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Review of the previous lecture

Last time we

studied second-order linear differential equations,
introduced the Wronskian,
completely solved second-order homogeneous linear
differential equations with constant coefficients.
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Today’s lecture

Today we shall

study harmonic motions,
study solutions of second-order linear inhomogeneous
differential equations,
look at the method of undetermined coefficients.
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Second-order homogeneous linear
differential equations

Suppose that y1 and y2 are linearly independent solutions to
the differential equation

y ′′ + p(t)y ′ + q(t)y = 0 (1)

on the interval (α, β). Then

y(t) = c1y1(t) + c2y2(t)

is the general solution of (1).
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Fundamental set of solutions

Two linearly independent solutions to a second-order
homogeneous linear differential equation is said to form
a fundamental set of solutions.
The previous result then says that if y1, y2 form a
fundamental set of solutions to a second-order
homogeneous linear differential equation, then any
solution to that differential equation can be written as a
linear combination of y1 and y2.
If y1 and y2 are solution to a second-order homogeneous
linear differential equation, then we can check if they
form a fundamental set of solutions either

1 by showing that neither is a constant multiple of the other,
2 or by showing that the Wronskian of y1 and y2 is not zero

at any point.
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Homogeneous equations with
constant coefficients

Consider the second-order homogeneous linear differential
equation

y ′′ + py ′ + qy = 0
with constant coefficients.

The characteristic polynomial of the equation is the
polynomial λ2 + pλ+ q.
The roots

λ =
−p ±

√
p2 − 4q

2
of λ2 + pλ+ q are called the
characteristic roots of the equation.
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Homogeneous equations with
constant coefficients

If p2 − 4q > 0, then the characteristic polynomial
λ2 + pλ+ q has two distinct real roots λ1 and λ2, and the
general solution of y ′′ + py ′ + qy = 0 is

y(t) = c1eλ1t + c2eλ2t .

If p2 − 4q < 0, then the characteristic polynomial
λ2 + pλ+ q has two distinct complex roots λ1 = a + ib
and λ2 = a− ib, and the general solution of
y ′′ + py ′ + qy = 0 is

y(t) = c1eat cos(bt) + c2eat sin(bt).
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Homogeneous equations with
constant coefficients

If p2 − 4q = 0, then the characteristic polynomial
λ2 + pλ+ q just have one root λ, and the general
solution of y ′′ + py ′ + qy = 0 is

y(t) = c1eλt + c2teλt .
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Harmonic motion

x = 0

x = x0

We consider a spring suspended
from a beam.

The position of the
bottom of the spring is the
reference point from which we
measure displacement, so it
corresponds to x = 0.
We then attach a weight of mass
m to the spring. This weight
stretches the spring until it is
once more in equilibrium at
x = x0.
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Harmonic motion

x = 0

x = x0

At this point there are two forces
acting on the mass. There is the
force of gravity mg, and there is
the restoring force of the spring
which we denote by R(x) since it
depends on the distance x that
the spring is stretched.

Since we have equilibrium at
x = x0, the total force on the
weight is 0, so R(x0) + mg = 0.
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Harmonic motion

x = 0

x = x0

We now set the mass in motion
by stretching the spring further.

In addition to gravity and the
restoring force, there is a
damping force D which is the
resistance to the motion of the
weight due to the medium
through which the weight is
moving and perhaps to
something internal to the spring.
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Harmonic motion

x = 0

x = x0

We assume that D depends on
the velocity x ′ of the mass, and
write it as D(x ′).

According to
Newton’s second law, we have

mx ′′ = R(x) + mg + D(x ′).
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Harmonic motion

x = 0

x = x0

We assume that R(x) = −kx for
some positive constant k called
the spring constant, and that
D(x ′) = −µx ′ for some
nonnegative constant µ called
the damping constant.

Thus we have
mx ′′ = −kx + mg − µx ′.
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Harmonic motion

x = 0

x = x0

Recall that R(x0) + mg = 0.

So
mg = −R(x0) = kx0. If we let
y = x − x0, then
mx ′′ = −kx + mg − µx ′ becomes
my ′′ + µy ′ + ky = 0 because
x ′ = y ′ and x ′′ = y ′′.
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Harmonic motion

x = 0

x = x0

If we let ω0 =
√

k/m and
c = µ/2m, then the above
equation becomes

y ′′ + 2cy ′ + ω2
0y = 0

where c ≥ 0 and ω0 > 0.
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Harmonic motion

The motion described by a solution to the equation

y ′′ + 2cy ′ + ω2
0y = 0

where c ≥ 0 and ω0 > 0, is called a harmonic motion.
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Simple harmonic motion

If c = 0 we say that the system is undamped.

In that case,
the equation becomes

y ′′ + ω2
0y = 0

where ω0 > 0.
The general solution to this equation is

y(t) = c1 cos(ω0t) + c2 sin(ω0t).

The motion described by this solution is called a simple
harmonic motion. The number ω0 is called the natural
frequency. The number T = 2π/ω0 is called the period.
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Amplitude and phase angle

It is frequently convenient to put the solution
y(t) = c1 cos(ω0t) + c2 sin(ω0t) into another form that is more
convenient and more revealing of the nature of the solution.

Let z = c1 + ic2. If we let A = |z| and φ = Arg(z), then
z = A(cos(φ) + i sin(φ)) from which it follows that
c1 = A cos(φ) and c2 = A sin(φ), and that

y(t) = c1 cos(ω0t) + c2 sin(ω0t)
= A cos(φ) cos(ω0t) + A sin(φ) sin(ω0t) = A cos(ω0t − φ).

The number A is called the amplitude, and the number φ is
called the phase.
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Simple harmonic motion

t

y

y(t) = A cos(ω0t − φ)

φ/ω0

T = 2π/ω0

A
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The underdamped case

If 0 < c < ω0, then the characteristic roots of
y ′′ + 2cy ′ + ω2

0y = 0 are

λ =
−2c ±

√
(2c)2 − 4ω0

2
= −c±

√
c2 − ω2

0 = −c±i
√
ω2

0 − c2

so the the general solution to y ′′ + 2cy ′ + ω2
0y = 0 is

y(t) = e−ct(c1 cos(ωt) + c2 sin(ωt))

where ω =
√
ω2

0 − c2.
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The underdamped case

t

y

y(t) = e−ct(c1 cos(ωt) + c2 sin(ωt))
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The overdamped case

If c > ω0, then the characteristic roots of y ′′ + 2cy ′ + ω2
0y = 0

are

λ =
−2c ±

√
(2c)2 − 4ω0

2
= −c ±

√
c2 − ω2

0

so the the general solution to y ′′ + 2cy ′ + ω2
0y = 0 is

y(t) = c1eλ1t + c2eλ2t

where λ1 = −c −
√

c2 − ω2
0 and λ2 = −c +

√
c2 − ω2

0.
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The overdamped case

t

y
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The critically damped case

If c = ω0, then the equation y ′′ + 2cy ′ + ω2
0y = 0 only has one

characteristic root

λ =
−2c ±

√
(2c)2 − 4ω0

2
= −c

so the the general solution to y ′′ + 2cy ′ + ω2
0y = 0 is

y(t) = c1e−ct + c2te−ct .
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Inhomogeneous equations

We now turn to the solution of inhomogeneous second-order
linear differential equations

y ′′ + py ′ + qy = f

where p = p(t), q = q(t) and f = f (t) are functions of the
independent variable.
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Inhomogeneous equations

Suppose we have found a particular solution yp to the
equation y ′′ + py ′ + qy = f .

If yh is a solution to the homogeneous equation
y ′′ + py ′ + qy = 0, then yp + yh is a solution to the
inhomogeneous equation y ′′ + py ′ + qy = f because
(yp + yh)

′′ + p(yp + yh)
′ + q(yp + yh) =

(y ′′p + py ′p + qyp) + (y ′′h + py ′h + qyh) = f + 0 = f .
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Inhomogeneous equations

Conversely, if yp1 and yp2 are two different solutions to the
inhomogeneous equation y ′′ + py ′ + qy = f , then
yh = yp1 − yp2 is a solution to the homogeneous equation
y ′′ + py ′ + qy = 0

because
(yp1 − yp2)

′′ + p(yp1 − yp2)
′ + q(yp1 − yp2) =

(y ′′p1
+ py ′p1

+ qyp1)− (y ′′p2
+ py ′p2

+ qyp2) = f − f = 0.
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Inhomogeneous equations

It follows that if yp is a particular solution to the
inhomogeneous equation y ′′ + py ′ + qy = f and y1 and y2

form a fundamental set of solutions to the homogeneous
equation y ′′ + py ′ + qy = 0, then the general solution to the
inhomogeneous equation y ′′ + py ′ + qy = f is

y = yp + c1y1 + c2y2

where c1 and c2 are constants.
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The method of undetermined
coefficients

Consider the inhomogeneous second-order linear differential
equation

y ′′ + py ′ + qy = f .

If the function f has a form that is replicated under
differentiation, then look for a solution with the same general
form as f .
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Exponential forcing terms

If f (t) = eat , then f ′(t) = aeat , so we will look for a solution of
the form y(t) = beat .
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Example

Let us find the general solution to the equation

y ′′ − y ′ − 2y = 2e−2t .

Let us first find a particular solution to the equation
y ′′ − y ′ − 2y = 2e−2t .
Since the right hand side is 2e−2t , we let y(t) = ae−2t .
Then y ′′ − y ′ − 2y = 4ae−2t − (−2)ae−2t − 2ae−2t = 4ae−2t .
So y(t) = ae−2t is a solution if and only if 4a = 2.
Thus y(t) = 1

2e−2t is a particular solution to the equation
y ′′ − y ′ − 2y = 2e−2t .

www.ntnu.no TMA4115 - Calculus 3, Lecture 5, Jan 30, page 32



Example

Let us find the general solution to the equation

y ′′ − y ′ − 2y = 2e−2t .

Let us first find a particular solution to the equation
y ′′ − y ′ − 2y = 2e−2t .

Since the right hand side is 2e−2t , we let y(t) = ae−2t .
Then y ′′ − y ′ − 2y = 4ae−2t − (−2)ae−2t − 2ae−2t = 4ae−2t .
So y(t) = ae−2t is a solution if and only if 4a = 2.
Thus y(t) = 1

2e−2t is a particular solution to the equation
y ′′ − y ′ − 2y = 2e−2t .

www.ntnu.no TMA4115 - Calculus 3, Lecture 5, Jan 30, page 32



Example

Let us find the general solution to the equation

y ′′ − y ′ − 2y = 2e−2t .

Let us first find a particular solution to the equation
y ′′ − y ′ − 2y = 2e−2t .
Since the right hand side is 2e−2t , we let y(t) = ae−2t .

Then y ′′ − y ′ − 2y = 4ae−2t − (−2)ae−2t − 2ae−2t = 4ae−2t .
So y(t) = ae−2t is a solution if and only if 4a = 2.
Thus y(t) = 1

2e−2t is a particular solution to the equation
y ′′ − y ′ − 2y = 2e−2t .

www.ntnu.no TMA4115 - Calculus 3, Lecture 5, Jan 30, page 32



Example

Let us find the general solution to the equation

y ′′ − y ′ − 2y = 2e−2t .

Let us first find a particular solution to the equation
y ′′ − y ′ − 2y = 2e−2t .
Since the right hand side is 2e−2t , we let y(t) = ae−2t .
Then y ′′ − y ′ − 2y = 4ae−2t − (−2)ae−2t − 2ae−2t = 4ae−2t .

So y(t) = ae−2t is a solution if and only if 4a = 2.
Thus y(t) = 1

2e−2t is a particular solution to the equation
y ′′ − y ′ − 2y = 2e−2t .

www.ntnu.no TMA4115 - Calculus 3, Lecture 5, Jan 30, page 32



Example

Let us find the general solution to the equation

y ′′ − y ′ − 2y = 2e−2t .

Let us first find a particular solution to the equation
y ′′ − y ′ − 2y = 2e−2t .
Since the right hand side is 2e−2t , we let y(t) = ae−2t .
Then y ′′ − y ′ − 2y = 4ae−2t − (−2)ae−2t − 2ae−2t = 4ae−2t .
So y(t) = ae−2t is a solution if and only if 4a = 2.

Thus y(t) = 1
2e−2t is a particular solution to the equation

y ′′ − y ′ − 2y = 2e−2t .

www.ntnu.no TMA4115 - Calculus 3, Lecture 5, Jan 30, page 32



Example

Let us find the general solution to the equation

y ′′ − y ′ − 2y = 2e−2t .

Let us first find a particular solution to the equation
y ′′ − y ′ − 2y = 2e−2t .
Since the right hand side is 2e−2t , we let y(t) = ae−2t .
Then y ′′ − y ′ − 2y = 4ae−2t − (−2)ae−2t − 2ae−2t = 4ae−2t .
So y(t) = ae−2t is a solution if and only if 4a = 2.
Thus y(t) = 1

2e−2t is a particular solution to the equation
y ′′ − y ′ − 2y = 2e−2t .

www.ntnu.no TMA4115 - Calculus 3, Lecture 5, Jan 30, page 32



Example

We will then find the general solution of the homogeneous
equation y ′′ − y ′ − 2y = 0.

The characteristic polynomial is
λ2 − λ− 2, and the characteristic roots are

λ =
1±
√

1 + 8
2

=
1± 3

2
=

{
2
−1

.

So the general solution of y ′′ − y ′ − 2y = 0 is
y(t) = c1e2t + c2e−t .
It follows that the general solution of y ′′ − y ′ − 2y = 2e−2t is
y(t) = c1e2t + c2e−t + 1

2e−2t .
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Trigonometric forcing terms

If
f (t) = A cos(ωt) + B sin(ωt),

then
f ′(t) = −ωA sin(ωt) + ωB cos(ωt),

so we will look for a solution of the form

y(t) = a cos(ωt) + b sin(ωt).
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Example

Let us find a particular solution to the equation

y ′′ + 2y ′ − 3y = 5 sin(3t).

Let y(t) = a cos(3t) + b sin(3t). Then

y ′′(t) + 2y ′(t)− 3y(t) = −9a cos(3t)− 9b sin(3t)
+ 2
(
−3a sin(3t) + 3b cos(3t)

)
− 3a cos(3t)− 3b sin(3t)

= (−9a + 6b − 3a) cos(3t)
+ (−9b − 6a− 3b) sin(3t),

so y(t) = a cos(3t) + b sin(3t) is a solution if and only if
−12a + 6b = 0 and −12b − 6 = 5.
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Example

The solution to the system

−12a + 6b = 0
−6a− 12b = 5

is a = 5
−30 = −1

6 and b = 12a
6 = 2a = −2

6 = −1
3 ,

so
y(t) = −1

6 cos(3t)− 1
3 sin(3t) is a particular solution to the

equation y ′′ + 2y ′ − 3y = 5 sin(3t).
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The complex method

There is another way to find a particular solution in situations
where

f (t) = A cos(ωt) + B sin(ωt).

If z(t) is a solution of the equation

y ′′ + py ′ + qy = eωit ,

then a suitable linear combination of Re(z(t)) and Im(z(t))
will be a solution to

y ′′ + py ′ + qy = A cos(ωt) + B sin(ωt).
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Example

Consider again the equation

y ′′ + 2y ′ − 3y = 5 sin(3t).

Since 5 sin(3t) = Im(5e3it), it follows that if z(t) is a solution
to z ′′ + 2z ′ − 3z = 5e3it , then y(t) = Im(z(t)) is a solution to
y ′′ + 2y ′ − 3y = 5 sin(3t).
To find a solution to z ′′ + 2z ′ − 3z = 5e3it , we let z(t) = ae3it .
Then

z ′′(t) + 2z ′(t)− 3z(t) = −9ae3it + 6iae3it − 3ae3it

= (−12 + 6i)ae3it ,
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Example

so z(t) = ae3it is a solution of z ′′+ 2z ′− 3z = 5e3it if and only
if a = 5

−12+6i =
−1
6

5
2−i =

−5(2+i)
6(2−i)(2+i) =

−10−5i
30 = −2−i

6 .

So

z(t) = −2−i
6 e3it = −2−i

6

(
cos(3t) + i sin(3t)

)
= −1

3 cos(3t) + 1
6 sin(3t) + i

(−1
6 cos(3t) + −1

3 sin(3t)
)

is a solution of z ′′ + 2z ′ − 3z = 5e3it , and
y(t) = Im(z(t)) = −1

6 cos(3t) + −1
3 sin(3t) is a solution to

y ′′ + 2y ′ − 3y = 5 sin(3t).
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Polynomial forcing terms

If
f (t) = antn + an−1tn−1 + . . . a1t + a0,

then
f ′(t) = nantn−1 + (n − 1)an−1tn−2 + . . . a1,

so we will look for a solution of the form

y(t) = bntn + bn−1tn−1 + . . . b1t + b0.
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Example

Let us find a particular solution to the equation

y ′′ + 2y ′ − 3y = 3t + 4.

Let y(t) = at + b. Then

y ′′(t) + 2y ′(t)− 3y(t) = 2a− 3at − 3b = −3at + 2a− 3b

so y(t) = at + b is a solution if and only if a = −1 and
b = 4−2a

−3 = −2. Thus y(t) = −t − 2 is a particular solution to
the equation y ′′ + 2y ′ − 3y = 3t + 4.
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Exceptional cases

The method of undetermined coefficients looks
straightforward. There are, however, some exceptional cases
to look out for. If the forcing term f , and hence the proposed
solution, is a solution to the homogeneous equation
y ′′ + py ′ + qy = 0, then the proposed solution wouldn’t work.
Instead we have to multiply the proposed solution by t .
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Example

Let us find a particular solution to the equation

y ′′ − y ′ − 2y = 3e−t .

Let y(t) = ae−t . Then

y ′′(t)− y ′(t)− 2y(t) = ae−t + ae−t − 2ae−t = 0,

so it is not possible to find an a such that y(t) = ae−t

becomes a solution to y ′′ − y ′ − 2y = 3e−t .
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Example

Instead, we let y(t) = ate−t .

Then
y ′(t) = ae−t − ate−t = a(1− t)e−t ,
y ′′(t) = −ae−t − a(1− t)e−t = a(t − 2)e−t , and

y ′′(t)− y ′(t)− 2y(t) = a(t − 2)e−t − a(1− t)e−t − 2ate−t

= −3ae−t .

So y(t) = −te−t is a particular solution to the equation
y ′′ − y ′ − 2y = 3e−t .
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Combination forcing terms

If yf is a solution the differential equation y ′′ + py ′ + qy = f ,
yg is a solution the differential equation y ′′ + py ′ + qy = g,
and c1 and c2 are constants, then

y(t) = c1yf (t) + c2yg(t)

is a solution to the differential equation

y ′′ + py ′ + qy = c1f + c2g.
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Example

Let us find a particular solution to the equation

y ′′ − y ′ − 2y = e−2t − 3e−t .

We have already seen that y1(t) = 1
2e−2t is a solution to

y ′′ − y ′ − 2y = 2e−2t , and that y2(t) = −te−t is a solution to
y ′′ − y ′ − 2y = 3e−t .
It follows that y(t) = 1

2y1(t)− y2(t) = 1
4e−2t + te−t is a

particular solution to the equation y ′′ − y ′ − 2y = e−2t − 3e−t .
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Plan for tomorrow

Tomorrow we shall
look at variation of parameters,
study forced harmonic motions.

Section 4.6 and 4.7 in “Second-Order Equations” (pages
pages lxxii–lxxxvi).
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