions $y_{1}(t)=\cos (t)$ and $y_{2}(t)=\sin (t)$ form a fundamental set of solutions of the equation $y^{\prime \prime}+y=0$, so we let
$y(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)=v_{1}(t) \cos (t)+v_{2}(t) \sin (t)$.
Then
$y^{\prime}(t)=v_{1}^{\prime}(t) \cos (t)-v_{1}(t) \sin (t)+v_{2}^{\prime}(t) \sin (t)+v_{2}(t) \cos (t)$. Let us assume that $v_{1}^{\prime}(t) \cos (t)+v_{2}^{\prime}(t) \sin (t)=0$.

Example

Let us find a particular solution to the equation

$$
y^{\prime \prime}+y=\tan (t)
$$

The functions $y_{1}(t)=\cos (t)$ and $y_{2}(t)=\sin (t)$ form a fundamental set of solutions of the equation $y^{\prime \prime}+y=0$, so we let
$y(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)=v_{1}(t) \cos (t)+v_{2}(t) \sin (t)$.
Then
$y^{\prime}(t)=v_{1}^{\prime}(t) \cos (t)-v_{1}(t) \sin (t)+v_{2}^{\prime}(t) \sin (t)+v_{2}(t) \cos (t)$. Let us assume that $v_{1}^{\prime}(t) \cos (t)+v_{2}^{\prime}(t) \sin (t)=0$. Then $y^{\prime}(t)=-v_{1}(t) \sin (t)+v_{2}(t) \cos (t)$,

Example

and

$$
\begin{aligned}
y^{\prime \prime}(t)+y(t)= & -v_{1}^{\prime}(t) \sin (t)-v_{1}(t) \cos (t) \\
& +v_{2}^{\prime}(t) \cos (t)-v_{2}(t) \sin (t) \\
& +v_{1}(t) \cos (t)+v_{2}(t) \sin (t) \\
= & -v_{1}^{\prime}(t) \sin (t)+v_{2}^{\prime}(t) \cos (t)
\end{aligned}
$$

Example

and

$$
\begin{aligned}
y^{\prime \prime}(t)+y(t)= & -v_{1}^{\prime}(t) \sin (t)-v_{1}(t) \cos (t) \\
& +v_{2}^{\prime}(t) \cos (t)-v_{2}(t) \sin (t) \\
& +v_{1}(t) \cos (t)+v_{2}(t) \sin (t) \\
= & -v_{1}^{\prime}(t) \sin (t)+v_{2}^{\prime}(t) \cos (t)
\end{aligned}
$$

So $y(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$ is a solution to $y^{\prime \prime}+y=\tan (t)$ if $v_{1}^{\prime}(t) \cos (t)+v_{2}^{\prime}(t) \sin (t)=0$ and
$-v_{1}(t) \sin (t)+v_{2}(t) \cos (t)=\tan (t)$.

Norwegian University of
Science and Technology

Example

The solution of the linear system

$$
\begin{aligned}
v_{1}^{\prime}(t) \cos (t)+v_{2}^{\prime}(t) \sin (t) & =0 \\
-v_{1}(t) \sin (t)+v_{2}(t) \cos (t) & =\tan (t)
\end{aligned}
$$

is

$$
\begin{aligned}
& v_{1}^{\prime}(t)=\frac{-\tan (t) \sin (t)}{\cos ^{2}(t)+\sin ^{2}(t)}=-\tan (t) \sin (t)=\frac{-\sin ^{2}(t)}{\cos (t)} \\
& v_{2}^{\prime}(t)=\frac{\tan (t) \cos (t)}{\cos ^{2}(t)+\sin ^{2}(t)}=\tan (t) \cos (t)=\sin (t)
\end{aligned}
$$

Example

So if we let

$$
\begin{aligned}
v_{1}(t) & =\int \frac{-\sin ^{2}(t)}{\cos (t)} d t=\int \frac{\cos ^{2}(t)-1}{\cos (t)} d t \\
& =\int \cos (t)-\frac{1}{\cos (t)}=\sin (t)-\ln |\sec (t)+\tan (t)|
\end{aligned}
$$

Example

So if we let

$$
\begin{aligned}
v_{1}(t) & =\int \frac{-\sin ^{2}(t)}{\cos (t)} d t=\int \frac{\cos ^{2}(t)-1}{\cos (t)} d t \\
& =\int \cos (t)-\frac{1}{\cos (t)}=\sin (t)-\ln |\sec (t)+\tan (t)|
\end{aligned}
$$

and

$$
v_{2}(t)=\int \sin (t) d t=-\cos (t)
$$

Example

then

$$
\begin{aligned}
y(t) & =v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t) \\
& =(\sin (t)-\ln |\sec (t)+\tan (t)|) \cos (t)-\cos (t) \sin (t)
\end{aligned}
$$

is a particular solution to the equation $y^{\prime \prime}+y=\tan (t)$.

Variation of parameters

0NTNU
Norwegian University of
Science and Technology

Variation of parameters

To find a particular solution to $y^{\prime \prime}+p y^{\prime}+q y=f$ using the method of variation of parameters we follow these steps.

Variation of parameters

To find a particular solution to $y^{\prime \prime}+p y^{\prime}+q y=f$ using the method of variation of parameters we follow these steps.
(1) Find a fundamental set of solutions y_{1}, y_{2} to the homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=0$.

Variation of parameters

To find a particular solution to $y^{\prime \prime}+p y^{\prime}+q y=f$ using the method of variation of parameters we follow these steps.
(0) Find a fundamental set of solutions y_{1}, y_{2} to the homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
(2) Let $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ where v_{1} and v_{2} are functions to be determined.

Variation of parameters

To find a particular solution to $y^{\prime \prime}+p y^{\prime}+q y=f$ using the method of variation of parameters we follow these steps.
(0) Find a fundamental set of solutions y_{1}, y_{2} to the homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
(2) Let $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ where v_{1} and v_{2} are functions to be determined.
(3) Find v_{1}^{\prime} and v_{2}^{\prime} such that

$$
\begin{aligned}
& v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \\
& v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=f .
\end{aligned}
$$

Variation of parameters

To find a particular solution to $y^{\prime \prime}+p y^{\prime}+q y=f$ using the method of variation of parameters we follow these steps.
(0) Find a fundamental set of solutions y_{1}, y_{2} to the homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
(2) Let $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ where v_{1} and v_{2} are functions to be determined.
(3) Find v_{1}^{\prime} and v_{2}^{\prime} such that

$$
\begin{aligned}
& v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \\
& v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=f .
\end{aligned}
$$

(9) Let $v_{1}(t)=\int v_{1}^{\prime}(t) d t$ and $v_{2}(t)=\int v_{2}^{\prime}(t) d t$.

Variation of parameters

To find a particular solution to $y^{\prime \prime}+p y^{\prime}+q y=f$ using the method of variation of parameters we follow these steps.
(0) Find a fundamental set of solutions y_{1}, y_{2} to the homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
(2) Let $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ where v_{1} and v_{2} are functions to be, determined.
(3) Find v_{1}^{\prime} and v_{2}^{\prime} such that

$$
\begin{aligned}
& v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \\
& v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=f .
\end{aligned}
$$

(3) Let $v_{1}(t)=\int v_{1}^{\prime}(t) d t$ and $v_{2}(t)=\int v_{2}^{\prime}(t) d t$.
(5) Substitute v_{1} and v_{2} into $y_{p}=v_{1} y_{1}+v_{2} y_{2}$.

Variation of parameters

0
NTNU
Norwegian University of
Science and Technology

Variation of parameters

If

$$
v_{1}(t)=\int \frac{-y_{2}(t) f(t)}{W(t)} d t
$$

and

$$
v_{2}(t)=\int \frac{y_{1}(t) f(t)}{W(t)} d t
$$

where $W(t)$ is the Wronskian of y_{1} and y_{2},

0

Variation of parameters

If

$$
v_{1}(t)=\int \frac{-y_{2}(t) f(t)}{W(t)} d t
$$

and

$$
v_{2}(t)=\int \frac{y_{1}(t) f(t)}{W(t)} d t
$$

where $W(t)$ is the Wronskian of y_{1} and y_{2}, then

$$
y(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)
$$

is a solution of $y^{\prime \prime}+p y^{\prime}+q y=f$.

Problem 2 August 2012

Find the solution of $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$ for $x>0$ which satisfies $y(1)=y^{\prime}(1)=0$.

Solution

Solution

We will us variation of parameters to find a particular solution of $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$, so we first have to find a fundamental set of solutions to $y^{\prime \prime}-2 y+y=0$.

Solution

We will us variation of parameters to find a particular solution of $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$, so we first have to find a fundamental set of solutions to $y^{\prime \prime}-2 y+y=0$. The characteristic polynomial of $y^{\prime \prime}-2 y+y=0$ is $\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$,

Solution

We will us variation of parameters to find a particular solution of $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$, so we first have to find a fundamental set of solutions to $y^{\prime \prime}-2 y+y=0$. The characteristic polynomial of $y^{\prime \prime}-2 y+y=0$ is $\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$, so $y_{1}(x)=e^{x}$ and $y_{2}(x)=x e^{x}$ form a fundamental set of solutions to $y^{\prime \prime}-2 y+y=0$.

Solution

We will us variation of parameters to find a particular solution of $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$, so we first have to find a fundamental set of solutions to $y^{\prime \prime}-2 y+y=0$.
The characteristic polynomial of $y^{\prime \prime}-2 y+y=0$ is
$\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$, so $y_{1}(x)=e^{x}$ and $y_{2}(x)=x e^{x}$ form a fundamental set of solutions to $y^{\prime \prime}-2 y+y=0$.
The Wronskian of y_{1} and y_{2} is

$$
\begin{aligned}
W(x) & =y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x) \\
& =e^{x}\left(e^{x}+x e^{x}\right)-e^{x} x e^{x}=e^{2 x} .
\end{aligned}
$$

Solution

It follows that if we let

$$
v_{1}(x)=\int \frac{-y_{2}(x) f(x)}{W(x)} d x=\int \frac{-x e^{x} e^{x} / x}{e^{2 x}} d x=\int-d x=-x
$$

Solution

It follows that if we let

$$
v_{1}(x)=\int \frac{-y_{2}(x) f(x)}{W(x)} d x=\int \frac{-x e^{x} e^{x} / x}{e^{2 x}} d x=\int-d x=-x
$$

and

$$
v_{2}(x)=\int \frac{y_{1}(x) f(x)}{W(x)} d x=\int \frac{e^{x} e^{x} / x}{e^{2 x}} d x=\int \frac{1}{x} d x=\ln (x)
$$

Solution

It follows that if we let

$$
v_{1}(x)=\int \frac{-y_{2}(x) f(x)}{W(x)} d x=\int \frac{-x e^{x} e^{x} / x}{e^{2 x}} d x=\int-d x=-x
$$

and

$$
v_{2}(x)=\int \frac{y_{1}(x) f(x)}{W(x)} d x=\int \frac{e^{x} e^{x} / x}{e^{2 x}} d x=\int \frac{1}{x} d x=\ln (x)
$$

then

$$
y(x)=v_{1}(x) y_{1}(x)+v_{2}(x) y_{2}(x)=-x e^{x}+x e^{x} \ln (x)
$$

is a particular solution of $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$.

Solution

It follows that the general solution of $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$ is

$$
y(x)=c_{1} e^{x}+c_{2} x e^{x}-x e^{x}+x e^{x} \ln (x) .
$$

0

Solution

It follows that the general solution of $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$ is

$$
y(x)=c_{1} e^{x}+c_{2} x e^{x}-x e^{x}+x e^{x} \ln (x)
$$

If

$$
\begin{aligned}
y(x) & =c_{1} e^{x}+c_{2} x e^{x}-x e^{x}+x e^{x} \ln (x) \\
& =c_{1} e^{x}+\left(c_{2}-1+\ln (x)\right) x e^{x}
\end{aligned}
$$

then

$$
\begin{aligned}
y^{\prime}(x)= & c_{1} e^{x}+\frac{1}{x} x e^{x}+\left(c_{2}-1+\ln (x)\right) e^{x} \\
& +\left(c_{2}-1+\ln (x)\right) x e^{x}
\end{aligned}
$$

Solution

$$
y(1)=c_{1} e+\left(c_{2}-1\right) e=\left(c_{1}+c_{2}-1\right) e
$$

and

$$
y^{\prime}(1)=c_{1} e+e+\left(c_{2}-1\right) e+\left(c_{2}-1\right) e=\left(c_{1}+2 c_{2}-1\right) e,
$$

Solution

$$
y(1)=c_{1} e+\left(c_{2}-1\right) e=\left(c_{1}+c_{2}-1\right) e
$$

and

$$
y^{\prime}(1)=c_{1} e+e+\left(c_{2}-1\right) e+\left(c_{2}-1\right) e=\left(c_{1}+2 c_{2}-1\right) e,
$$

so $y(x)=c_{1} e^{x}+\left(c_{2}-1+\ln (x)\right) x e^{x}$ satisfies
$y(1)=y^{\prime}(1)=0$ if and only if $c_{1}+c_{2}=1$ and $c_{1}+2 c_{2}=1$.

Solution

$$
y(1)=c_{1} e+\left(c_{2}-1\right) e=\left(c_{1}+c_{2}-1\right) e
$$

and

$$
y^{\prime}(1)=c_{1} e+e+\left(c_{2}-1\right) e+\left(c_{2}-1\right) e=\left(c_{1}+2 c_{2}-1\right) e,
$$

so $y(x)=c_{1} e^{x}+\left(c_{2}-1+\ln (x)\right) x e^{x}$ satisfies
$y(1)=y^{\prime}(1)=0$ if and only if $c_{1}+c_{2}=1$ and $c_{1}+2 c_{2}=1$.
The solution of the linear system

$$
\begin{aligned}
c_{1}+c_{2} & =1 \\
c_{1}+2 c_{2} & =1
\end{aligned}
$$

is $c_{1}=1$ and $c_{2}=0$.

Solution

So $y(x)=e^{x}-x e^{x}+\ln (x) x e^{x}$ is a solution of $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$ on $(0, \infty)$ which satisfies $y(1)=y^{\prime}(1)=0$.

Problem 2 December 2010

(1) The motion of a mechanical system is described by the differential equation

$$
y^{\prime \prime}+6 y^{\prime}+18 y=0
$$

Determine whether the motion is under-damped, is over-damped or is critically damped. Find a particular solution $y(t)$ that satisfies the initial conditions $y(0)=0$, $y^{\prime}(0)=0.6$.
(2) Find the steady-state solution of the equation

$$
y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t
$$

Solution

Solution

The characteristic polynomial of $y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $\lambda^{2}+6 \lambda+18$,

Solution

The characteristic polynomial of $y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $\lambda^{2}+6 \lambda+18$, and the characteristic roots are

$$
\lambda=\frac{-6 \pm \sqrt{36-72}}{2}=-3 \pm 3 i
$$

0

Solution

The characteristic polynomial of $y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $\lambda^{2}+6 \lambda+18$, and the characteristic roots are
$\lambda=\frac{-6 \pm \sqrt{36-72}}{2}=-3 \pm 3 i$. It follows that the system is under-damped and that the general solution of $y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}$.

Solution

The characteristic polynomial of $y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $\lambda^{2}+6 \lambda+18$, and the characteristic roots are
$\lambda=\frac{-6 \pm \sqrt{36-72}}{2}=-3 \pm 3 i$. It follows that the system is under-damped and that the general solution of $y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}$.
If $y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}$, then $y(0)=c_{1}+c_{2}$,

Solution

The characteristic polynomial of $y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $\lambda^{2}+6 \lambda+18$, and the characteristic roots are
$\lambda=\frac{-6 \pm \sqrt{36-72}}{2}=-3 \pm 3 i$. It follows that the system is under-damped and that the general solution of $y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}$. If $y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}$, then $y(0)=c_{1}+c_{2}$, so $y(0)=0$ if and only if $c_{2}=-c_{1}$.

Solution

The characteristic polynomial of $y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $\lambda^{2}+6 \lambda+18$, and the characteristic roots are
$\lambda=\frac{-6 \pm \sqrt{36-72}}{2}=-3 \pm 3 i$. It follows that the system is under-damped and that the general solution of
$y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}$.
If $y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}$, then $y(0)=c_{1}+c_{2}$, so
$y(0)=0$ if and only if $c_{2}=-c_{1}$.
If $y(t)=c_{1}\left(e^{(-3+3 i) t}-e^{(-3-3 i) t}\right)$, then
$y^{\prime}(t)=c_{1}\left((-3+3 i) e^{(-3+3 i) t}-(-3-3 i) e^{(-3-3 i) t}\right)$ and
$y^{\prime}(0)=c_{1}((-3+3 i)-(-3-3 i))=6 c_{1} i$,

Solution

The characteristic polynomial of $y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $\lambda^{2}+6 \lambda+18$, and the characteristic roots are
$\lambda=\frac{-6 \pm \sqrt{36-72}}{2}=-3 \pm 3 i$. It follows that the system is under-damped and that the general solution of
$y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}$.
If $y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}$, then $y(0)=c_{1}+c_{2}$, so
$y(0)=0$ if and only if $c_{2}=-c_{1}$.
If $y(t)=c_{1}\left(e^{(-3+3 i) t}-e^{(-3-3 i) t}\right)$, then
$y^{\prime}(t)=c_{1}\left((-3+3 i) e^{(-3+3 i) t}-(-3-3 i) e^{(-3-3 i) t}\right)$ and
$y^{\prime}(0)=c_{1}((-3+3 i)-(-3-3 i))=6 c_{1} i$, so $y^{\prime}(0)=0.6$ if
and only if $c_{1}=\frac{1}{10 i}$.

Solution

So $y(t)=\frac{1}{10 i}\left(e^{(-3+3 i) t}-e^{(-3-3 i) t}\right)=\frac{1}{5} e^{-3 t} \sin (3 t)$ is a particular solution $y(t)$ that satisfies the initial conditions $y(0)=0, y^{\prime}(0)=0.6$.

Solution

$$
\begin{aligned}
& \text { So } y(t)=\frac{1}{10 i j}\left(e^{(-3+3 i) t}-e^{(-3-3 i) t}\right)=\frac{1}{5} e^{-3 t} \sin (3 t) \text { is a } \\
& \text { particular solution } y(t) \text { that satisfies the initial conditions } \\
& y(0)=0, y^{\prime}(0)=0.6 \text {. } \\
& \text { To find the steady-state solution of the equation } \\
& y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t \text {, we will first find the general } \\
& \text { solution of } y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t \text {. }
\end{aligned}
$$

Solution

So $y(t)=\frac{1}{10 i}\left(e^{(-3+3 i) t}-e^{(-3-3 i) t}\right)=\frac{1}{5} e^{-3 t} \sin (3 t)$ is a particular solution $y(t)$ that satisfies the initial conditions $y(0)=0, y^{\prime}(0)=0.6$.
To find the steady-state solution of the equation $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$, we will first find the general solution of $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$. We have already seen that the general solution of $y^{\prime \prime}+6 y^{\prime}+18 y=0$ is $y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}$, so we just have to find a particular solution of $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$.

Solution

We will use the method of undetermined coefficient to find a particular solution of $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$.

Solution

We will use the method of undetermined coefficient to find a particular solution of $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$. Let $y(t)=A \cos 3 t+B \sin 3 t$.

Solution

We will use the method of undetermined coefficient to find a particular solution of $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$.
Let $y(t)=A \cos 3 t+B \sin 3 t$. Then

$$
\begin{aligned}
y^{\prime \prime}(t)+6 y^{\prime}(t)+18 y(t)= & -9 A \cos 3 t-9 B \sin 3 t \\
& -18 A \sin 3 t+18 B \cos 3 t \\
& +18 A \cos 3 t+18 B \sin 3 t \\
= & (9 A+18 B) \cos 3 t \\
& +(-18 A+9 B) \sin 3 t,
\end{aligned}
$$

Solution

We will use the method of undetermined coefficient to find a particular solution of $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$.
Let $y(t)=A \cos 3 t+B \sin 3 t$. Then

$$
\begin{aligned}
y^{\prime \prime}(t)+6 y^{\prime}(t)+18 y(t)= & -9 A \cos 3 t-9 B \sin 3 t \\
& -18 A \sin 3 t+18 B \cos 3 t \\
& +18 A \cos 3 t+18 B \sin 3 t \\
= & (9 A+18 B) \cos 3 t \\
& +(-18 A+9 B) \sin 3 t,
\end{aligned}
$$

so $y(t)=A \cos 3 t+B \sin 3 t$ is a particular solution of $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$ if and only if $9 A+18 B=45$ and $-18 A+9 B=0$.

Solution

The solution of the linear system

$$
\begin{aligned}
9 A+18 B & =45 \\
-18 A+9 B & =0
\end{aligned}
$$

is $A=1$ and $B=2$,

Solution

The solution of the linear system

$$
\begin{aligned}
9 A+18 B & =45 \\
-18 A+9 B & =0
\end{aligned}
$$

is $A=1$ and $B=2$, so $y(t)=\cos 3 t+2 \sin 3 t$ is a particular solution of $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$.

Solution

The solution of the linear system

$$
\begin{aligned}
9 A+18 B & =45 \\
-18 A+9 B & =0
\end{aligned}
$$

is $A=1$ and $B=2$, so $y(t)=\cos 3 t+2 \sin 3 t$ is a particular solution of $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$.
It follows that the general solution of
$y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$ is

$$
y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}+\cos 3 t+2 \sin 3 t
$$

Solution

The solution of the linear system

$$
\begin{aligned}
9 A+18 B & =45 \\
-18 A+9 B & =0
\end{aligned}
$$

is $A=1$ and $B=2$, so $y(t)=\cos 3 t+2 \sin 3 t$ is a particular solution of $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$.
It follows that the general solution of
$y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$ is

$$
y(t)=c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t}+\cos 3 t+2 \sin 3 t
$$

Since $c_{1} e^{(-3+3 i) t}+c_{2} e^{(-3-3 i) t} \rightarrow 0$ as $t \rightarrow \infty$, it follows that $y(t)=\cos 3 t+2 \sin 3 t$ is the steady-state solution of the equation $y^{\prime \prime}+6 y^{\prime}+18 y=45 \cos 3 t$.

Plan for next week

Plan for next week

Wednesday we shall

- study how to solve systems of linear equations,
- introduce row reduction, echelon forms, pivot positions, the row reduction algorithm, and parametric descriptions of solution sets of systems of linear equations.
Section 1.1-1.2 in "Linear Algebras and Its Applications" (pages 1-23).

Plan for next week

Wednesday we shall

- study how to solve systems of linear equations,
- introduce row reduction, echelon forms, pivot positions, the row reduction algorithm, and parametric descriptions of solution sets of systems of linear equations.
Section 1.1-1.2 in "Linear Algebras and Its Applications" (pages 1-23).
Thursday we shall introduce and study
- vectors,
- linear combinations of vectors,
- subsets spanned by vectors,
- vector equations.

Section 1.3 in "Linear Algebras and Its Applications" (pages 24-34).

