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Yesterday’s lecture

Yesterday we looked at
@ least-squares problems,
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Yesterday’s lecture

Yesterday we looked at
@ least-squares problems,
@ applications to linear models.
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Today’s lecture

Today we shall introduce and study
@ symmetric matrices,
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Today’s lecture

Today we shall introduce and study
@ symmetric matrices,
@ quadratic forms.
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Symmetric matrices

@ A symmetric matrix is a matrix A such that AT = A.
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Symmetric matrices

@ A symmetric matrix is a matrix A such that AT = A.
@ A symmetric matrix is necessarily square.
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Symmetric matrices

@ A symmetric matrix is a matrix A such that AT = A.
@ A symmetric matrix is necessarily square.

@ We will in this lecture see that every symmetric matrix is
orthogonally diagonalizable,
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Symmetric matrices

@ A symmetric matrix is a matrix A such that AT = A.
@ A symmetric matrix is necessarily square.

@ We will in this lecture see that every symmetric matrix is
orthogonally diagonalizable, that is, if A is symmetric,
then A= PDP~' where P is an orthogonal matrix and D
is a diagonal matrix.
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Examples of symmetric matrices

0 1 -3
[‘12 ;] 1 2 4
3 4 7
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Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose
columns form an orthonormal set.
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Orthogonal matrices
Recall that an orthogonal matrix is a square matrix whose
columns form an orthonormal set.

Theorem

Let P be an n x n matrix. Then the following statements are
logically equivalent:
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Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose
columns form an orthonormal set.

Theorem

Let P be an n x n matrix. Then the following statements are
logically equivalent:

@ P is an orthogonal matrix.
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Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose
columns form an orthonormal set.

Theorem

Let P be an n x n matrix. Then the following statements are
logically equivalent:

@ P is an orthogonal matrix.
© The columns of P form an orthonormal basis for R”.
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Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose
columns form an orthonormal set.
Theorem
Let P be an n x n matrix. Then the following statements are
logically equivalent:

@ P is an orthogonal matrix.

© The columns of P form an orthonormal basis for R”".

Q P P=I,.
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Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose
columns form an orthonormal set.
Theorem
Let P be an n x n matrix. Then the following statements are
logically equivalent:

@ P is an orthogonal matrix.

© The columns of P form an orthonormal basis for R”".

Q P P=I,.

Q Pisinvertible and P~ = PT.
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Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose
columns form an orthonormal set.
Theorem

Let P be an n x n matrix. Then the following statements are
logically equivalent:

@ P is an orthogonal matrix.
© The columns of P form an orthonormal basis for R”.

Q@ P P=I,.
©Q Pisinvertible and P~ = PT.
Q@ PPT =1,
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Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose
columns form an orthonormal set.

Theorem

Let P be an n x n matrix. Then the following statements are
logically equivalent:

@ P is an orthogonal matrix.
© The columns of P form an orthonormal basis for R”.

Q@ P P=I,.
©Q Pisinvertible and P~ = PT.
Q@ PPT =1,

© The rows of P form an orthonormal basis for R”.
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Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose
columns form an orthonormal set.

Theorem

Let P be an n x n matrix. Then the following statements are
logically equivalent:

@ P is an orthogonal matrix.
© The columns of P form an orthonormal basis for R”.

Q@ P P=I,.
©Q Pisinvertible and P~ = PT.
Q@ PPT =1,

© The rows of P form an orthonormal basis for R”.
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Example

Let P = [uy ux u3] =

NS
B! T P!
a3l
wlmwlelrlJ
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Example

Let P = [uy ux u3] =

S ok

B! T P!
a-alal
wlmwlelA)

Then {uy,uz, uz} is an orthonormal set,
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Example

Let P = [uy ux u3] =

S ok

B! T P!
a-alal
wlmwlelA)

Then {uy, u, uz} is an orthonormal set, so P is an
orthogonal matrix.
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Example

Let P = [uy ux u3] =

S ok

B! T P!
a-alal
wlmwlelA)

Then {uy, u, uz} is an orthonormal set, so P is an
orthogonal matrix. Notice also that {uy, u,, us} is an
orthonormal basis for R3.
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Example

Let P = [uy ux u3] =

NIRESIN
wlmwlel&)

D=a!
a-3l-3

Then {uy, u, uz} is an orthonormal set, so P is an
orthogonal matrix. Notice also that {uy, u,, us} is an
orthonormal basis for R3.

We have that

U; -uy Uq-Ux Uq-Usz 1 00
PTP = Uo-uUy Uo-Ux Uo-Uz| = 010 :/3.
Uz-Uy Uz-Ux U3z-Us 0 0 1
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Example

Let P = [uy ux u3] =

S ok

B! T P!
a-alal
wlmwlel&)

Then {uy, u, uz} is an orthonormal set, so P is an
orthogonal matrix. Notice also that {uy, u,, us} is an
orthonormal basis for R3.

We have that

U; -uy Uq-Ux Uq-Usz 1 00
PTP = Uo-uUy Uo-Ux Uo-Uz| = 010 :/3.

Uz-Uy Uz-Ux U3z-Us 0 0 1
It follows (from the inverse matrix theorem) that P is invertible
and P~' = PT.
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Example

Let P = [uy ux u3] =

S ok

B! T P!
a-alal
wlmwlel&)

Then {uy, u, uz} is an orthonormal set, so P is an
orthogonal matrix. Notice also that {uy, u,, us} is an
orthonormal basis for R3.

We have that

U; -uy Uq-Ux Uq-Usz 1 00
PTP = Uo-uUy Uo-Ux Uo-Uz| = 010 :/3.
Uz-Uy Uz-Ux U3z-Us 0 0 1

It follows (from the inverse matrix theorem) that P is invertible
and P~' = PT.So PTP = I,
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Example

1 )
)
LetP=[ujuus]= |0 —= =
1 1 2
V2 Vi 3

Then {uy, u, uz} is an orthonormal set, so P is an
orthogonal matrix. Notice also that {uy, u,, us} is an
orthonormal basis for R3.

We have that

U; -uy Uq-Ux Uq-Usz 1 00
PTP = Uo-uUy Uo-Ux Uo-Uz| = 010 :/3.
Uz-Uy Uz-Ux U3z-Us 0 0 1

It follows (from the inverse matrix theorem) that P is invertible
and P~' = P". So PTP = I5, which means that the rows of P
forms an orthonormal basis for R® and that P is orthogonal.
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Orthogonally diagonalization

An n x nmatrix A is orthogonally diagonalizable if there is an
orthogonal matrix P and a diagonal matrix D such that
A= PDP1,
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Orthogonally diagonalization

An n x nmatrix A is orthogonally diagonalizable if there is an
orthogonal matrix P and a diagonal matrix D such that
A= PDP1,

An n x n matrix A is orthogonally diagonalizable if and only if
Ais symmetric.
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Example

3 -2 4
LetA=|-2 6 2].
4 2 3

Let us find an orthogonal matrix P and a diagonal matrix D
such that A= PDP.
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Solution

The eigenvalues of Aare —2 and 7.
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Solution

The eigenvalues of Aare —2 and 7.

1 —1
vi = |0 andv, = | 2 | form a basis for the eigenspace of
1 0

A corresponding to 7.
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Solution

The eigenvalues of Aare —2 and 7.

1 —1
vi = |0 andv, = | 2 | form a basis for the eigenspace of
1 0
A corresponding to 7.
2
vz = |—1] is an eigenvector of A corresponding to —2.
2
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Solution

The eigenvalues of Aare —2 and 7.

Vi =

1 —1
0| andv, = | 2 | form a basis for the eigenspace of
1 0

A corresponding to 7.

V3 =

-2
—11 is an eigenvector of A corresponding to —2.
2

Notice that Vi-V3 =V, V3 =0.

NTNU
Norwegian University of
Science and Technology

www.ntnu.no

TMA4115 - Calculus 3, Lecture 28, page 10



Solution

The eigenvalues of Aare —2 and 7.

Vi =

1 —1
0| andv, = | 2 | form a basis for the eigenspace of
1 0

A corresponding to 7.

V3 =

-2
—11 is an eigenvector of A corresponding to —2.
2

Notice that Vi-V3 =V, V3 =0.

Let Zy = V4
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Solution

The eigenvalues of Aare —2 and 7.

Vi = (1) and v, = _21 form a basis for the eigenspace of

A corr:e1$ponding to 7. °

V3 = :$ is an eigenvector of A corresponding to —2.

Notice_tﬁat Vi V3 =Vs-V3=0. 1 1 B

Letz; = vy andzgzvg—%a = _2 - 0| = g
0 1 3
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Solution (cont.)

And let z3 = vs.
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Solution (cont.)

And let z3 = v3. Then {z;,2,,23} is an orthogonal set.

NTNU
Norwegian University of
Science and Technology

www.ntnu.no ‘\ TMA4115 - Calculus 3, Lecture 28, page 11



Solution (cont.)

And let z; = v3. Then {z;,2,, 23} is an orthogonal set. Let
- 1

1 V2
Xt =gz = | 0]
L2
=
: V4
Xp = ;122 = ﬁ and
RY%E
=2
3
1 -1
Xs =23 = |=].
37 Tzl 3 3
L3
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Solution (cont.)

Then {x4, Xz, X3} is an orthogonal set,
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Solution (cont.)

Then {xi, Xz, X3} is an orthogonal set, so if we let

1 -2

P:[X1X2X3]: 0 /18 %,
1 1 2
V2 Vis 3
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Solution (cont.)

Then {xi, Xz, X3} is an orthogonal set, so if we let
-1 =2

P = [X1 X2 X3] = , then P is an orthogonal

NS
e
ol ol o
wlmcole

matrix,
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Solution (cont.)

Then {xi, Xz, X3} is an orthogonal set, so if we let

OV 3
P=[x;XsX3] = | O \/i?s =, then P is an orthogonal
7 0 O
matrix, and ifweletD= |0 7 0 |,
00 -2
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Solution (cont.)

Then {xi, Xz, X3} is an orthogonal set, so if we let

-1 =2
ﬁ Vig 3
P=[x;XsX3] = | O \/i?s =, then P is an orthogonal
1 1 2
V2 Jvig 3
7 0 O
matrix, andifweletD= |0 7 0 |,then A= PDP.
0 0 -2
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Orthogonal eigenvectors
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Orthogonal eigenvectors

If Ais a symmetric matrix, then any two eigenvectors from
different eigenspaces are orthogonal.
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Proof of Theorem 1
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Proof of Theorem 1

Let vy and v, be eigenvectors of A corresponding to Ay and
A2, respectively, and assume that Ay # As.
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Proof of Theorem 1

Let vy and v, be eigenvectors of A corresponding to Ay and
A2, respectively, and assume that Ay # A\,. Then

AMVy - Vo = ()\1V1)TV2 = (AV1)TV2 = V1TATV2
= V1TAV2 = V-;I—AQVQ =Vq- (/\2V2) = AoVq - Vo
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Proof of Theorem 1

Let vy and v, be eigenvectors of A corresponding to Ay and
A2, respectively, and assume that Ay # A\,. Then

AMVy - Vo = ()\1V1)TV2 = (AV1)TV2 = V1TATV2
= V1TAV2 = V-;I—AQVQ =Vq- (/\2V2) = AoVq - Vo

SO ()\1 — )\2)V1 Vo = 0.
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Proof of Theorem 1

Let vy and v, be eigenvectors of A corresponding to Ay and
A2, respectively, and assume that Ay # A\,. Then

AMVy - Vo = ()\1V1)TV2 = (AV1)TV2 = V1TATV2
= V1TAV2 = V-;I—AQVQ =Vq- (/\2V2) = AoVq - Vo

SO (A1 — A2)Vy - V2 = 0. Since A\ # A, it follows that
Vy-Vo =0.
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The spectral theorem for
symmetric matrices
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The spectral theorem for
symmetric matrices

An n x n symmetric matrix A has the following properties:
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The spectral theorem for
symmetric matrices

An n x n symmetric matrix A has the following properties:
@ A has nreal eigenvalues, counting multiplicities.
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The spectral theorem for
symmetric matrices

An n x n symmetric matrix A has the following properties:
@ A has nreal eigenvalues, counting multiplicities.

©@ The dimensions of the eigenspace for each eigenvalue A
equals the multiplicity of A.
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The spectral theorem for
symmetric matrices

An n x n symmetric matrix A has the following properties:
@ A has nreal eigenvalues, counting multiplicities.

@ The dimensions of the eigenspace for each eigenvalue \
equals the multiplicity of A.
© The eigenspaces are mutually orthogonal, in the sense

that eigenvectors corresponding to different eigenvalues
are orthogonal.
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Spectral decomposition
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Spectral decomposition

Suppose A = PDP~' where P = [u; ...u,] is an orthogonal
A ... O

matrixand D = | : A I
0 ... X\
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Spectral decomposition

Suppose A = PDP~' where P = [u; ...u,] is an orthogonal

A ... 0

matrixand D = | : o]
0 ... X\

If x is in R”, then x = (X - uy)uy + - -- + (X - Uup)u, and

AX = A\(X-uq)ug + -+ Xp(X - up)up,.
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Spectral decomposition

Suppose A = PDP~' where P = [u; ...u,] is an orthogonal
M ... O

matrixand D = | : o]
0 ... X\

If x is in R”, then x = (X - uy)uy + - -- + (X - Uup)u, and
AX = A\(X-uq)ug + -+ Xp(X - up)up,.

We furthermore have that

A= uul + -+ Auu’.
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Spectral decomposition

Suppose A = PDP~' where P = [u; ...u,] is an orthogonal
M ... O

matrixand D = | : o]
0 ... X\

If x is in R”, then x = (X - uy)uy + - -- + (X - Uup)u, and
AX = A\(X-uq)ug + -+ Xp(X - up)up,.

We furthermore have that

A= uul + -+ Auu’.

This is called a spectral decomposition of A.
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Example
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Example
3 -2

fA=|-2 6 2],
4 2 3
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Exam 3Ie

-2
fA=|-2 6 2]|,then
4 2 3
1 =1
2 V18
1 1 4
V2 Vi8
2
3
2{; % 93
3
1o 1 14
2 0z = % @
19 1 s ¥r
2 2 18 18 18

www.ntnu.no

1 4 1
[_\/18 V18 /18
4 2 -4
9
) 2 i =2
% % 3
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Quadratic forms
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Quadratic forms

@ A quadratic form on R” is a function Q defined on R”
such that Q(x) = x” Ax for some symmetric n x n matrix
A.
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Quadratic forms

@ A quadratic form on R” is a function Q defined on R”
such that Q(x) = x” Ax for some symmetric n x n matrix
A.

@ The matrix A is called the matrix of Q.
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Quadratic forms

@ A quadratic form on R” is a function Q defined on R”
such that Q(x) = x” Ax for some symmetric n x n matrix
A.

@ The matrix A is called the matrix of Q.

@ Quadratic forms occupy a central place in various
branches of mathematics, including
@ number theory,
linear algebra,
group theory,
differential geometry,
differential topology,
Lie theory.
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Examples of quadratic forms
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Examples of quadratic forms

@ x — ||x||? is a quadratic form because
[1x]|2 = x - x = x"x = xTI,x.

NTNU
Norwegian University of
Science and Technology

www.ntnu.no ‘\ TMA4115 - Calculus 3, Lecture 28, page 19




Examples of quadratic forms

@ x — ||x||? is a quadratic form because
[1x]|2 = x - x = x"x = xTI,x.
@ (X1, X2) — 6x2 — 24x1 X, — X3 is a quadratic from because

6 —12| |x
6X2 — 24X — X5 = [X1 Xe] [_12 _1} [xj
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Examples of quadratic forms

@ x — ||x||? is a quadratic form because
[1x]|2 = x - x = x"x = xTI,x.
@ (X1, X2) — 6x2 — 24x1 X, — X3 is a quadratic from because

6 —-12 Xq
6XZ — 24x1X2 — X5 = [X1 X {_12 q } [Xz].
Let y1 = 2x1 — x2 and y, = x; + £x2. Then
6x2 — 24x1x2 — X5 = 15y2 — 10y2.
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The principal axes theorem

Theorem 4

Let A be an n x n symmetric matrix. Then there is an
orthogonal change of variable, x = Py, that transforms the
quadratic form x” Ax into a quadratic form y’ Dy with no
cross-product term.
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The principal axes theorem

Theorem 4

Let A be an n x n symmetric matrix. Then there is an
orthogonal change of variable, x = Py, that transforms the
quadratic form x” Ax into a quadratic form y’ Dy with no
cross-product term.

The above theorem can be used to classify conic sections.
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Example
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Example

Consider the quadratic form (xi, x2) — 6x2 — 24x; X — X2.
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Example

Consider the quadratic form (xi, x2) — 6x2 — 24x; X — X2.

The matrix of this quadratic form is A = _?2 __112]
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Example

Consider the quadratic form (xi, x2) — 6x2 — 24x; X — X2.

The matrix of this quadratic form is A = _?2 __112]

6-\ 12
det(A— Ak) = ‘ 42 1 _A‘ = (6—N\)(—1—X)—144 =
A2 —5)\ — 150.
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Example

Consider the quadratic form (xi, x2) — 6x2 — 24x; X — X2.

The matrix of this quadratic form is A = _?2 __112]
6-\ 12
det(A— Ak) = ‘ 1o gy =B =) 144 =

A2 — 5)\ — 150. and the zeros of \2 — 5\ — 150 are

)\_5i\/m_51\/675_5i25_ 15
= 5 = 2 - 2 = ’
-10
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Example

Consider the quadratic form (xi, x2) — 6x2 — 24x; X — X2.

The matrix of this quadratic form is A = _?2 __112]
6-\ 12
det(A— Ak) = ‘ 1o gy =B =) 144 =

A2 — 5)\ — 150. and the zeros of \2 — 5\ — 150 are

\— 5:1:\/52;4(—150) _ 51\4@ _ 5225 _ 1510 sothe
eigenvalues of Aare 15 and —10.
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Example (cont.)

-9 12
A=T5k = {—12 —16
corresponding to the eigenvalue 15.

} SO V4 [_43} is an eigenvalue of A
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Example (cont.)

-9 -12 4 . .
A—15L = {_12 —16} SO V4 [_3} is an eigenvalue of A
corresponding to the eigenvalue 15.

16 —12 3] . .
A+10bL = 12 g SO Vo 4 is an eigenvalue of A

corresponding to the eigenvalue —10.
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Example (cont.)

-9 -12 4 1. .
A—15L = {_12 —16} SO V4 [_3} is an eigenvalue of A
corresponding to the eigenvalue 15.

A+ 10k = _1162 _;2

corresponding to the eigenvalue —10.

SO Vo m is an eigenvalue of A

Vi-Vo =0and ||vq] = [|v2]| =5,
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Example (cont.)

-9 -12 4 |. ,
A—15L = {_12 —16} SO V4 [_3} is an eigenvalue of A
corresponding to the eigenvalue 15.

16 —12 3] . .
A+10bL = 12 g SO Vo 4 is an eigenvalue of A
corresponding to the eigenvalue —10.

. 4 3
- - - =1

Vi-Vz =0and |vq| = |lv2|| =5, s0ifwe let P = ¢ _a 4}
and D = {105 _(1) O} , then P is an orthogonal matrix and
A= PDP-1,
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Example (cont.)

| _ pa [X| _pr|x| 1|4 3| x| _
Let y2:|_P Xo =P Xo _5|:3 4:| Xo

4 3

§X1—|—§X2

%3X1+%X2.
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Example (cont.)

Vil _ pot1 | X x| _ 1|4 3| |x| _
Let y2:| =P Xo =P Xo 5|:3 4:| Xo
gX1 + gXZ
%3X1 -+ %Xg )
Then

Bx2 — 24x1 X2 — X5 = [X1 X]A [Xq = [x1 x]P~'DP {xﬂ
Xo X2

— [+ 1D m = 1 ye] [105 _20} w

= 15y7 — 10y;
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Example (cont.)

The set of points (ys, y») satisfying 15y2 — 10y2 = 1is a
hyperbola.
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Example (cont.)

The set of points (ys, y») satisfying 15y2 — 10y2 = 1is a
hyperbola. It follows that the set of points (x;, x2) satisfying
6x2 — 24x,x, — x2 = 1 is a rotated hyperbola.
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Classifying quadratic forms
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Classifying quadratic forms

A quadratic form Q is said to be:
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Classifying quadratic forms

A quadratic form Q is said to be:
@ positive definite if Q(x) > 0 for all x # 0,
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Classifying quadratic forms

A quadratic form Q is said to be:
@ positive definite if Q(x) > 0 for all x # 0,
@ negative definite if Q(x) < 0 for all x # 0,
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Classifying quadratic forms

A quadratic form Q is said to be:
@ positive definite if Q(x) > 0 for all x # 0,
@ negative definite if Q(x) < 0 for all x # 0,

@ indefinite if Q(x) assumes both positive and negative
values.
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Classifying quadratic forms

A quadratic form Q is said to be:
@ positive definite if Q(x) > 0 for all x # 0,
@ negative definite if Q(x) < 0 for all x # 0,

@ indefinite if Q(x) assumes both positive and negative
values.

e If Qs a positive definite quadratic form on R?, then set
of points (x1, x») satisfying Q(xi, x2) = 1 forms an ellipse.
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Classifying quadratic forms

A quadratic form Q is said to be:
@ positive definite if Q(x) > 0 for all x # 0,
@ negative definite if Q(x) < 0 for all x # 0,

@ indefinite if Q(x) assumes both positive and negative
values.

@ If Qs a positive definite quadratic form on R?, then set
of points (x1, x2) satisfying Q(x1, x2) = 1 forms an ellipse.

@ If Qis an indefinite quadratic form on R?, then set of
points (xi, xo) satisfying Q(x1, x2) = 1 forms a hyperbola.
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Quadratic forms and eigenvalues
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Quadratic forms and eigenvalues

Let A be an n x n symmetric matrix, and let Q be the
guadratic form x — x!Ax.
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Quadratic forms and eigenvalues

Let A be an n x n symmetric matrix, and let Q be the
guadratic form x — x!Ax.

@ Qs positive definite if and only if the eigenvalues of A
are all positive.
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Quadratic forms and eigenvalues

Let A be an n x n symmetric matrix, and let Q be the
guadratic form x — x!Ax.
@ Qs positive definite if and only if the eigenvalues of A
are all positive.
@ Qs negative definite if and only if the eigenvalues of A
are all negative.
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Quadratic forms and eigenvalues

Let A be an n x n symmetric matrix, and let Q be the
guadratic form x — x!Ax.
@ Qs positive definite if and only if the eigenvalues of A
are all positive.
@ Qs negative definite if and only if the eigenvalues of A
are all negative.
© Qs indefinite if and only if A has both positive and
negative eigenvalues.
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Problem 7 from June 2010

!3 1 1]
LetA= 1|1 2 0].
10 2
@ Find the eigenvalues and eigenvectors of A.
@ Find a matrix P and a diagonal matrix D such that
A= PDPT.
© Solve the system of differential equations
yi=3y1+y2+ s
Yo=Y1+2y
Ys=Y1+2ys
with initial position y1(0) = 3, ¥»(0) = 2, y3(0) = —2.
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Solution

det(A—Ak)=| 1 2-x 0

12— 3-A 1
1o %*2_M‘1 2—J

— 2= N+2-N(@-NE =N -1)
=(2-2)(@-N2-)-2)

=(2-)\)(\2 -5\ —4)
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Solution

det(A—Ak)=| 1 2-x 0

|t 2—)\‘+(2_)\)‘3—/\ 1 ‘

1 0 1 2—\
——2-N+E-N)(G-NE-N)-1)
—2-N(@E-NE-N)-2)
=(2-)\)(\2 -5\ —4)

and \2 — 5\ — 4 = 0 if and only if

/52 _A(— 2 4
= SEVE A _ 5:3 , NTNU
2 2 1 B Norwegian University of

Science and Technology
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Solution (cont.)

so the eigenvalues of A are 1,2 and 4.
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Solution (cont.)

so the eigenvalues of A are 1,2 and 4.
To find the eigenvectors of A corresponding to 1, we reduce
A — |5 to its reduced echelon form.
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Solution (cont.)

so the eigenvalues of A are 1,2 and 4.
To find the eigenvectors of A corresponding to 1, we reduce
A — |5 to its reduced echelon form.

2 1 1 110 110 1.0 1
Alb=1[110=>[211] =0 -1 1] =]01 -1
10 1 1.0 1 0 —1 1 00 O
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Solution (cont.)

so the eigenvalues of A are 1,2 and 4.
To find the eigenvectors of A corresponding to 1, we reduce
A — |5 to its reduced echelon form.

2 1 1 110 110 10 1
Abh=110=1]211] >0 -1 1] >]01 -1
10 1 10 1 0 —1 1 00 O

It follows that the set of eigenvectors of A corresponding to 1
—1

is{t[1 ] :t%O}.
1

\
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Solution (cont.)

111
A-2=11 00
100
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Solution (cont.)

1 11
A—-2L = [1 0 O] so the set of eigenvectors of A
100

0
corresponding to 2 is {t [ 1 ] t#£ O}.
—1
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Solution (cont.)

To find the eigenvectors of A corresponding to 4, we reduce
A — 415 to its reduced echelon form.
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Solution (cont.)

To find the eigenvectors of A corresponding to 4, we reduce
A — 415 to its reduced echelon form.

1 1 1 1 -1 —1 10 -2
A-4b=|1 -2 0|—=0 -1 1|=>|0 1 —1
1 0 -2 0 1 -1 00 0
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Solution (cont.)

To find the eigenvectors of A corresponding to 4, we reduce
A — 415 to its reduced echelon form.

1 1 1 1 -1 —1 10 -2
A-4b=|1 -2 0|—=0 -1 1|=>|0 1 —1
1 0 -2 0 1 -1 00 0

It follows that the set of eigenvectors of A corresponding to 4
2

S {t [1] ZT#O}.
1
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Solution (cont.)

To find a matrix P and a diagonal matrix D such that
A = PDPT we will orthogonally diagonalize A.
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Solution (cont.)

To find a matrix P and a diagonal matrix D such that

A = PDPT we will orthogonally diagonalize A. For that we
need an orthonormal basis for R® consisting of eigenvectors
of A.
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Solution (cont.)

To find a matrix P and a diagonal matrix D such that

A = PDPT we will orthogonally diagonalize A. For that we
need an orthonormal basis for R® consisting of eigenvectors
of A. Since A is symmetric, eigenvectors of A corresponding
to different eigenvalues are orthogonal to each other, so we
just have to find a unit vector in each of the 3 eigenspaces of
A.
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Solution (cont.)

—1
=
We have that \/ié is a unit eigenvector of A corresponding
1
V3
0
to 1, that ﬁ is a unit eigenvector of A corresponding to 2,
=1
=
2
v
and that Zé is a unit eigenvector of A corresponding to 4.
V6
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Solution (cont.

'

2 —1
0 % 7 200
SoifweletP= |75 & Js|andD= |0 4 0,
-1 1 1
i V5 Ve 001
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Solution (cont.

'

2 —1
0 % 7 200
SoifweletP= |5 — 5| andD= |0 4 0|,then
-1 1 1
i Vs Ve 001
A= PDP~' = PDP'.
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Solution (cont.)

The coefficient matrix the system

Vi=3yi+Ya+ s
Ya=Yi+2)
Vi=Y1+2)3

is A,
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Solution (cont.)

—1
so since the eigenvalues of Aare 1,2and 4,and | 1 | isan
1
0
eigenvector of A correspondingto 1, | 1 | is an eigenvector
—1

2
of A corresponding to 2, and | 1| is an eigenvector of A

corresponding to 4,
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Solution (cont.)

-1
so since the eigenvalues of Aare 1,2 and 4, and | 1 ] is an

1
0
eigenvector of A correspondingto 1, | 1 | is an eigenvector
—1
2
of A corresponding to 2, and | 1| is an eigenvector of A
1

corresponding to 4, the general solution of the system is

)4 ( t ) —1 0 2
M) =c|1|e+al|1|ed+tc|1]e"
y 3 ( t) 1 - 1 B EE‘\I 'eli n University of

Science and Technology

www.ntnu.no
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Solution (cont.)

yi(t) —1 [ 0 2
If [yo(t)| =c | 1 | e+ | 1| +c3|1]| e, then
y3(t) 1 _—1 1
¥1(0) —1 0] 2
yg(O) = C4 1 +c | 1 +c3 |1
y3(0) 1 ] —1_ 1
—1 0o 2 C1_
— 11 1 1] e
1 -1 1] |o]

www.ntnu.no

\
\
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Solution (cont.)

so y1(0) = 3, y»(0) = 2, y3(0) = —2 if and only if

—1 0O 2 Cq 3
1 1 1 |l =12].
1 -1 1| |e| |2
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Solution (cont.)

so y1(0) = 3, y»(0) = 2, y3(0) = —2 if and only if

—1 0O 2 Cq 3
1 1 1| |e|=|2
1 -1 1] les] |-2

We reduce the augmented matrix of the above system to its
reduced echelon form.
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Solution (cont.)
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Solution (cont.)

10 -2 -3 10 0 -1
—-+101 3 5|—=1(010 2
00 1 1 001 1

We see that the solution to the system

0o 2 -1 Cq 3
1 1 1 |l =12].
11 1] |es| |2

. NTNU
ISCi = —1 ,Co = 2, C3; = 1. B Norwegian University of
Science and Technology
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Solution (cont.)

So the solution to the system of differential equations

Vi=3yi+Ya+ s
Ya=Yi+2)
Vi=Y1+2)3

with initial position y1(0) = 3, y»(0) = 2, y53(0) = -2, is

yi(1) —1 0 2 2e* + e
)| == 1]e+2| 1| ef+|1]| "= |e*+26% ¢
ya(t) 1 —1 1 et —2e? — ¢!
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