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Review of yesterday’s lecture

Yesterday we

looked at how to use complex numbers to solve
polynomial equations,
looked at the fundamental theorem of algebra,
introduced the complex exponential function,
and studied extensions of trigonometric functions to the
complex numbers.
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Today’s lecture

Today we shall

study second-order linear differential equations,
introduce the Wronskian,
completely solve second-order homogeneous linear
differential equations with constant coefficients.
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Second-order differential
equations

A second-order differential equation is a differential equation
which can be written on the form

y ′′ = f (t , y , y ′).

A solution to such an equation is a twice continuously
differentiable function y(t) satisfying

y ′′(t) = f (t , y(t), y ′(t)).
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Examples of second-order
differential equations

y ′′ + cos(y) = et .
y ′′ + 5y = 0.
t2y ′′ + sin(t)y = 3.
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Second-order linear differential
equations

A second-order linear differential equation is a differential
equation with can be written on the form

y ′′ + p(t)y ′ + q(t)y = g(t).
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Examples of second-order
differential equations

y ′′ + cos(y) = et is not linear.
y ′′ + 5y = 0 is linear.
t3y ′′ + sin(t)y = 3 is linear.

www.ntnu.no TMA4115 - Calculus 3, Lecture 4, Jan 24, page 7



Examples of second-order
differential equations

y ′′ + cos(y) = et is not linear.

y ′′ + 5y = 0 is linear.
t3y ′′ + sin(t)y = 3 is linear.

www.ntnu.no TMA4115 - Calculus 3, Lecture 4, Jan 24, page 7



Examples of second-order
differential equations

y ′′ + cos(y) = et is not linear.
y ′′ + 5y = 0 is linear.

t3y ′′ + sin(t)y = 3 is linear.

www.ntnu.no TMA4115 - Calculus 3, Lecture 4, Jan 24, page 7



Examples of second-order
differential equations

y ′′ + cos(y) = et is not linear.
y ′′ + 5y = 0 is linear.
t3y ′′ + sin(t)y = 3 is linear.

www.ntnu.no TMA4115 - Calculus 3, Lecture 4, Jan 24, page 7



Existence and uniqueness of
solutions to a second-order linear
equation

Suppose the functions p, q and g are continuous on the
interval (α, β). Let t0 be any point in (α, β). Then for any real
numbers a and b there is one and only one function defined
on (α, β) which is a solution to

y ′′ + p(t)y ′ + q(t)y = g(t)

on (α, β) and satisfies the initial conditions y(t0) = a and
y ′(t0) = b.
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Second-order linear homogeneous
differential equations

A second-order linear differential equation

y ′′ + p(t)y ′ + q(t)y = g(t)

is homogeneous if g = 0. If g 6= 0, then the differential
equation is called inhomogeneous or nonhomegeneous.

Examples

y ′′ + 5y = 0 is homogeneous.
t3y ′′ + sin(t)y = 3 is inhomogeneous.
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The superposition principle

If y1 and y2 are solutions to the second-order homogeneous
linear differential equation

y ′′ + p(t)y ′ + q(t)y = 0,

then so is y(t) = c1y1(t) + c2y2(t) for any choice of constants
c1 and c2.
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Linear combinations

When y1 and y2 are functions and c1 and c2 are
constants, then the function c1y1(t) + c2y2(t) is a linear
combination of y1 and y2.
So the previous results says that if y1 and y2 are
solutions to a second-order homogeneous linear
differential equation, then any linear combination of y1

and y2 is also a solution to the same differential
equation.
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Example

Let us find the solution of the differential equation

y ′′ − 4
t

y ′ +
6
t2 y = 0 (1)

on the interval (0,∞) which satisfies that y(2) = 8 and
y ′(2) = 0.
Let y(t) = tn. Then

y ′′(t)− 4
t

y ′(t) +
6
t2 y(t) = n(n − 1)tn−2 − 4ntn−2 + 6tn−2

= (n2 − 5n + 6)tn−2

= (n − 2)(n − 3)tn−2.

So y is a solution of (1) if and only if n = 2 or n = 3.
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Example

Let y(t) = c1t2 + c2t3 where c1 and c2 are constants.

Then it
follows from the superposition principle and the calculations
above that y is a solution of (1).

y ′(t) = 2c1t + 3c2t2,

y(2) = 4c1 + 8c2,

y ′(2) = 4c1 + 12c2,

so y(2) = 8 and y ′(2) = 0 if and only if 4c1 + 8c2 = 8 and
4c1 + 12c2 = 0.
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Example

The solution of the linear system

4c1 + 8c2 = 8
4c1 + 12c2 = 0

is c1 = 6 and c2 = −2,

so the solution of (1) which satisfies
that y(2) = 8 and y ′(2) = 0 is y(t) = 6t2 − 2t3.
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Example

Let t0 ∈ (0,∞) and a,b ∈ R.

Let us now find the solution of
(1) which satisfies that y(t0) = a and y ′(t0) = b.
Let y(t) = c1t2 + c2t3 where c1 and c2 are constants. Then

y(t0) = c1t2
0 + c2t3

0 ,

y ′(t0) = 2c1t0 + 3c2t2
0 ,

so y(t0) = a and y ′(t0) = b. if and only if c1t2
0 + c2t3

0 = a and
2c1t0 + 3c2t2

0 = b.
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Example

The solution of the linear system

c1t2
0 + c2t3

0 = a

2c1t0 + 3c2t2
0 = b

is c1 =
3at2

0−bt3
0

t4
0

and c2 =
bt2

0−2at0
t4
0

,

so the solution of (1) which
satisfies that y(t0) = a and y ′(t0) = b is
y(t) = 3at2

0−bt3
0

t4
0

t2 − bt2
0−2at0

t4
0

t3.

Notice that t4
0 = y1(t0)y ′2(t0)− y ′1(t0)y2(t0) where y1(t) = t2

and y2(t) = t3.
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The Wronskian

Let u and v be two differential functions. The Wronskian of u
and v is the function

W (t) = det
(

u(t) v(t)
u′(t) v ′(t)

)
= u(t)v ′(t)− v(t)u′(t).
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Solutions to initial value problems

Suppose the functions y1 and y2 are solutions to the
differential equation

y ′′ + p(t)y ′ + q(t)y = 0 (2)

on the interval (α, β). Let t0 be a point in the interval (α, β)
and let a and b be arbitrary real numbers. If W (t) is the
Wronskian of y1 and y2 and W (t0) 6= 0, then there exist
constants c1 and c2 such that y(t) = c1y1(t) + c2y2(t) is the
unique solution to (2) on (α, β) which satisfies y(t0) = a and
y ′(t0) = b.
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Proof

It follows from the superposition principle that
y(t) = c1y1(t) + c2y2(t) is a solution to (2) for any choice of
constants c1 and c2.

y(t0) = a and y ′(t0) = b if and only if c1y1(t0) + c2y2(t0) = a
and c1y ′1(t0) + c2y ′2(t0) = b.
Since y1(t0)y ′2(t0)− y2(t0)y ′1(t0) = W (t0) 6= 0, the system

c1y1(t0) + c2y2(t0) = a
c1y ′1(t0) + c2y ′2(t0) = b

has a solution, so there exist constants c1 and c2 such that
y(t) = c1y1(t) + c2y2(t) is a solution to (2) on (α, β) which
satisfies y(t0) = a and y ′(t0) = b.
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Proposition 1.26

Suppose the functions y1 and y2 are solutions to the
differential equation

y ′′ + p(t)y ′ + q(t)y = 0

in the interval (α, β). Then the Wronskian of y1 and y2 is
either identically equal to zero on the interval (α, β), or it is
never equal to zero on the interval (α, β).
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Proof

If we differentiate the Wronskian W we get

W ′(t) = (y1(t)y ′2(t)− y ′1(t)y2(t))′

= y ′1(t)y
′
2(t) + y1(t)y ′′2 (t)− y ′′1 (t)y2(t)− y ′1(t)y

′
2(t)

= y1(t)y ′′2 (t)− y ′′1 (t)y2(t).

Since y1 and y2 are solutions to the differential equation
y ′′ + py ′ + qy = 0, we have that y ′′1 (t) = −p(t)y ′1(t)− q(t)y1

and y ′′2 (t) = −p(t)y ′2(t)− q(t)y2.
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Proof

It follows that

W ′(t) = y1(t)y ′′2 (t)− y ′′1 (t)y2(t)
= −p(t)y1(t)y ′2(t)− q(t)y1(t)y2(t)
+ p(t)y ′1(t)y2(t) + q(t)y1(t)y2(t)

= −p(t)y1(t)y ′2(t) + p(t)y ′1(t)y2(t)
= −p(t)(1(t)y ′2(t)− y ′1(t)y2(t))
= −p(t)W (t),

so W is a solution to the first-order differential equation

W ′ = −pW .
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Proof

If t0 is a point in (α, β), the solution to this equation is

W (t) = W (t0)e
−

∫ t
t0

p(s)ds
.

It follows that if W (t0) = 0, then W (t) = 0 for all t in (α, β),
and if W (t0) 6= 0, then W (t) 6= 0 for all t in (α, β).
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Linear dependent functions

Two functions u and v are linear dependent on an
interval (α, β) if there exist two constants c1 and c2,
which are no both zero, such that c1u(t) + c2v(t) = 0 for
all t ∈ (α, β).
u and v are linear independent if they are not linear
dependent.
If u = cv for some constant c, then u and v are linear
dependent because u − cv = 0.
Conversely, if u and v are linear dependent, then
c1u + c2v = 0 for some choice of constants c1 and c2

which are no both zero,

and then u = −(c2/c1)v if
c1 6= 0, and v = −(c1/c2)u if c2 6= 0.
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Linear dependent functions

Two functions u and v are linear dependent if and only if u is
a constant multiple of v , or v is a constant multiple of u.
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Proposition 1.27

Suppose the functions y1 and y2 are solutions to the
differential equation

y ′′ + p(t)y ′ + q(t)y = 0

in the interval (α, β).
Then y1 and y2 are linearly dependent on (α, β) if and only if
the Wronskian of y1 and y2 is identically equal to zero on the
interval (α, β).
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Proof

If y1(t) = cy2(t) for some constant c, then
W (t) = y1(t)y ′2(t)− y ′1(t)y2(t) = cy2(t)y ′2(t)− cy ′2(t)y2(t) = 0.
Similarly, if y2(t) = cy1(t) some constant c, then
W (t) = y1(t)y ′2(t)− y ′1(t)y2(t) = cy1(t)y ′1(t)− cy ′1(t)y1(t) = 0.
Conversely, suppose that W (t) = 0 for all t in (α, β). If
y2(t) = 0, then y2(t) = 0y1(t). If y2(t0) 6= 0 for some t0 in
(α, β), then it follows from the continuity of y2 that there is a
subinterval (c,d) of (α, β) which contains t0 such that
y2(t) 6= 0 for all t in (c,d). On this interval we have

d
dt

(y1(t)/y2(t))

=
y ′1(t)y2(t)− y1(t)y ′2(t)

(y2(t))2 =
−W (t)
(y2(t))2 = 0.
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When is the Wronskian zero?

Hence, on the interval (c,d), y1(t)/y2(t) is equal to a
constant c, and y1(t) = cy2(t).

In particular, y1(t0) = cy2(t0)
and y ′1(t0) = cy ′2(t0).
Since both y1(t) and cy2(t) are solutions to the initial value
problem

y ′′ + p(t)y ′ + q(t)y = 0, y(t0) = y1(t0), y ′(t0) = y ′1(t0)

on (α, β), it follows that y1(t) = cy2(t) on (α, β).
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Theorem 1.23

Suppose that y1 and y2 are linearly independent solutions to
the differential equation

y ′′ + p(t)y ′ + q(t)y = 0

on the interval (α, β). Then any solution to the equation is a
linear combination of y1 and y2.
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Proof

Since y1 and y2 are linearly independent, neither is a
constant multiple of the other, so the Wronskian W of y1 and
y2 is not zero at any point.
Let y be a solution to the equation. Pick a point t0 in (α, β)
and let a = y(t0) and b = y ′(t0).
Since W (t0) 6= 0 there exist constants c1 and c2 such that
c1y1(t0) + c2y2(t0) = a and c1y ′1(t0) + c2y ′2(t0) = b.
Then both y and c1y1 + c2y2 are solutions to the initial value
problem y ′′ + p(t)y ′ + q(t)y = 0, y(t0) = a, y ′(t0) = b on the
interval (α, β). It follows that y = c1y1 + c2y2.
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Fundamental set of solutions

Two linearly independent solutions to a second-order
homogeneous linear differential equation is said to form
a fundamental set of solutions.
The previous result then says that if y1, y2 form a
fundamental set of solutions to a second-order
homogeneous linear differential equation, then any
solution to that differential equation can be written as a
linear combination of y1 and y2.
If y1 and y2 are solution to a second-order homogeneous
linear differential equation, then we can check if they
form a fundamental set of solutions either

1 by showing that neither is a constant multiple of the other,
2 or by showing that the Wronskian of y1 and y2 is not zero

at any point.
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Second-order homogeneous linear
differential equations with
constant coefficients

A second-order homogeneous linear differential equation
with constant coefficients is a differential equation with can
be written on the form

y ′′ + py ′ + qy = 0

where p and q are constants.
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Finding solutions to second-order
homogeneous linear differential
equations with constant
coefficients

Inserting y(t) = eλt into the differential equation, we obtain

y ′′ + py ′ + qy = λ2eλt + pλeλt + qeλt

= (λ2 + pλ+ q)eλt .

Since eλt 6= 0, we have that y(t) = eλt is a solution if and only
if λ2 + pλ+ q = 0.
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Characteristic polynomial

The polynomial λ2 + pλ+ q is called the characteristic
polynomial of the differential equation y ′′ + py ′ + qy = 0.

A root of the characteristic polynomial is called a
characteristic root.
The characteristic roots are

λ =
−p ±

√
p2 − 4q

2
.

Looking at the discriminant p2 − 4q, we see that there are 3
cases to consider:

1 p2 − 4q > 0,
2 p2 − 4q < 0,
3 p2 − 4q = 0.
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Distinct real root

If p2 − 4q > 0, then the characteristic polynomial λ2 + pλ+ q
has two distinct real roots λ1 and λ2.
The 2 functions y1(t) = eλ1t and y2(t) = eλ2t are then
solutions to the differential equation y ′′ + py ′ + qy = 0.
The Wronskian of y1 and y2 is then

W (t) = y1(t)y ′2(t)− y2(t)y ′1(t)

= λ2eλ1teλ2t − λ1eλ2teλ1t

= (λ2 − λ1)e(λ1+λ2)t 6= 0

so y1 and y2 forms a fundamental set of solutions, and every
solution of y ′′ + py ′ + qy = 0 has the form c1y1 + c2y2 where
c1 and c2 are constants.
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Example

Let us find the general solution to the second-order
differential equation y ′′ − 2y ′ + y = 0.
The characteristic polynomial is λ2 − 3λ+ 2, and the

characteristic roots are λ = 3±
√

9−8
2 = 3±1

2 =

{
2
1

.

It follows that the general solution is y(t) = c1e2t + c2et .
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Complex roots

If p2 − 4q < 0, then the characteristic polynomial λ2 + pλ+ q
has two distinct complex roots λ1 and λ2 which have the form
λ1 = a + ib and λ2 = a− ib where a and b are real numbers
and b 6= 0.
The 2 functions z1(t) = eλ1t = eat(cos(bt) + i sin(bt)) and
z2(t) = eλ2t = eat(cos(bt)− i sin(bt)) are then solutions to the
differential equation y ′′ + py ′ + qy = 0.
The two functions y1(t) = Re(z1(t)) = eat cos(bt) and
y2(t) = Im(z1(t)) = eat sin(bt) are also solutions to the
differential equation y ′′ + py ′ + qy = 0.
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Complex roots

The Wronskian of y1(t) = eat cos(bt) and y2 = eat sin(bt) is

W (t) =y1(t)y ′2(t)− y2(t)y ′1(t)

=eat cos(bt)(aeat sin(bt) + beat cos(bt))

− eat sin(bt)(aeat cos(bt)− beat sin(bt))

=be2at cos2(bt) + be2at sin2(bt)

=be2at 6= 0

so y1 and y2 forms a fundamental set of solutions, and every
solution of y ′′ + py ′ + qy = 0 has the form
c1eat cos(bt) + c2eat sin(bt) where c1 and c2 are constants.
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Example

Let us find the general solution to the second-order
differential equation y ′′ + 2y ′ + 2y = 0.

The characteristic polynomial is λ2 + 2λ+ 2, and the
characteristic roots are
λ = −2±

√
4−8

2 = −2±−4
2 = −2±2i

2 = −1± i .
It follows that the general solution is
y(t) = c1e−t cos(t) + c2e−t sin(t).
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Repeated roots

If p2 − 4q = 0, then the characteristic polynomial λ2 + pλ+ q
just have one root λ = −p/2.
The function y1(t) = eλt is a solution to the differential
equation y ′′ + py ′ + qy = 0.
Let y2(t) = teλt . Then y ′2(t) = eλt + λteλt ,
y ′′2 (t) = λeλt + λeλt + λ2teλt and

y ′′2 (t) + py ′2(t) + qy2(t)

= 2λeλt + λ2teλt + p(eλt + λteλt) + qteλt

= (2λ+ p)eλt + (λ2 + pλ+ q)teλt

= 0.

So y2 is a solution to the differential equation
y ′′ + py ′ + qy = 0.
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Repeated roots

The Wronskian of y1(t) = eλt and y2(t) = teλt is

W (t) =y1(t)y ′2(t)− y2(t)y ′1(t)

=eλt(eλt + λteλt)− λeλt teλt

=e2λt 6= 0

so y1 and y2 forms a fundamental set of solutions, and every
solution of y ′′ + py ′ + qy = 0 has the form c1eλt + c2teλt

where c1 and c2 are constants.
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Example

Let us find the general solution to the second-order
differential equation y ′′ − 2y ′ + y = 0.

The characteristic polynomial is λ2 − 2λ+ 1, and the
characteristic roots are λ = 2±

√
4−4

2 = 1.
It follows that the general solution is y(t) = c1et + c2tet .
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Exercise 4.3.26

Find the solution to the initial value problem

10y ′′ − y ′ − 3y = 0, y(0) = 1, y ′(0) = 0.
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Solution

The characteristic polynomial is 10λ2 − λ− 3,

and the

characteristic roots are λ = 1±
√

1+120
20 = 1±11

20

{
12/20
−10/20

.

It follows that the general solution to the equation
10y ′′ − y ′ − 3y = 0 is y(t) = c1e3t/5 + c2e−t/2.
Let y(t) = c1e3t/5 + c2e−t/2. Then
y ′(t) = (3/5)c1e3t/5 − (c2/2)e−t/2, y ′(0) = 3c1/5− c2/2, and
y(0) = c1 + c2.
So y is a solution to the initial value problem if and only if
c1 + c2 = 1 and 3c1/5− c2/2 = 0.
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Solution

The solution to the linear system

c1 + c2 = 1
3c1/5− c2/2 = 0

is c1 = 5/11 and c2 = 6/11,

so the solution to the initial value
problem

10y ′′ − y ′ − 3y = 0, y(0) = 1, y ′(0) = 0.

is y(t) = (5/11)e3t/5 + (6/11)e−t/2.
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Plan for next week

Wednesday we shall

study harmonic motions,
study solutions of second-order linear inhomogeneous
differential equations,
look at the method of undetermined coefficients.

Section 4.4 and 4.5 (pages lv–lxxii).
Thursday we shall

look at variation of parameters,
study forced harmonic motions.

Section 4.6 and 4.7 (pages lxxii–lxxxvi).
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