TMA4115-Calculus 3
 Lecture 4, Jan 24

Toke Meier Carlsen
Norwegian University of Science and Technology Spring 2013

Review of yesterday's lecture

NTNU
Norwegian University of
Science and Technology

Review of yesterday's lecture

Yesterday we

Norwegian University of
Science and Technology

Review of yesterday's lecture

Yesterday we

- looked at how to use complex numbers to solve polynomial equations,

Review of yesterday's lecture

Yesterday we

- looked at how to use complex numbers to solve polynomial equations,
- looked at the fundamental theorem of algebra,

Review of yesterday's lecture

Yesterday we

- looked at how to use complex numbers to solve polynomial equations,
- looked at the fundamental theorem of algebra,
- introduced the complex exponential function,

Review of yesterday's lecture

Yesterday we

- looked at how to use complex numbers to solve polynomial equations,
- looked at the fundamental theorem of algebra,
- introduced the complex exponential function,
- and studied extensions of trigonometric functions to the complex numbers.

Today's lecture

0
NTNU
Norwegian University of
Science and Technology

Today's lecture

Today we shall

Today's lecture

Today we shall

- study second-order linear differential equations,

Today's lecture

Today we shall

- study second-order linear differential equations,
- introduce the Wronskian,

Today's lecture

Today we shall

- study second-order linear differential equations,
- introduce the Wronskian,
- completely solve second-order homogeneous linear differential equations with constant coefficients.

Second-order differential equations

Second-order differential equations

A second-order differential equation is a differential equation which can be written on the form

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

0

Second-order differential equations

A second-order differential equation is a differential equation which can be written on the form

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

A solution to such an equation is a twice continuously differentiable function $y(t)$ satisfying

$$
y^{\prime \prime}(t)=f\left(t, y(t), y^{\prime}(t)\right)
$$

Examples of second-order differential equations

Examples of second-order differential equations

- $y^{\prime \prime}+\cos (y)=e^{t}$.

Examples of second-order differential equations

- $y^{\prime \prime}+\cos (y)=e^{t}$.
- $y^{\prime \prime}+5 y=0$.

Examples of second-order differential equations

- $y^{\prime \prime}+\cos (y)=e^{t}$.
- $y^{\prime \prime}+5 y=0$.
- $t^{2} y^{\prime \prime}+\sin (t) y=3$.

Second-order linear differential equations

Second-order linear differential equations

A second-order linear differential equation is a differential equation with can be written on the form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

Examples of second-order differential equations

Examples of second-order differential equations

- $y^{\prime \prime}+\cos (y)=e^{t}$ is not linear.

Examples of second-order differential equations

- $y^{\prime \prime}+\cos (y)=e^{t}$ is not linear.
- $y^{\prime \prime}+5 y=0$ is linear.

Examples of second-order differential equations

- $y^{\prime \prime}+\cos (y)=e^{t}$ is not linear.
- $y^{\prime \prime}+5 y=0$ is linear.
- $t^{3} y^{\prime \prime}+\sin (t) y=3$ is linear.

0

Existence and uniqueness of solutions to a second-order linear equation

Existence and uniqueness of solutions to a second-order linear equation

Suppose the functions p, q and g are continuous on the interval (α, β).

Existence and uniqueness of solutions to a second-order linear equation

Suppose the functions p, q and g are continuous on the interval (α, β). Let t_{0} be any point in (α, β).

Existence and uniqueness of solutions to a second-order linear equation

Suppose the functions p, q and g are continuous on the interval (α, β). Let t_{0} be any point in (α, β). Then for any real numbers a and b there is one and only one function defined on (α, β) which is a solution to

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

on (α, β) and satisfies the initial conditions $y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$.

Second-order linear homogeneous differential equations

Second-order linear homogeneous differential equations

A second-order linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

is homogeneous if $g=0$.

Second-order linear homogeneous differential equations

A second-order linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

is homogeneous if $g=0$. If $g \neq 0$, then the differential equation is called inhomogeneous or nonhomegeneous.

0

Second-order linear homogeneous differential equations

A second-order linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

is homogeneous if $g=0$. If $g \neq 0$, then the differential equation is called inhomogeneous or nonhomegeneous.

Examples

Norwegian University of
Science and Technology

Second-order linear homogeneous differential equations

A second-order linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

is homogeneous if $g=0$. If $g \neq 0$, then the differential equation is called inhomogeneous or nonhomegeneous.

Examples

- $y^{\prime \prime}+5 y=0$ is homogeneous.

Second-order linear homogeneous differential equations

A second-order linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

is homogeneous if $g=0$. If $g \neq 0$, then the differential equation is called inhomogeneous or nonhomegeneous.

Examples

- $y^{\prime \prime}+5 y=0$ is homogeneous.
- $t^{3} y^{\prime \prime}+\sin (t) y=3$ is inhomogeneous.

The superposition principle

The superposition principle

If y_{1} and y_{2} are solutions to the second-order homogeneous linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

then so is $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ for any choice of constants c_{1} and c_{2}.

Linear combinations

Linear combinations

- When y_{1} and y_{2} are functions and c_{1} and c_{2} are constants, then the function $c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is a linear combination of y_{1} and y_{2}.

Linear combinations

- When y_{1} and y_{2} are functions and c_{1} and c_{2} are constants, then the function $c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is a linear combination of y_{1} and y_{2}.
- So the previous results says that if y_{1} and y_{2} are solutions to a second-order homogeneous linear differential equation, then any linear combination of y_{1} and y_{2} is also a solution to the same differential equation.

0

Example

Example

Let us find the solution of the differential equation

$$
\begin{equation*}
y^{\prime \prime}-\frac{4}{t} y^{\prime}+\frac{6}{t^{2}} y=0 \tag{1}
\end{equation*}
$$

on the interval $(0, \infty)$ which satisfies that $y(2)=8$ and $y^{\prime}(2)=0$.

Example

Let us find the solution of the differential equation

$$
\begin{equation*}
y^{\prime \prime}-\frac{4}{t} y^{\prime}+\frac{6}{t^{2}} y=0 \tag{1}
\end{equation*}
$$

on the interval $(0, \infty)$ which satisfies that $y(2)=8$ and $y^{\prime}(2)=0$.
Let $y(t)=t^{n}$. Then

$$
\begin{aligned}
y^{\prime \prime}(t)-\frac{4}{t} y^{\prime}(t)+\frac{6}{t^{2}} y(t) & =n(n-1) t^{n-2}-4 n t^{n-2}+6 t^{n-2} \\
& =\left(n^{2}-5 n+6\right) t^{n-2} \\
& =(n-2)(n-3) t^{n-2} .
\end{aligned}
$$

Example

Let us find the solution of the differential equation

$$
\begin{equation*}
y^{\prime \prime}-\frac{4}{t} y^{\prime}+\frac{6}{t^{2}} y=0 \tag{1}
\end{equation*}
$$

on the interval $(0, \infty)$ which satisfies that $y(2)=8$ and $y^{\prime}(2)=0$.
Let $y(t)=t^{n}$. Then

$$
\begin{aligned}
y^{\prime \prime}(t)-\frac{4}{t} y^{\prime}(t)+\frac{6}{t^{2}} y(t) & =n(n-1) t^{n-2}-4 n t^{n-2}+6 t^{n-2} \\
& =\left(n^{2}-5 n+6\right) t^{n-2} \\
& =(n-2)(n-3) t^{n-2} .
\end{aligned}
$$

So y is a solution of (1) if and only if $n=2$ or $n=3$.

Example

Let $y(t)=c_{1} t^{2}+c_{2} t^{3}$ where c_{1} and c_{2} are constants.

Example

Let $y(t)=c_{1} t^{2}+c_{2} t^{3}$ where c_{1} and c_{2} are constants. Then it follows from the superposition principle and the calculations above that y is a solution of (1).

Example

Let $y(t)=c_{1} t^{2}+c_{2} t^{3}$ where c_{1} and c_{2} are constants. Then it follows from the superposition principle and the calculations above that y is a solution of (1).

$$
\begin{aligned}
y^{\prime}(t) & =2 c_{1} t+3 c_{2} t^{2}, \\
y(2) & =4 c_{1}+8 c_{2}, \\
y^{\prime}(2) & =4 c_{1}+12 c_{2},
\end{aligned}
$$

Example

Let $y(t)=c_{1} t^{2}+c_{2} t^{3}$ where c_{1} and c_{2} are constants. Then it follows from the superposition principle and the calculations above that y is a solution of (1).

$$
\begin{aligned}
y^{\prime}(t) & =2 c_{1} t+3 c_{2} t^{2}, \\
y(2) & =4 c_{1}+8 c_{2}, \\
y^{\prime}(2) & =4 c_{1}+12 c_{2},
\end{aligned}
$$

so $y(2)=8$ and $y^{\prime}(2)=0$ if and only if $4 c_{1}+8 c_{2}=8$ and $4 c_{1}+12 c_{2}=0$.

Example

The solution of the linear system

$$
\begin{aligned}
4 c_{1}+8 c_{2} & =8 \\
4 c_{1}+12 c_{2} & =0
\end{aligned}
$$

is $c_{1}=6$ and $c_{2}=-2$,

Example

The solution of the linear system

$$
\begin{array}{r}
4 c_{1}+8 c_{2}=8 \\
4 c_{1}+12 c_{2}=0
\end{array}
$$

is $c_{1}=6$ and $c_{2}=-2$, so the solution of (1) which satisfies that $y(2)=8$ and $y^{\prime}(2)=0$ is $y(t)=6 t^{2}-2 t^{3}$.

Example

Let $t_{0} \in(0, \infty)$ and $a, b \in \mathbb{R}$.

Example

Let $t_{0} \in(0, \infty)$ and $a, b \in \mathbb{R}$. Let us now find the solution of
(1) which satisfies that $y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$.

Example

Let $t_{0} \in(0, \infty)$ and $a, b \in \mathbb{R}$. Let us now find the solution of (1) which satisfies that $y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$. Let $y(t)=c_{1} t^{2}+c_{2} t^{3}$ where c_{1} and c_{2} are constants.

Example

Let $t_{0} \in(0, \infty)$ and $a, b \in \mathbb{R}$. Let us now find the solution of (1) which satisfies that $y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$.

Let $y(t)=c_{1} t^{2}+c_{2} t^{3}$ where c_{1} and c_{2} are constants. Then

$$
\begin{aligned}
y\left(t_{0}\right) & =c_{1} t_{0}^{2}+c_{2} t_{0}^{3} \\
y^{\prime}\left(t_{0}\right) & =2 c_{1} t_{0}+3 c_{2} t_{0}^{2}
\end{aligned}
$$

Example

Let $t_{0} \in(0, \infty)$ and $a, b \in \mathbb{R}$. Let us now find the solution of (1) which satisfies that $y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$.

Let $y(t)=c_{1} t^{2}+c_{2} t^{3}$ where c_{1} and c_{2} are constants. Then

$$
\begin{aligned}
y\left(t_{0}\right) & =c_{1} t_{0}^{2}+c_{2} t_{0}^{3} \\
y^{\prime}\left(t_{0}\right) & =2 c_{1} t_{0}+3 c_{2} t_{0}^{2}
\end{aligned}
$$

so $y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$. if and only if $c_{1} t_{0}^{2}+c_{2} t_{0}^{3}=a$ and $2 c_{1} t_{0}+3 c_{2} t_{0}^{2}=b$.

Example

The solution of the linear system

$$
\begin{aligned}
c_{1} t_{0}^{2}+c_{2} t_{0}^{3} & =a \\
2 c_{1} t_{0}+3 c_{2} t_{0}^{2} & =b
\end{aligned}
$$

is $c_{1}=\frac{3 a t_{0}^{2}-b t_{0}^{3}}{t_{0}^{4}}$ and $c_{2}=\frac{b t_{0}^{2}-2 a t_{0}}{t_{0}^{4}}$,

Example

The solution of the linear system

$$
\begin{aligned}
c_{1} t_{0}^{2}+c_{2} t_{0}^{3} & =a \\
2 c_{1} t_{0}+3 c_{2} t_{0}^{2} & =b
\end{aligned}
$$

is $c_{1}=\frac{3 a t_{0}^{2}-b t_{0}^{3}}{t_{0}^{4}}$ and $c_{2}=\frac{b t_{0}^{2}-2 a t_{0}}{t_{0}^{4}}$, so the solution of (1) which
satisfies that $y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$ is
$y(t)=\frac{3 a t_{0}^{2}-b t_{0}^{3}}{t_{0}^{4}} t^{2}-\frac{b t_{0}^{2}-2 a t_{0}}{t_{0}^{4}} t^{3}$.

Example

The solution of the linear system

$$
\begin{aligned}
c_{1} t_{0}^{2}+c_{2} t_{0}^{3} & =a \\
2 c_{1} t_{0}+3 c_{2} t_{0}^{2} & =b
\end{aligned}
$$

is $c_{1}=\frac{3 a t_{0}^{2}-b t_{0}^{3}}{t_{0}^{4}}$ and $c_{2}=\frac{b t_{0}^{2}-2 a t_{0}}{t_{0}^{4}}$, so the solution of (1) which
satisfies that $y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$ is
$y(t)=\frac{3 a t_{0}^{2}-b t_{0}^{3}}{t_{0}^{4}} t^{2}-\frac{b t_{0}^{2}-2 a t_{0}}{t_{0}^{4}} t^{3}$.
Notice that $t_{0}^{4}=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)$ where $y_{1}(t)=t^{2}$
and $y_{2}(t)=t^{3}$.

The Wronskian

Let u and v be two differential functions. The Wronskian of u and v is the function

$$
W(t)=\operatorname{det}\left(\begin{array}{cc}
u(t) & v(t) \\
u^{\prime}(t) & v^{\prime}(t)
\end{array}\right)=u(t) v^{\prime}(t)-v(t) u^{\prime}(t) .
$$

0

Solutions to initial value problems

NTNU
Norwegian University of
Science and Technology

Solutions to initial value problems

Suppose the functions y_{1} and y_{2} are solutions to the differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

on the interval (α, β).

0

Solutions to initial value problems

Suppose the functions y_{1} and y_{2} are solutions to the differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

on the interval (α, β). Let t_{0} be a point in the interval (α, β) and let a and b be arbitrary real numbers.

Solutions to initial value problems

Suppose the functions y_{1} and y_{2} are solutions to the differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

on the interval (α, β). Let t_{0} be a point in the interval (α, β) and let a and b be arbitrary real numbers. If $W(t)$ is the Wronskian of y_{1} and y_{2} and $W\left(t_{0}\right) \neq 0$,

0

Solutions to initial value problems

Suppose the functions y_{1} and y_{2} are solutions to the differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

on the interval (α, β). Let t_{0} be a point in the interval (α, β) and let a and b be arbitrary real numbers. If $W(t)$ is the Wronskian of y_{1} and y_{2} and $W\left(t_{0}\right) \neq 0$, then there exist constants c_{1} and c_{2} such that $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is the unique solution to (2) on (α, β) which satisfies $y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$.

Proof

Proof

It follows from the superposition principle that
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is a solution to (2) for any choice of constants c_{1} and c_{2}.

Proof

It follows from the superposition principle that $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is a solution to (2) for any choice of constants c_{1} and c_{2}.
$y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$ if and only if $c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=a$ and $c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=b$.

Proof

It follows from the superposition principle that $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is a solution to (2) for any choice of constants c_{1} and c_{2}.
$y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$ if and only if $c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=a$ and $c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=b$.
Since $y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)=W\left(t_{0}\right) \neq 0$,

Proof

It follows from the superposition principle that $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is a solution to (2) for any choice of constants c_{1} and c_{2}.
$y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$ if and only if $c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=a$ and $c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=b$.
Since $y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)=W\left(t_{0}\right) \neq 0$, the system

$$
\begin{aligned}
& c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=a \\
& c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=b
\end{aligned}
$$

has a solution,

Proof

It follows from the superposition principle that
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is a solution to (2) for any choice of constants c_{1} and c_{2}.
$y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$ if and only if $c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=a$ and $c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=b$.
Since $y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)=W\left(t_{0}\right) \neq 0$, the system

$$
\begin{aligned}
& c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=a \\
& c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=b
\end{aligned}
$$

has a solution, so there exist constants c_{1} and c_{2} such that $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is a solution to (2) on (α, β) which satisfies $y\left(t_{0}\right)=a$ and $y^{\prime}\left(t_{0}\right)=b$.

Proposition 1.26

Proposition 1.26

Suppose the functions y_{1} and y_{2} are solutions to the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

in the interval (α, β).

Proposition 1.26

Suppose the functions y_{1} and y_{2} are solutions to the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

in the interval (α, β). Then the Wronskian of y_{1} and y_{2} is either identically equal to zero on the interval (α, β), or it is never equal to zero on the interval (α, β).

Proof

Proof

If we differentiate the Wronskian W we get

$$
\begin{aligned}
W^{\prime}(t) & =\left(y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)\right)^{\prime} \\
& =y_{1}^{\prime}(t) y_{2}^{\prime}(t)+y_{1}(t) y_{2}^{\prime \prime}(t)-y_{1}^{\prime \prime}(t) y_{2}(t)-y_{1}^{\prime}(t) y_{2}^{\prime}(t) \\
& =y_{1}(t) y_{2}^{\prime \prime}(t)-y_{1}^{\prime \prime}(t) y_{2}(t) .
\end{aligned}
$$

Proof

If we differentiate the Wronskian W we get

$$
\begin{aligned}
W^{\prime}(t) & =\left(y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)\right)^{\prime} \\
& =y_{1}^{\prime}(t) y_{2}^{\prime}(t)+y_{1}(t) y_{2}^{\prime \prime}(t)-y_{1}^{\prime \prime}(t) y_{2}(t)-y_{1}^{\prime}(t) y_{2}^{\prime}(t) \\
& =y_{1}(t) y_{2}^{\prime \prime}(t)-y_{1}^{\prime \prime}(t) y_{2}(t) .
\end{aligned}
$$

Since y_{1} and y_{2} are solutions to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$, we have that $y_{1}^{\prime \prime}(t)=-p(t) y_{1}^{\prime}(t)-q(t) y_{1}$ and $y_{2}^{\prime \prime}(t)=-p(t) y_{2}^{\prime}(t)-q(t) y_{2}$.

Proof

It follows that

$$
\begin{aligned}
W^{\prime}(t)= & y_{1}(t) y_{2}^{\prime \prime}(t)-y_{1}^{\prime \prime}(t) y_{2}(t) \\
= & -p(t) y_{1}(t) y_{2}^{\prime}(t)-q(t) y_{1}(t) y_{2}(t) \\
& +p(t) y_{1}^{\prime}(t) y_{2}(t)+q(t) y_{1}(t) y_{2}(t) \\
= & -p(t) y_{1}(t) y_{2}^{\prime}(t)+p(t) y_{1}^{\prime}(t) y_{2}(t) \\
= & -p(t)\left(1_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)\right) \\
= & -p(t) W(t),
\end{aligned}
$$

so W is a solution to the first-order differential equation

$$
W^{\prime}=-p W .
$$

Proof

If t_{0} is a point in (α, β), the solution to this equation is

$$
W(t)=W\left(t_{0}\right) e^{-\int_{t_{0}}^{t} p(s) d s}
$$

0

Proof

If t_{0} is a point in (α, β), the solution to this equation is

$$
W(t)=W\left(t_{0}\right) e^{-\int_{t_{0}}^{t} p(s) d s}
$$

It follows that if $W\left(t_{0}\right)=0$, then $W(t)=0$ for all t in (α, β),

Proof

If t_{0} is a point in (α, β), the solution to this equation is

$$
W(t)=W\left(t_{0}\right) e^{-\int_{t_{0}}^{t} p(s) d s}
$$

It follows that if $W\left(t_{0}\right)=0$, then $W(t)=0$ for all t in (α, β), and if $W\left(t_{0}\right) \neq 0$, then $W(t) \neq 0$ for all t in (α, β).

Linear dependent functions

Linear dependent functions

- Two functions u and v are linear dependent on an interval (α, β) if there exist two constants c_{1} and c_{2}, which are no both zero, such that $c_{1} u(t)+c_{2} v(t)=0$ for all $t \in(\alpha, \beta)$.

Linear dependent functions

- Two functions u and v are linear dependent on an interval (α, β) if there exist two constants c_{1} and c_{2}, which are no both zero, such that $c_{1} u(t)+c_{2} v(t)=0$ for all $t \in(\alpha, \beta)$.
- u and v are linear independent if they are not linear dependent.

Linear dependent functions

- Two functions u and v are linear dependent on an interval (α, β) if there exist two constants c_{1} and c_{2}, which are no both zero, such that $c_{1} u(t)+c_{2} v(t)=0$ for all $t \in(\alpha, \beta)$.
- u and v are linear independent if they are not linear dependent.
- If $u=c v$ for some constant c, then u and v are linear dependent because $u-c v=0$.

Linear dependent functions

- Two functions u and v are linear dependent on an interval (α, β) if there exist two constants c_{1} and c_{2}, which are no both zero, such that $c_{1} u(t)+c_{2} v(t)=0$ for all $t \in(\alpha, \beta)$.
- u and v are linear independent if they are not linear dependent.
- If $u=c v$ for some constant c, then u and v are linear dependent because $u-c v=0$.
- Conversely, if u and v are linear dependent, then $c_{1} u+c_{2} v=0$ for some choice of constants c_{1} and c_{2} which are no both zero,

Linear dependent functions

- Two functions u and v are linear dependent on an interval (α, β) if there exist two constants c_{1} and c_{2}, which are no both zero, such that $c_{1} u(t)+c_{2} v(t)=0$ for all $t \in(\alpha, \beta)$.
- u and v are linear independent if they are not linear dependent.
- If $u=c v$ for some constant c, then u and v are linear dependent because $u-c v=0$.
- Conversely, if u and v are linear dependent, then $c_{1} u+c_{2} v=0$ for some choice of constants c_{1} and c_{2} which are no both zero, and then $u=-\left(c_{2} / c_{1}\right) v$ if $c_{1} \neq 0$, and $v=-\left(c_{1} / c_{2}\right) u$ if $c_{2} \neq 0$.

NTNU
Norwegian University of Science and Technology

Linear dependent functions

Two functions u and v are linear dependent if and only if u is a constant multiple of v, or v is a constant multiple of u.

Proposition 1.27

Proposition 1.27

Suppose the functions y_{1} and y_{2} are solutions to the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

in the interval (α, β).

0

Proposition 1.27

Suppose the functions y_{1} and y_{2} are solutions to the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

in the interval (α, β).
Then y_{1} and y_{2} are linearly dependent on (α, β) if and only if the Wronskian of y_{1} and y_{2} is identically equal to zero on the interval (α, β).

Proof

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c,

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c, then
$W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{2}(t) y_{2}^{\prime}(t)-c y_{2}^{\prime}(t) y_{2}(t)=0$.

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c, then
$W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{2}(t) y_{2}^{\prime}(t)-c y_{2}^{\prime}(t) y_{2}(t)=0$.
Similarly, if $y_{2}(t)=c y_{1}(t)$ some constant c,

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c, then
$W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{2}(t) y_{2}^{\prime}(t)-c y_{2}^{\prime}(t) y_{2}(t)=0$.
Similarly, if $y_{2}(t)=c y_{1}(t)$ some constant c, then $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{1}(t) y_{1}^{\prime}(t)-c y_{1}^{\prime}(t) y_{1}(t)=0$.

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c, then
$W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{2}(t) y_{2}^{\prime}(t)-c y_{2}^{\prime}(t) y_{2}(t)=0$.
Similarly, if $y_{2}(t)=c y_{1}(t)$ some constant c, then $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{1}(t) y_{1}^{\prime}(t)-c y_{1}^{\prime}(t) y_{1}(t)=0$.
Conversely, suppose that $W(t)=0$ for all t in (α, β).

0

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c, then
$W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{2}(t) y_{2}^{\prime}(t)-c y_{2}^{\prime}(t) y_{2}(t)=0$.
Similarly, if $y_{2}(t)=c y_{1}(t)$ some constant c, then $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{1}(t) y_{1}^{\prime}(t)-c y_{1}^{\prime}(t) y_{1}(t)=0$. Conversely, suppose that $W(t)=0$ for all t in (α, β). If $y_{2}(t)=0$, then $y_{2}(t)=0 y_{1}(t)$.

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c, then
$W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{2}(t) y_{2}^{\prime}(t)-c y_{2}^{\prime}(t) y_{2}(t)=0$.
Similarly, if $y_{2}(t)=c y_{1}(t)$ some constant c, then $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{1}(t) y_{1}^{\prime}(t)-c y_{1}^{\prime}(t) y_{1}(t)=0$. Conversely, suppose that $W(t)=0$ for all t in (α, β). If $y_{2}(t)=0$, then $y_{2}(t)=0 y_{1}(t)$. If $y_{2}\left(t_{0}\right) \neq 0$ for some t_{0} in (α, β),

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c, then
$W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{2}(t) y_{2}^{\prime}(t)-c y_{2}^{\prime}(t) y_{2}(t)=0$.
Similarly, if $y_{2}(t)=c y_{1}(t)$ some constant c, then $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{1}(t) y_{1}^{\prime}(t)-c y_{1}^{\prime}(t) y_{1}(t)=0$.
Conversely, suppose that $W(t)=0$ for all t in (α, β). If $y_{2}(t)=0$, then $y_{2}(t)=0 y_{1}(t)$. If $y_{2}\left(t_{0}\right) \neq 0$ for some t_{0} in (α, β), then it follows from the continuity of y_{2} that there is a subinterval (c, d) of (α, β) which contains t_{0} such that $y_{2}(t) \neq 0$ for all t in (c, d).

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c, then
$W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{2}(t) y_{2}^{\prime}(t)-c y_{2}^{\prime}(t) y_{2}(t)=0$.
Similarly, if $y_{2}(t)=c y_{1}(t)$ some constant c, then $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{1}(t) y_{1}^{\prime}(t)-c y_{1}^{\prime}(t) y_{1}(t)=0$.
Conversely, suppose that $W(t)=0$ for all t in (α, β). If $y_{2}(t)=0$, then $y_{2}(t)=0 y_{1}(t)$. If $y_{2}\left(t_{0}\right) \neq 0$ for some t_{0} in (α, β), then it follows from the continuity of y_{2} that there is a subinterval (c, d) of (α, β) which contains t_{0} such that $y_{2}(t) \neq 0$ for all t in (c, d). On this interval we have

$$
\frac{d}{d t}\left(y_{1}(t) / y_{2}(t)\right)
$$

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c, then
$W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{2}(t) y_{2}^{\prime}(t)-c y_{2}^{\prime}(t) y_{2}(t)=0$.
Similarly, if $y_{2}(t)=c y_{1}(t)$ some constant c, then $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{1}(t) y_{1}^{\prime}(t)-c y_{1}^{\prime}(t) y_{1}(t)=0$.
Conversely, suppose that $W(t)=0$ for all t in (α, β). If $y_{2}(t)=0$, then $y_{2}(t)=0 y_{1}(t)$. If $y_{2}\left(t_{0}\right) \neq 0$ for some t_{0} in (α, β), then it follows from the continuity of y_{2} that there is a subinterval (c, d) of (α, β) which contains t_{0} such that $y_{2}(t) \neq 0$ for all t in (c, d). On this interval we have

$$
\frac{d}{d t}\left(y_{1}(t) / y_{2}(t)\right)=\frac{y_{1}^{\prime}(t) y_{2}(t)-y_{1}(t) y_{2}^{\prime}(t)}{\left(y_{2}(t)\right)^{2}}
$$

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c, then
$W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{2}(t) y_{2}^{\prime}(t)-c y_{2}^{\prime}(t) y_{2}(t)=0$.
Similarly, if $y_{2}(t)=c y_{1}(t)$ some constant c, then $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{1}(t) y_{1}^{\prime}(t)-c y_{1}^{\prime}(t) y_{1}(t)=0$.
Conversely, suppose that $W(t)=0$ for all t in (α, β). If $y_{2}(t)=0$, then $y_{2}(t)=0 y_{1}(t)$. If $y_{2}\left(t_{0}\right) \neq 0$ for some t_{0} in (α, β), then it follows from the continuity of y_{2} that there is a subinterval (c, d) of (α, β) which contains t_{0} such that $y_{2}(t) \neq 0$ for all t in (c, d). On this interval we have

$$
\frac{d}{d t}\left(y_{1}(t) / y_{2}(t)\right)=\frac{y_{1}^{\prime}(t) y_{2}(t)-y_{1}(t) y_{2}^{\prime}(t)}{\left(y_{2}(t)\right)^{2}}=\frac{-W(t)}{\left(y_{2}(t)\right)^{2}}
$$

Proof

If $y_{1}(t)=c y_{2}(t)$ for some constant c, then
$W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{2}(t) y_{2}^{\prime}(t)-c y_{2}^{\prime}(t) y_{2}(t)=0$.
Similarly, if $y_{2}(t)=c y_{1}(t)$ some constant c, then $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=c y_{1}(t) y_{1}^{\prime}(t)-c y_{1}^{\prime}(t) y_{1}(t)=0$.
Conversely, suppose that $W(t)=0$ for all t in (α, β). If $y_{2}(t)=0$, then $y_{2}(t)=0 y_{1}(t)$. If $y_{2}\left(t_{0}\right) \neq 0$ for some t_{0} in (α, β), then it follows from the continuity of y_{2} that there is a subinterval (c, d) of (α, β) which contains t_{0} such that $y_{2}(t) \neq 0$ for all t in (c, d). On this interval we have

$$
\frac{d}{d t}\left(y_{1}(t) / y_{2}(t)\right)=\frac{y_{1}^{\prime}(t) y_{2}(t)-y_{1}(t) y_{2}^{\prime}(t)}{\left(y_{2}(t)\right)^{2}}=\frac{-W(t)}{\left(y_{2}(t)\right)^{2}}=0 .
$$

When is the Wronskian zero?

Hence, on the interval $(c, d), y_{1}(t) / y_{2}(t)$ is equal to a constant c, and $y_{1}(t)=c y_{2}(t)$.

When is the Wronskian zero?

Hence, on the interval $(c, d), y_{1}(t) / y_{2}(t)$ is equal to a constant c, and $y_{1}(t)=c y_{2}(t)$. In particular, $y_{1}\left(t_{0}\right)=c y_{2}\left(t_{0}\right)$ and $y_{1}^{\prime}\left(t_{0}\right)=c y_{2}^{\prime}\left(t_{0}\right)$.

When is the Wronskian zero?

Hence, on the interval $(c, d), y_{1}(t) / y_{2}(t)$ is equal to a constant c, and $y_{1}(t)=c y_{2}(t)$. In particular, $y_{1}\left(t_{0}\right)=c y_{2}\left(t_{0}\right)$ and $y_{1}^{\prime}\left(t_{0}\right)=c y_{2}^{\prime}\left(t_{0}\right)$.
Since both $y_{1}(t)$ and $c y_{2}(t)$ are solutions to the initial value problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, y\left(t_{0}\right)=y_{1}\left(t_{0}\right), y^{\prime}\left(t_{0}\right)=y_{1}^{\prime}\left(t_{0}\right)
$$

on (α, β),

When is the Wronskian zero?

Hence, on the interval $(c, d), y_{1}(t) / y_{2}(t)$ is equal to a constant c, and $y_{1}(t)=c y_{2}(t)$. In particular, $y_{1}\left(t_{0}\right)=c y_{2}\left(t_{0}\right)$ and $y_{1}^{\prime}\left(t_{0}\right)=c y_{2}^{\prime}\left(t_{0}\right)$.
Since both $y_{1}(t)$ and $c y_{2}(t)$ are solutions to the initial value problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, y\left(t_{0}\right)=y_{1}\left(t_{0}\right), y^{\prime}\left(t_{0}\right)=y_{1}^{\prime}\left(t_{0}\right)
$$

on (α, β), it follows that $y_{1}(t)=c y_{2}(t)$ on (α, β).

Theorem 1.23

Theorem 1.23

Suppose that y_{1} and y_{2} are linearly independent solutions to the differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

on the interval (α, β). Then any solution to the equation is a linear combination of y_{1} and y_{2}.

Proof

Proof

Since y_{1} and y_{2} are linearly independent, neither is a constant multiple of the other,

Proof

Since y_{1} and y_{2} are linearly independent, neither is a constant multiple of the other, so the Wronskian W of y_{1} and y_{2} is not zero at any point.

Proof

Since y_{1} and y_{2} are linearly independent, neither is a constant multiple of the other, so the Wronskian W of y_{1} and y_{2} is not zero at any point.
Let y be a solution to the equation.

Proof

Since y_{1} and y_{2} are linearly independent, neither is a constant multiple of the other, so the Wronskian W of y_{1} and y_{2} is not zero at any point.
Let \boldsymbol{y} be a solution to the equation. Pick a point t_{0} in (α, β) and let $a=y\left(t_{0}\right)$ and $b=y^{\prime}\left(t_{0}\right)$.

Proof

Since y_{1} and y_{2} are linearly independent, neither is a constant multiple of the other, so the Wronskian W of y_{1} and y_{2} is not zero at any point.
Let y be a solution to the equation. Pick a point t_{0} in (α, β) and let $a=y\left(t_{0}\right)$ and $b=y^{\prime}\left(t_{0}\right)$.
Since $W\left(t_{0}\right) \neq 0$ there exist constants c_{1} and c_{2} such that $c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=a$ and $c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=b$.

Proof

Since y_{1} and y_{2} are linearly independent, neither is a constant multiple of the other, so the Wronskian W of y_{1} and y_{2} is not zero at any point.
Let y be a solution to the equation. Pick a point t_{0} in (α, β) and let $a=y\left(t_{0}\right)$ and $b=y^{\prime}\left(t_{0}\right)$.
Since $W\left(t_{0}\right) \neq 0$ there exist constants c_{1} and c_{2} such that $c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=a$ and $c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=b$.
Then both y and $c_{1} y_{1}+c_{2} y_{2}$ are solutions to the initial value problem $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, y\left(t_{0}\right)=a, y^{\prime}\left(t_{0}\right)=b$ on the interval (α, β).

Proof

Since y_{1} and y_{2} are linearly independent, neither is a constant multiple of the other, so the Wronskian W of y_{1} and y_{2} is not zero at any point.
Let y be a solution to the equation. Pick a point t_{0} in (α, β) and let $a=y\left(t_{0}\right)$ and $b=y^{\prime}\left(t_{0}\right)$.
Since $W\left(t_{0}\right) \neq 0$ there exist constants c_{1} and c_{2} such that $c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=a$ and $c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=b$.
Then both y and $c_{1} y_{1}+c_{2} y_{2}$ are solutions to the initial value problem $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, y\left(t_{0}\right)=a, y^{\prime}\left(t_{0}\right)=b$ on the interval (α, β). It follows that $y=c_{1} y_{1}+c_{2} y_{2}$.

Fundamental set of solutions

Fundamental set of solutions

- Two linearly independent solutions to a second-order homogeneous linear differential equation is said to form a fundamental set of solutions.

Fundamental set of solutions

- Two linearly independent solutions to a second-order homogeneous linear differential equation is said to form a fundamental set of solutions.
- The previous result then says that if y_{1}, y_{2} form a fundamental set of solutions to a second-order homogeneous linear differential equation, then any solution to that differential equation can be written as a linear combination of y_{1} and y_{2}.

Fundamental set of solutions

- Two linearly independent solutions to a second-order homogeneous linear differential equation is said to form a fundamental set of solutions.
- The previous result then says that if y_{1}, y_{2} form a fundamental set of solutions to a second-order homogeneous linear differential equation, then any solution to that differential equation can be written as a linear combination of y_{1} and y_{2}.
- If y_{1} and y_{2} are solution to a second-order homogeneous linear differential equation, then we can check if they form a fundamental set of solutions either

Fundamental set of solutions

- Two linearly independent solutions to a second-order homogeneous linear differential equation is said to form a fundamental set of solutions.
- The previous result then says that if y_{1}, y_{2} form a fundamental set of solutions to a second-order homogeneous linear differential equation, then any solution to that differential equation can be written as a linear combination of y_{1} and y_{2}.
- If y_{1} and y_{2} are solution to a second-order homogeneous linear differential equation, then we can check if they form a fundamental set of solutions either
(1) by showing that neither is a constant multiple of the other,

Fundamental set of solutions

- Two linearly independent solutions to a second-order homogeneous linear differential equation is said to form a fundamental set of solutions.
- The previous result then says that if y_{1}, y_{2} form a fundamental set of solutions to a second-order homogeneous linear differential equation, then any solution to that differential equation can be written as a linear combination of y_{1} and y_{2}.
- If y_{1} and y_{2} are solution to a second-order homogeneous linear differential equation, then we can check if they form a fundamental set of solutions either
(1) by showing that neither is a constant multiple of the other,
(2) or by showing that the Wronskian of y_{1} and y_{2} is not zero at any point.

Second-order homogeneous linear differential equations with constant coefficients

Second-order homogeneous linear differential equations with constant coefficients

A second-order homogeneous linear differential equation with constant coefficients is a differential equation with can be written on the form

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

where p and q are constants.

a

Finding solutions to second-order homogeneous linear differential equations with constant coefficients

Finding solutions to second-order homogeneous linear differential equations with constant coefficients

Inserting $y(t)=e^{\lambda t}$ into the differential equation, we obtain

Finding solutions to second-order homogeneous linear differential equations with constant coefficients

Inserting $y(t)=e^{\lambda t}$ into the differential equation, we obtain

$$
y^{\prime \prime}+p y^{\prime}+q y=\lambda^{2} e^{\lambda t}+p \lambda e^{\lambda t}+q e^{\lambda t}=\left(\lambda^{2}+p \lambda+q\right) e^{\lambda t} .
$$

Finding solutions to second-order homogeneous linear differential equations with constant coefficients

Inserting $y(t)=e^{\lambda t}$ into the differential equation, we obtain

$$
y^{\prime \prime}+p y^{\prime}+q y=\lambda^{2} e^{\lambda t}+p \lambda e^{\lambda t}+q e^{\lambda t}=\left(\lambda^{2}+p \lambda+q\right) e^{\lambda t} .
$$

Since $e^{\lambda t} \neq 0$, we have that $y(t)=e^{\lambda t}$ is a solution if and only if $\lambda^{2}+p \lambda+q=0$.

Characteristic polynomial

The polynomial $\lambda^{2}+p \lambda+q$ is called the characteristic polynomial of the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.

Characteristic polynomial

The polynomial $\lambda^{2}+p \lambda+q$ is called the characteristic polynomial of the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$. A root of the characteristic polynomial is called a characteristic root.

Characteristic polynomial

The polynomial $\lambda^{2}+p \lambda+q$ is called the characteristic polynomial of the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$. A root of the characteristic polynomial is called a characteristic root.
The characteristic roots are

$$
\lambda=\frac{-p \pm \sqrt{p^{2}-4 q}}{2}
$$

0

Characteristic polynomial

The polynomial $\lambda^{2}+p \lambda+q$ is called the characteristic polynomial of the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$. A root of the characteristic polynomial is called a characteristic root.
The characteristic roots are

$$
\lambda=\frac{-p \pm \sqrt{p^{2}-4 q}}{2} .
$$

Looking at the discriminant $p^{2}-4 q$, we see that there are 3 cases to consider:

Characteristic polynomial

The polynomial $\lambda^{2}+p \lambda+q$ is called the characteristic polynomial of the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$. A root of the characteristic polynomial is called a characteristic root.
The characteristic roots are

$$
\lambda=\frac{-p \pm \sqrt{p^{2}-4 q}}{2} .
$$

Looking at the discriminant $p^{2}-4 q$, we see that there are 3 cases to consider:
(c) $p^{2}-4 q>0$,

0

Characteristic polynomial

The polynomial $\lambda^{2}+p \lambda+q$ is called the characteristic polynomial of the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$. A root of the characteristic polynomial is called a characteristic root.
The characteristic roots are

$$
\lambda=\frac{-p \pm \sqrt{p^{2}-4 q}}{2} .
$$

Looking at the discriminant $p^{2}-4 q$, we see that there are 3 cases to consider:
(1) $p^{2}-4 q>0$,
(2) $p^{2}-4 q<0$,

Characteristic polynomial

The polynomial $\lambda^{2}+p \lambda+q$ is called the characteristic polynomial of the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$. A root of the characteristic polynomial is called a characteristic root.
The characteristic roots are

$$
\lambda=\frac{-p \pm \sqrt{p^{2}-4 q}}{2} .
$$

Looking at the discriminant $p^{2}-4 q$, we see that there are 3 cases to consider:
(1) $p^{2}-4 q>0$,
(2) $p^{2}-4 q<0$,
(3) $p^{2}-4 q=0$.

Distinct real root

Distinct real root

If $p^{2}-4 q>0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ has two distinct real roots λ_{1} and λ_{2}.

Distinct real root

If $p^{2}-4 q>0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ has two distinct real roots λ_{1} and λ_{2}.
The 2 functions $y_{1}(t)=e^{\lambda_{1} t}$ and $y_{2}(t)=e^{\lambda_{2} t}$ are then solutions to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.

Distinct real root

If $p^{2}-4 q>0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ has two distinct real roots λ_{1} and λ_{2}.
The 2 functions $y_{1}(t)=e^{\lambda_{1} t}$ and $y_{2}(t)=e^{\lambda_{2} t}$ are then solutions to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$. The Wronskian of y_{1} and y_{2} is then

$$
W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

Distinct real root

If $p^{2}-4 q>0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ has two distinct real roots λ_{1} and λ_{2}.
The 2 functions $y_{1}(t)=e^{\lambda_{1} t}$ and $y_{2}(t)=e^{\lambda_{2} t}$ are then solutions to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$. The Wronskian of y_{1} and y_{2} is then

$$
W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)=\lambda_{2} e^{\lambda_{1} t} e^{\lambda_{2} t}-\lambda_{1} e^{\lambda_{2} t} e^{\lambda_{1} t}
$$

Distinct real root

If $p^{2}-4 q>0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ has two distinct real roots λ_{1} and λ_{2}.
The 2 functions $y_{1}(t)=e^{\lambda_{1} t}$ and $y_{2}(t)=e^{\lambda_{2} t}$ are then solutions to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$. The Wronskian of y_{1} and y_{2} is then

$$
\begin{aligned}
W(t) & =y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)=\lambda_{2} e^{\lambda_{1} t} e^{\lambda_{2} t}-\lambda_{1} e^{\lambda_{2} t} e^{\lambda_{1} t} \\
& =\left(\lambda_{2}-\lambda_{1}\right) e^{\left(\lambda_{1}+\lambda_{2}\right) t}
\end{aligned}
$$

Distinct real root

If $p^{2}-4 q>0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ has two distinct real roots λ_{1} and λ_{2}.
The 2 functions $y_{1}(t)=e^{\lambda_{1} t}$ and $y_{2}(t)=e^{\lambda_{2} t}$ are then solutions to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$. The Wronskian of y_{1} and y_{2} is then

$$
\begin{aligned}
W(t) & =y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)=\lambda_{2} e^{\lambda_{1} t} e^{\lambda_{2} t}-\lambda_{1} e^{\lambda_{2} t} e^{\lambda_{1} t} \\
& =\left(\lambda_{2}-\lambda_{1}\right) e^{\left(\lambda_{1}+\lambda_{2}\right) t} \neq 0
\end{aligned}
$$

Distinct real root

If $p^{2}-4 q>0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ has two distinct real roots λ_{1} and λ_{2}.
The 2 functions $y_{1}(t)=e^{\lambda_{1} t}$ and $y_{2}(t)=e^{\lambda_{2} t}$ are then solutions to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$. The Wronskian of y_{1} and y_{2} is then

$$
\begin{aligned}
W(t) & =y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)=\lambda_{2} e^{\lambda_{1} t} e^{\lambda_{2} t}-\lambda_{1} e^{\lambda_{2} t} e^{\lambda_{1} t} \\
& =\left(\lambda_{2}-\lambda_{1}\right) e^{\left(\lambda_{1}+\lambda_{2}\right) t} \neq 0
\end{aligned}
$$

so y_{1} and y_{2} forms a fundamental set of solutions, and every solution of $y^{\prime \prime}+p y^{\prime}+q y=0$ has the form $c_{1} y_{1}+c_{2} y_{2}$ where c_{1} and c_{2} are constants.

Example

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$.

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$.
The characteristic polynomial is $\lambda^{2}-3 \lambda+2$,

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$.
The characteristic polynomial is $\lambda^{2}-3 \lambda+2$, and the
characteristic roots are $\lambda=\frac{3 \pm \sqrt{9-8}}{2}=\frac{3 \pm 1}{2}=\left\{\begin{array}{ll}2 \\ 1\end{array}\right.$.

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$.
The characteristic polynomial is $\lambda^{2}-3 \lambda+2$, and the
characteristic roots are $\lambda=\frac{3 \pm \sqrt{9-8}}{2}=\frac{3 \pm 1}{2}=\left\{\begin{array}{l}2 \\ 1\end{array}\right.$.
It follows that the general solution is $y(t)=c_{1} e^{2 t}+c_{2} e^{t}$.

Complex roots

Complex roots

If $p^{2}-4 q<0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ has two distinct complex roots λ_{1} and λ_{2}

0

Complex roots

If $p^{2}-4 q<0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ has two distinct complex roots λ_{1} and λ_{2} which have the form $\lambda_{1}=a+i b$ and $\lambda_{2}=a-i b$ where a and b are real numbers and $b \neq 0$.

Complex roots

If $p^{2}-4 q<0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ has two distinct complex roots λ_{1} and λ_{2} which have the form $\lambda_{1}=a+i b$ and $\lambda_{2}=a-i b$ where a and b are real numbers and $b \neq 0$.
The 2 functions $z_{1}(t)=e^{\lambda_{1} t}=e^{a t}(\cos (b t)+i \sin (b t))$ and $z_{2}(t)=e^{\lambda_{2} t}=e^{a t}(\cos (b t)-i \sin (b t))$ are then solutions to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.

Complex roots

If $p^{2}-4 q<0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ has two distinct complex roots λ_{1} and λ_{2} which have the form $\lambda_{1}=a+i b$ and $\lambda_{2}=a-i b$ where a and b are real numbers and $b \neq 0$.
The 2 functions $z_{1}(t)=e^{\lambda_{1} t}=e^{a t}(\cos (b t)+i \sin (b t))$ and $z_{2}(t)=e^{\lambda_{2} t}=e^{a t}(\cos (b t)-i \sin (b t))$ are then solutions to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
The two functions $y_{1}(t)=\operatorname{Re}\left(z_{1}(t)\right)=e^{a t} \cos (b t)$ and $y_{2}(t)=\operatorname{Im}\left(z_{1}(t)\right)=e^{a t} \sin (b t)$ are also solutions to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.

Complex roots

The Wronskian of $y_{1}(t)=e^{a t} \cos (b t)$ and $y_{2}=e^{a t} \sin (b t)$ is $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)$

Complex roots

The Wronskian of $y_{1}(t)=e^{a t} \cos (b t)$ and $y_{2}=e^{a t} \sin (b t)$ is

$$
\begin{aligned}
W(t)= & y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t) \\
= & e^{a t} \cos (b t)\left(a e^{a t} \sin (b t)+b e^{a t} \cos (b t)\right) \\
& -e^{a t} \sin (b t)\left(a e^{a t} \cos (b t)-b e^{a t} \sin (b t)\right)
\end{aligned}
$$

Complex roots

The Wronskian of $y_{1}(t)=e^{a t} \cos (b t)$ and $y_{2}=e^{a t} \sin (b t)$ is

$$
\begin{aligned}
W(t)= & y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t) \\
= & e^{a t} \cos (b t)\left(a e^{a t} \sin (b t)+b e^{a t} \cos (b t)\right) \\
& -e^{a t} \sin (b t)\left(a e^{a t} \cos (b t)-b e^{a t} \sin (b t)\right) \\
= & b e^{2 a t} \cos ^{2}(b t)+b e^{2 a t} \sin ^{2}(b t)
\end{aligned}
$$

Complex roots

The Wronskian of $y_{1}(t)=e^{a t} \cos (b t)$ and $y_{2}=e^{a t} \sin (b t)$ is

$$
\begin{aligned}
W(t)= & y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t) \\
= & e^{a t} \cos (b t)\left(a e^{a t} \sin (b t)+b e^{a t} \cos (b t)\right) \\
& -e^{a t} \sin (b t)\left(a e^{a t} \cos (b t)-b e^{a t} \sin (b t)\right) \\
= & b e^{2 a t} \cos ^{2}(b t)+b e^{2 a t} \sin ^{2}(b t) \\
= & b e^{2 a t} \neq 0
\end{aligned}
$$

Complex roots

The Wronskian of $y_{1}(t)=e^{a t} \cos (b t)$ and $y_{2}=e^{a t} \sin (b t)$ is

$$
\begin{aligned}
W(t)= & y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t) \\
= & e^{a t} \cos (b t)\left(a e^{a t} \sin (b t)+b e^{a t} \cos (b t)\right) \\
& -e^{a t} \sin (b t)\left(a e^{a t} \cos (b t)-b e^{a t} \sin (b t)\right) \\
= & b e^{2 a t} \cos ^{2}(b t)+b e^{2 a t} \sin ^{2}(b t) \\
= & b e^{2 a t} \neq 0
\end{aligned}
$$

so y_{1} and y_{2} forms a fundamental set of solutions, and every solution of $y^{\prime \prime}+p y^{\prime}+q y=0$ has the form $c_{1} e^{a t} \cos (b t)+c_{2} e^{a t} \sin (b t)$ where c_{1} and c_{2} are constants.

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}+2 y^{\prime}+2 y=0$.

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}+2 y^{\prime}+2 y=0$.
 The characteristic polynomial is $\lambda^{2}+2 \lambda+2$,

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}+2 y^{\prime}+2 y=0$.
The characteristic polynomial is $\lambda^{2}+2 \lambda+2$, and the characteristic roots are
$\lambda=\frac{-2 \pm \sqrt{4-8}}{2}=\frac{-2 \pm-4}{2}=\frac{-2 \pm 2 i}{2}=-1 \pm i$.

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}+2 y^{\prime}+2 y=0$.
The characteristic polynomial is $\lambda^{2}+2 \lambda+2$, and the characteristic roots are
$\lambda=\frac{-2 \pm \sqrt{4-8}}{2}=\frac{-2 \pm-4}{2}=\frac{-2 \pm 2 i}{2}=-1 \pm i$.
It follows that the general solution is
$y(t)=c_{1} e^{-t} \cos (t)+c_{2} e^{-t} \sin (t)$.

Repeated roots

Repeated roots

If $p^{2}-4 q=0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ just have one root $\lambda=-p / 2$.

Repeated roots

If $p^{2}-4 q=0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ just have one root $\lambda=-p / 2$.
The function $y_{1}(t)=e^{\lambda t}$ is a solution to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.

Repeated roots

If $p^{2}-4 q=0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ just have one root $\lambda=-p / 2$.
The function $y_{1}(t)=e^{\lambda t}$ is a solution to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
Let $y_{2}(t)=t e^{\lambda t}$.

Repeated roots

If $p^{2}-4 q=0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ just have one root $\lambda=-p / 2$.
The function $y_{1}(t)=e^{\lambda t}$ is a solution to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
Let $y_{2}(t)=t e^{\lambda t}$. Then $y_{2}^{\prime}(t)=e^{\lambda t}+\lambda t e^{\lambda t}$,

Repeated roots

If $p^{2}-4 q=0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ just have one root $\lambda=-p / 2$.
The function $y_{1}(t)=e^{\lambda t}$ is a solution to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
Let $y_{2}(t)=t e^{\lambda t}$. Then $y_{2}^{\prime}(t)=e^{\lambda t}+\lambda t e^{\lambda t}$,
$y_{2}^{\prime \prime}(t)=\lambda e^{\lambda t}+\lambda e^{\lambda t}+\lambda^{2} t e^{\lambda t}$

Repeated roots

If $p^{2}-4 q=0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ just have one root $\lambda=-p / 2$.
The function $y_{1}(t)=e^{\lambda t}$ is a solution to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
Let $y_{2}(t)=t e^{\lambda t}$. Then $y_{2}^{\prime}(t)=e^{\lambda t}+\lambda t e^{\lambda t}$,
$y_{2}^{\prime \prime}(t)=\lambda e^{\lambda t}+\lambda e^{\lambda t}+\lambda^{2} t e^{\lambda t}$ and
$y_{2}^{\prime \prime}(t)+p y_{2}^{\prime}(t)+q y_{2}(t)$

Repeated roots

If $p^{2}-4 q=0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ just have one root $\lambda=-p / 2$.
The function $y_{1}(t)=e^{\lambda t}$ is a solution to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
Let $y_{2}(t)=t e^{\lambda t}$. Then $y_{2}^{\prime}(t)=e^{\lambda t}+\lambda t e^{\lambda t}$,
$y_{2}^{\prime \prime}(t)=\lambda e^{\lambda t}+\lambda e^{\lambda t}+\lambda^{2} t e^{\lambda t}$ and
$y_{2}^{\prime \prime}(t)+p y_{2}^{\prime}(t)+q y_{2}(t)=2 \lambda e^{\lambda t}+\lambda^{2} t e^{\lambda t}+p\left(e^{\lambda t}+\lambda t e^{\lambda t}\right)+q t e^{\lambda t}$

Repeated roots

If $p^{2}-4 q=0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ just have one root $\lambda=-p / 2$.
The function $y_{1}(t)=e^{\lambda t}$ is a solution to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
Let $y_{2}(t)=t e^{\lambda t}$. Then $y_{2}^{\prime}(t)=e^{\lambda t}+\lambda t e^{\lambda t}$,
$y_{2}^{\prime \prime}(t)=\lambda \boldsymbol{e}^{\lambda t}+\lambda e^{\lambda t}+\lambda^{2} t e^{\lambda t}$ and
$y_{2}^{\prime \prime}(t)+p y_{2}^{\prime}(t)+q y_{2}(t)=2 \lambda e^{\lambda t}+\lambda^{2} t e^{\lambda t}+p\left(e^{\lambda t}+\lambda t e^{\lambda t}\right)+q t e^{\lambda t}$

$$
=(2 \lambda+p) e^{\lambda t}+\left(\lambda^{2}+p \lambda+q\right) t e^{\lambda t}
$$

Repeated roots

If $p^{2}-4 q=0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ just have one root $\lambda=-p / 2$.
The function $y_{1}(t)=e^{\lambda t}$ is a solution to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
Let $y_{2}(t)=t e^{\lambda t}$. Then $y_{2}^{\prime}(t)=e^{\lambda t}+\lambda t e^{\lambda t}$,
$y_{2}^{\prime \prime}(t)=\lambda \boldsymbol{e}^{\lambda t}+\lambda e^{\lambda t}+\lambda^{2} t e^{\lambda t}$ and
$y_{2}^{\prime \prime}(t)+p y_{2}^{\prime}(t)+q y_{2}(t)=2 \lambda e^{\lambda t}+\lambda^{2} t e^{\lambda t}+p\left(e^{\lambda t}+\lambda t e^{\lambda t}\right)+q t e^{\lambda t}$
$=(2 \lambda+p) e^{\lambda t}+\left(\lambda^{2}+p \lambda+q\right) t e^{\lambda t}$
$=0$.

Repeated roots

If $p^{2}-4 q=0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ just have one root $\lambda=-p / 2$.
The function $y_{1}(t)=e^{\lambda t}$ is a solution to the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$.
Let $y_{2}(t)=t e^{\lambda t}$. Then $y_{2}^{\prime}(t)=e^{\lambda t}+\lambda t e^{\lambda t}$,
$y_{2}^{\prime \prime}(t)=\lambda \boldsymbol{e}^{\lambda t}+\lambda \boldsymbol{e}^{\lambda t}+\lambda^{2} t \boldsymbol{e}^{\lambda t}$ and

$$
\begin{aligned}
y_{2}^{\prime \prime}(t)+p y_{2}^{\prime}(t)+q y_{2}(t) & =2 \lambda e^{\lambda t}+\lambda^{2} t e^{\lambda t}+p\left(e^{\lambda t}+\lambda t e^{\lambda t}\right)+q t e^{\lambda t} \\
& =(2 \lambda+p) e^{\lambda t}+\left(\lambda^{2}+p \lambda+q\right) t e^{\lambda t} \\
& =0 .
\end{aligned}
$$

So y_{2} is a solution to the differential equation
$y^{\prime \prime}+p y^{\prime}+q y=0$.

0
NTNU
Norwegian University of
Science and Technology

Repeated roots

The Wronskian of $y_{1}(t)=e^{\lambda t}$ and $y_{2}(t)=t e^{\lambda t}$ is

$$
W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

Repeated roots

The Wronskian of $y_{1}(t)=e^{\lambda t}$ and $y_{2}(t)=t e^{\lambda t}$ is

$$
\begin{aligned}
W(t) & =y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t) \\
& =e^{\lambda t}\left(e^{\lambda t}+\lambda t e^{\lambda t}\right)-\lambda e^{\lambda t} t e^{\lambda t}
\end{aligned}
$$

0

Repeated roots

The Wronskian of $y_{1}(t)=e^{\lambda t}$ and $y_{2}(t)=t e^{\lambda t}$ is

$$
\begin{aligned}
W(t) & =y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t) \\
& =e^{\lambda t}\left(e^{\lambda t}+\lambda t e^{\lambda t}\right)-\lambda e^{\lambda t} t e^{\lambda t} \\
& =e^{2 \lambda t} \neq 0
\end{aligned}
$$

0

Repeated roots

The Wronskian of $y_{1}(t)=e^{\lambda t}$ and $y_{2}(t)=t e^{\lambda t}$ is

$$
\begin{aligned}
W(t) & =y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t) \\
& =e^{\lambda t}\left(e^{\lambda t}+\lambda t e^{\lambda t}\right)-\lambda e^{\lambda t} t e^{\lambda t} \\
& =e^{2 \lambda t} \neq 0
\end{aligned}
$$

so y_{1} and y_{2} forms a fundamental set of solutions, and every solution of $y^{\prime \prime}+p y^{\prime}+q y=0$ has the form $c_{1} e^{\lambda t}+c_{2} t e^{\lambda t}$ where c_{1} and c_{2} are constants.

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$.

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$.
The characteristic polynomial is $\lambda^{2}-2 \lambda+1$,

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$.
The characteristic polynomial is $\lambda^{2}-2 \lambda+1$, and the characteristic roots are $\lambda=\frac{2 \pm \sqrt{4-4}}{2}=1$.

0

Example

Let us find the general solution to the second-order differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$.
The characteristic polynomial is $\lambda^{2}-2 \lambda+1$, and the characteristic roots are $\lambda=\frac{2 \pm \sqrt{4-4}}{2}=1$.
It follows that the general solution is $y(t)=c_{1} e^{t}+c_{2} t e^{t}$.

Exercise 4.3.26

Find the solution to the initial value problem

$$
10 y^{\prime \prime}-y^{\prime}-3 y=0, y(0)=1, y^{\prime}(0)=0 .
$$

Solution

The characteristic polynomial is $10 \lambda^{2}-\lambda-3$,

Solution

The characteristic polynomial is $10 \lambda^{2}-\lambda-3$, and the characteristic roots are $\lambda=\frac{1 \pm \sqrt{1+120}}{20}=\frac{1 \pm 11}{20}\left\{\begin{array}{l}12 / 20 \\ -10 / 20\end{array}\right.$

Solution

The characteristic polynomial is $10 \lambda^{2}-\lambda-3$, and the
characteristic roots are $\lambda=\frac{1 \pm \sqrt{1+120}}{20}=\frac{1 \pm 11}{20}\left\{\begin{array}{l}12 / 20 \\ -10 / 20\end{array}\right.$
It follows that the general solution to the equation
$10 y^{\prime \prime}-y^{\prime}-3 y=0$ is $y(t)=c_{1} e^{3 t / 5}+c_{2} e^{-t / 2}$.

Solution

The characteristic polynomial is $10 \lambda^{2}-\lambda-3$, and the
characteristic roots are $\lambda=\frac{1 \pm \sqrt{1+120}}{20}=\frac{1 \pm 11}{20}\left\{\begin{array}{l}12 / 20 \\ -10 / 20\end{array}\right.$
It follows that the general solution to the equation
$10 y^{\prime \prime}-y^{\prime}-3 y=0$ is $y(t)=c_{1} e^{3 t / 5}+c_{2} e^{-t / 2}$.
Let $y(t)=c_{1} e^{3 t / 5}+c_{2} e^{-t / 2}$.

Solution

The characteristic polynomial is $10 \lambda^{2}-\lambda-3$, and the
characteristic roots are $\lambda=\frac{1 \pm \sqrt{1+120}}{20}=\frac{1 \pm 11}{20}\left\{\begin{array}{l}12 / 20 \\ -10 / 20\end{array}\right.$
It follows that the general solution to the equation
$10 y^{\prime \prime}-y^{\prime}-3 y=0$ is $y(t)=c_{1} e^{3 t / 5}+c_{2} e^{-t / 2}$.
Let $y(t)=c_{1} e^{3 t / 5}+c_{2} e^{-t / 2}$. Then
$y^{\prime}(t)=(3 / 5) c_{1} e^{3 t / 5}-\left(c_{2} / 2\right) e^{-t / 2}$,

Solution

The characteristic polynomial is $10 \lambda^{2}-\lambda-3$, and the
characteristic roots are $\lambda=\frac{1 \pm \sqrt{1+120}}{20}=\frac{1 \pm 11}{20}\left\{\begin{array}{l}12 / 20 \\ -10 / 20\end{array}\right.$
It follows that the general solution to the equation
$10 y^{\prime \prime}-y^{\prime}-3 y=0$ is $y(t)=c_{1} e^{3 t / 5}+c_{2} e^{-t / 2}$.
Let $y(t)=c_{1} e^{3 t / 5}+c_{2} e^{-t / 2}$. Then
$y^{\prime}(t)=(3 / 5) c_{1} e^{3 t / 5}-\left(c_{2} / 2\right) e^{-t / 2}, y^{\prime}(0)=3 c_{1} / 5-c_{2} / 2$,

Solution

The characteristic polynomial is $10 \lambda^{2}-\lambda-3$, and the
characteristic roots are $\lambda=\frac{1 \pm \sqrt{1+120}}{20}=\frac{1 \pm 11}{20}\left\{\begin{array}{l}12 / 20 \\ -10 / 20\end{array}\right.$
It follows that the general solution to the equation
$10 y^{\prime \prime}-y^{\prime}-3 y=0$ is $y(t)=c_{1} e^{3 t / 5}+c_{2} e^{-t / 2}$.
Let $y(t)=c_{1} e^{3 t / 5}+c_{2} e^{-t / 2}$. Then
$y^{\prime}(t)=(3 / 5) c_{1} e^{3 t / 5}-\left(c_{2} / 2\right) e^{-t / 2}, y^{\prime}(0)=3 c_{1} / 5-c_{2} / 2$, and $y(0)=c_{1}+c_{2}$.

Solution

The characteristic polynomial is $10 \lambda^{2}-\lambda-3$, and the
characteristic roots are $\lambda=\frac{1 \pm \sqrt{1+120}}{20}=\frac{1 \pm 11}{20}\left\{\begin{array}{l}12 / 20 \\ -10 / 20\end{array}\right.$
It follows that the general solution to the equation
$10 y^{\prime \prime}-y^{\prime}-3 y=0$ is $y(t)=c_{1} e^{3 t / 5}+c_{2} e^{-t / 2}$.
Let $y(t)=c_{1} e^{3 t / 5}+c_{2} e^{-t / 2}$. Then
$y^{\prime}(t)=(3 / 5) c_{1} e^{3 t / 5}-\left(c_{2} / 2\right) e^{-t / 2}, y^{\prime}(0)=3 c_{1} / 5-c_{2} / 2$, and $y(0)=c_{1}+c_{2}$.
So y is a solution to the initial value problem if and only if $c_{1}+c_{2}=1$ and $3 c_{1} / 5-c_{2} / 2=0$.

Solution

The solution to the linear system

$$
c_{1}+c_{2}=1
$$
$$
3 c_{1} / 5-c_{2} / 2=0
$$
is $c_{1}=5 / 11$ and $c_{2}=6 / 11$,

Solution

The solution to the linear system

$$
\begin{array}{r}
c_{1}+c_{2}=1 \\
3 c_{1} / 5-c_{2} / 2=0
\end{array}
$$

is $c_{1}=5 / 11$ and $c_{2}=6 / 11$, so the solution to the initial value problem

$$
10 y^{\prime \prime}-y^{\prime}-3 y=0, y(0)=1, y^{\prime}(0)=0 .
$$

$$
\text { is } y(t)=(5 / 11) e^{3 t / 5}+(6 / 11) e^{-t / 2}
$$

Plan for next week

Plan for next week

Wednesday we shall

0

Plan for next week

Wednesday we shall

- study harmonic motions,

0

Plan for next week

Wednesday we shall

- study harmonic motions,
- study solutions of second-order linear inhomogeneous differential equations,

Plan for next week

Wednesday we shall

- study harmonic motions,
- study solutions of second-order linear inhomogeneous differential equations,
- look at the method of undetermined coefficients.

Plan for next week

Wednesday we shall

- study harmonic motions,
- study solutions of second-order linear inhomogeneous differential equations,
- look at the method of undetermined coefficients.

Section 4.4 and 4.5 (pages Iv-Ixxii).

Plan for next week

Wednesday we shall

- study harmonic motions,
- study solutions of second-order linear inhomogeneous differential equations,
- look at the method of undetermined coefficients.

Section 4.4 and 4.5 (pages Iv-Ixxii).
Thursday we shall

Plan for next week

Wednesday we shall

- study harmonic motions,
- study solutions of second-order linear inhomogeneous differential equations,
- look at the method of undetermined coefficients.

Section 4.4 and 4.5 (pages Iv-Ixxii).
Thursday we shall

- look at variation of parameters,

Plan for next week

Wednesday we shall

- study harmonic motions,
- study solutions of second-order linear inhomogeneous differential equations,
- look at the method of undetermined coefficients.

Section 4.4 and 4.5 (pages Iv-Ixxii).
Thursday we shall

- look at variation of parameters,
- study forced harmonic motions.

Plan for next week

Wednesday we shall

- study harmonic motions,
- study solutions of second-order linear inhomogeneous differential equations,
- look at the method of undetermined coefficients.

Section 4.4 and 4.5 (pages Iv-Ixxii).
Thursday we shall

- look at variation of parameters,
- study forced harmonic motions.

Section 4.6 and 4.7 (pages Ixxii-Ixxxvi).

