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Yesterday’s lecture

Yesterday we looked at

least-squares problems,
applications to linear models.
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Today’s lecture

Today we shall introduce and study

symmetric matrices,
quadratic forms.
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Symmetric matrices

A symmetric matrix is a matrix A such that AT = A.
A symmetric matrix is necessarily square.
We will in this lecture see that every symmetric matrix is
orthogonally diagonalizable,

that is, if A is symmetric,
then A = PDP−1 where P is an orthogonal matrix and D
is a diagonal matrix.
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Examples of symmetric matrices

[
2 1
1 3

]  0 1 −3
1 2 4
−3 4 7


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Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose
columns form an orthonormal set.

Theorem
Let P be an n × n matrix. Then the following statements are
logically equivalent:

1 P is an orthogonal matrix.
2 The columns of P form an orthonormal basis for Rn.
3 PT P = In.
4 P is invertible and P−1 = PT .
5 PPT = In.
6 The rows of P form an orthonormal basis for Rn.
7 PT is an orthogonal matrix.
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Example

Let P = [u1 u2 u3] =


1√
2

−1√
18

−2
3

0 4√
18

−1
3

1√
2

1√
18

2
3

.

Then {u1,u2,u3} is an orthonormal set, so P is an
orthogonal matrix. Notice also that {u1,u2,u3} is an
orthonormal basis for R3.
We have that

PT P =

u1 · u1 u1 · u2 u1 · u3

u2 · u1 u2 · u2 u2 · u3

u3 · u1 u3 · u2 u3 · u3

 =

1 0 0
0 1 0
0 0 1

 = I3.

It follows (from the inverse matrix theorem) that P is invertible
and P−1 = PT . So PT P = I3, which means that the rows of P
forms an orthonormal basis for R3 and that PT is orthogonal.
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Orthogonally diagonalization

An n × n matrix A is orthogonally diagonalizable if there is an
orthogonal matrix P and a diagonal matrix D such that
A = PDP−1.

Theorem 2
An n × n matrix A is orthogonally diagonalizable if and only if
A is symmetric.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 8



Orthogonally diagonalization
An n × n matrix A is orthogonally diagonalizable if there is an
orthogonal matrix P and a diagonal matrix D such that
A = PDP−1.

Theorem 2
An n × n matrix A is orthogonally diagonalizable if and only if
A is symmetric.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 8



Orthogonally diagonalization
An n × n matrix A is orthogonally diagonalizable if there is an
orthogonal matrix P and a diagonal matrix D such that
A = PDP−1.

Theorem 2
An n × n matrix A is orthogonally diagonalizable if and only if
A is symmetric.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 8



Example

Let A =

 3 −2 4
−2 6 2
4 2 3

.

Let us find an orthogonal matrix P and a diagonal matrix D
such that A = PDP−1.
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Solution

The eigenvalues of A are −2 and 7.

v1 =

1
0
1

 and v2 =

−1
2
0

 form a basis for the eigenspace of

A corresponding to 7.

v3 =

−2
−1
2

 is an eigenvector of A corresponding to −2.

Notice that v1 · v3 = v2 · v3 = 0.

Let z1 = v1 and z2 = v2 − v1·z1
z1·z1

z1 =

−1
2
0

− −1
2

1
0
1

 =

−1
2
2
1
2

.
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Solution (cont.)
And let z3 = v3.

Then {z1, z2, z3} is an orthogonal set. Let

x1 = 1
‖z1‖

z1 =

 1√
2

0
1√
2

,

x2 = 1
‖z2‖

z2 =


−1√

18
4√
18
1√
18

 and

x3 = 1
‖z3‖

z3 =

−2
3
−1
3
2
3

.
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, then P is an orthogonal

matrix, and if we let D =

7 0 0
0 7 0
0 0 −2

, then A = PDP−1.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 12



Solution (cont.)
Then {x1,x2,x3} is an orthogonal set, so if we let

P = [x1 x2 x3] =


1√
2

−1√
18

−2
3

0 4√
18

−1
3

1√
2

1√
18

2
3

,

then P is an orthogonal

matrix, and if we let D =

7 0 0
0 7 0
0 0 −2

, then A = PDP−1.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 12



Solution (cont.)
Then {x1,x2,x3} is an orthogonal set, so if we let

P = [x1 x2 x3] =


1√
2

−1√
18

−2
3

0 4√
18

−1
3

1√
2

1√
18

2
3

, then P is an orthogonal

matrix,

and if we let D =

7 0 0
0 7 0
0 0 −2

, then A = PDP−1.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 12



Solution (cont.)
Then {x1,x2,x3} is an orthogonal set, so if we let

P = [x1 x2 x3] =


1√
2

−1√
18

−2
3

0 4√
18

−1
3

1√
2

1√
18

2
3

, then P is an orthogonal

matrix, and if we let D =

7 0 0
0 7 0
0 0 −2

,

then A = PDP−1.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 12



Solution (cont.)
Then {x1,x2,x3} is an orthogonal set, so if we let

P = [x1 x2 x3] =


1√
2

−1√
18

−2
3

0 4√
18

−1
3

1√
2

1√
18

2
3

, then P is an orthogonal

matrix, and if we let D =

7 0 0
0 7 0
0 0 −2

, then A = PDP−1.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 12



Orthogonal eigenvectors

Theorem 1
If A is a symmetric matrix, then any two eigenvectors from
different eigenspaces are orthogonal.
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Proof of Theorem 1

Let v1 and v2 be eigenvectors of A corresponding to λ1 and
λ2, respectively, and assume that λ1 6= λ2. Then

λ1v1 · v2 = (λ1v1)
T v2 = (Av1)

T v2 = vT
1 AT v2

= vT
1 Av2 = vT

1λ2v2 = v1 · (λ2v2) = λ2v1 · v2

so (λ1 − λ2)v1 · v2 = 0. Since λ1 6= λ2, it follows that
v1 · v2 = 0.
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The spectral theorem for
symmetric matrices

Theorem 3
An n × n symmetric matrix A has the following properties:

1 A has n real eigenvalues, counting multiplicities.
2 The dimensions of the eigenspace for each eigenvalue λ

equals the multiplicity of λ.
3 The eigenspaces are mutually orthogonal, in the sense

that eigenvectors corresponding to different eigenvalues
are orthogonal.
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Spectral decomposition

Suppose A = PDP−1 where P = [u1 . . .un] is an orthogonal

matrix and D =

λ1 . . . 0
... . . . ...
0 . . . λn

.

If x is in Rn, then x = (x · u1)u1 + · · ·+ (x · un)un and
Ax = λ1(x · u1)u1 + · · ·+ λn(x · un)un.
We furthermore have that

A = λu1uT
1 + · · ·+ λnunuT

n .

This is called a spectral decomposition of A.
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Example

If A =

 3 −2 4
−2 6 2
4 2 3

, then

A = 7

 1√
2

0
1√
2

[ 1√
2

0 1√
2

]
+ 7


−1√

18
4√
18
1√
18

[ −1√
18

4√
18

1√
18

]

− 2

−2
3
−1
3
2
3

 [−2
3

−1
3

2
3

]

= 7

1
2 0 1

2
0 0 0
1
2 0 1

2

+ 7

 1
18

−4
18

−1
18

−4
18

16
18

4
18

−1
18

4
18

1
18

− 2

 4
9

2
9

−4
9

2
9

1
9

−2
9

−4
9

−2
9

4
9


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Quadratic forms

A quadratic form on Rn is a function Q defined on Rn

such that Q(x) = xT Ax for some symmetric n × n matrix
A.
The matrix A is called the matrix of Q.
Quadratic forms occupy a central place in various
branches of mathematics, including

number theory,
linear algebra,
group theory,
differential geometry,
differential topology,
Lie theory.
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Examples of quadratic forms

x→ ‖x‖2 is a quadratic form because
‖x‖2 = x · x = xT x = xT Inx.
(x1, x2) 7→ 6x2

1 − 24x1x2 − x2
2 is a quadratic from because

6x2
1 − 24x1x2 − x2

2 =
[
x1 x2

] [ 6 −12
−12 −1

] [
x1

x2

]
.

Let y1 = 4
5x1 − 3

5x2 and y2 = 3
5x1 +

4
5x2. Then

6x2
1 − 24x1x2 − x2

2 = 15y2
1 − 10y2

2 .
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The principal axes theorem

Theorem 4
Let A be an n × n symmetric matrix. Then there is an
orthogonal change of variable, x = Py, that transforms the
quadratic form xT Ax into a quadratic form yT Dy with no
cross-product term.

The above theorem can be used to classify conic sections.
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Example

Consider the quadratic form (x1, x2) 7→ 6x2
1 − 24x1x2 − x2

2 .

The matrix of this quadratic form is A =

[
6 −12
−12 −1

]
.

det(A− λI2) =
∣∣∣∣6− λ −12
−12 −1− λ

∣∣∣∣ = (6− λ)(−1− λ)− 144 =

λ2 − 5λ− 150. and the zeros of λ2 − 5λ− 150 are

λ =
5±
√

52−4(−150)
2 = 5±

√
625

2 = 5±25
2 =

{
15
−10

, so the

eigenvalues of A are 15 and −10.
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Example (cont.)
A− 15I2 =

[
−9 −12
−12 −16

]
so v1

[
4
−3

]
is an eigenvalue of A

corresponding to the eigenvalue 15.

A + 10I2 =

[
16 −12
−12 9

]
so v2

[
3
4

]
is an eigenvalue of A

corresponding to the eigenvalue −10.

v1 · v2 = 0 and ‖v1‖ = ‖v2‖ = 5, so if we let P = 1
5

[
4 3
−3 4

]
and D =

[
15 0
0 −10

]
, then P is an orthogonal matrix and

A = PDP−1.
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Example (cont.)
Let

[
y1

y2

]
= P−1

[
x1

x2

]
= PT

[
x1

x2

]
= 1

5

[
4 −3
3 4

] [
x1

x2

]
=[ 4

5x1 +
3
5x2

−3
5 x1 +

4
5x2

]
.

Then

6x2
1 − 24x1x2 − x2

2 = [x1 x2]A
[
x1

x2

]
= [x1 x2]P−1DP

[
x1

x2

]
= [y1 y2]D

[
y1

y2

]
= [y1 y2]

[
15 0
0 −10

] [
y1

y2

]
= 15y2

1 − 10y2
2
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Example (cont.)
The set of points (y1, y2) satisfying 15y2

1 − 10y2
2 = 1 is a

hyperbola.

It follows that the set of points (x1, x2) satisfying
6x2

1 − 24x1x2 − x2
2 = 1 is a rotated hyperbola.
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Example (cont.)
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Classifying quadratic forms

Definition
A quadratic form Q is said to be:

positive definite if Q(x) > 0 for all x 6= 0,
negative definite if Q(x) < 0 for all x 6= 0,
indefinite if Q(x) assumes both positive and negative
values.

If Q is a positive definite quadratic form on R2, then set
of points (x1, x2) satisfying Q(x1, x2) = 1 forms an ellipse.
If Q is an indefinite quadratic form on R2, then set of
points (x1, x2) satisfying Q(x1, x2) = 1 forms a hyperbola.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 25



Classifying quadratic forms

Definition
A quadratic form Q is said to be:

positive definite if Q(x) > 0 for all x 6= 0,
negative definite if Q(x) < 0 for all x 6= 0,
indefinite if Q(x) assumes both positive and negative
values.

If Q is a positive definite quadratic form on R2, then set
of points (x1, x2) satisfying Q(x1, x2) = 1 forms an ellipse.
If Q is an indefinite quadratic form on R2, then set of
points (x1, x2) satisfying Q(x1, x2) = 1 forms a hyperbola.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 25



Classifying quadratic forms

Definition
A quadratic form Q is said to be:

positive definite if Q(x) > 0 for all x 6= 0,

negative definite if Q(x) < 0 for all x 6= 0,
indefinite if Q(x) assumes both positive and negative
values.

If Q is a positive definite quadratic form on R2, then set
of points (x1, x2) satisfying Q(x1, x2) = 1 forms an ellipse.
If Q is an indefinite quadratic form on R2, then set of
points (x1, x2) satisfying Q(x1, x2) = 1 forms a hyperbola.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 25



Classifying quadratic forms

Definition
A quadratic form Q is said to be:

positive definite if Q(x) > 0 for all x 6= 0,
negative definite if Q(x) < 0 for all x 6= 0,

indefinite if Q(x) assumes both positive and negative
values.

If Q is a positive definite quadratic form on R2, then set
of points (x1, x2) satisfying Q(x1, x2) = 1 forms an ellipse.
If Q is an indefinite quadratic form on R2, then set of
points (x1, x2) satisfying Q(x1, x2) = 1 forms a hyperbola.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 25



Classifying quadratic forms

Definition
A quadratic form Q is said to be:

positive definite if Q(x) > 0 for all x 6= 0,
negative definite if Q(x) < 0 for all x 6= 0,
indefinite if Q(x) assumes both positive and negative
values.

If Q is a positive definite quadratic form on R2, then set
of points (x1, x2) satisfying Q(x1, x2) = 1 forms an ellipse.
If Q is an indefinite quadratic form on R2, then set of
points (x1, x2) satisfying Q(x1, x2) = 1 forms a hyperbola.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 25



Classifying quadratic forms

Definition
A quadratic form Q is said to be:

positive definite if Q(x) > 0 for all x 6= 0,
negative definite if Q(x) < 0 for all x 6= 0,
indefinite if Q(x) assumes both positive and negative
values.

If Q is a positive definite quadratic form on R2, then set
of points (x1, x2) satisfying Q(x1, x2) = 1 forms an ellipse.

If Q is an indefinite quadratic form on R2, then set of
points (x1, x2) satisfying Q(x1, x2) = 1 forms a hyperbola.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 25



Classifying quadratic forms

Definition
A quadratic form Q is said to be:

positive definite if Q(x) > 0 for all x 6= 0,
negative definite if Q(x) < 0 for all x 6= 0,
indefinite if Q(x) assumes both positive and negative
values.

If Q is a positive definite quadratic form on R2, then set
of points (x1, x2) satisfying Q(x1, x2) = 1 forms an ellipse.
If Q is an indefinite quadratic form on R2, then set of
points (x1, x2) satisfying Q(x1, x2) = 1 forms a hyperbola.

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 25



Quadratic forms and eigenvalues

Theorem 5
Let A be an n × n symmetric matrix, and let Q be the
quadratic form x 7→ xtAx.

1 Q is positive definite if and only if the eigenvalues of A
are all positive.

2 Q is negative definite if and only if the eigenvalues of A
are all negative.

3 Q is indefinite if and only if A has both positive and
negative eigenvalues.
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Problem 7 from June 2010

Let A =

3 1 1
1 2 0
1 0 2

.

1 Find the eigenvalues and eigenvectors of A.
2 Find a matrix P and a diagonal matrix D such that

A = PDPT .
3 Solve the system of differential equations

y ′1 = 3y1 + y2 + y3

y ′2 = y1 + 2y2

y ′3 = y1 + 2y3

with initial position y1(0) = 3, y2(0) = 2, y3(0) = −2.
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Solution

det(A− λI3) =

∣∣∣∣∣∣
3− λ 1 1

1 2− λ 0
1 0 2− λ

∣∣∣∣∣∣
=

∣∣∣∣1 2− λ
1 0

∣∣∣∣+ (2− λ)
∣∣∣∣3− λ 1

1 2− λ

∣∣∣∣
= −(2− λ) + (2− λ)

(
(3− λ)(2− λ)− 1

)
= (2− λ)

(
(3− λ)(2− λ)− 2

)
= (2− λ)(λ2 − 5λ− 4)

and λ2 − 5λ− 4 = 0 if and only if

λ =
5±
√

52−4(−4)
2 = 5±32

2 =

{
4
1

,
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Solution (cont.)
so the eigenvalues of A are 1,2 and 4.

To find the eigenvectors of A corresponding to 1, we reduce
A− I3 to its reduced echelon form.

A−I3 =

2 1 1
1 1 0
1 0 1

→
1 1 0

2 1 1
1 0 1

→
1 1 0

0 −1 1
0 −1 1

→
1 0 1

0 1 −1
0 0 0


It follows that the set of eigenvectors of A corresponding to 1

is

t

−1
1
1

 : t 6= 0

.
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Solution (cont.)

A− 2I3 =

1 1 1
1 0 0
1 0 0



so the set of eigenvectors of A

corresponding to 2 is

t

 0
1
−1

 : t 6= 0

.
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Solution (cont.)
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 so the set of eigenvectors of A
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1
−1

 : t 6= 0

.
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Solution (cont.)
To find the eigenvectors of A corresponding to 4, we reduce
A− 4I3 to its reduced echelon form.

A− 4I3 =

−1 1 1
1 −2 0
1 0 −2

→
1 −1 −1

0 −1 1
0 1 −1

→
1 0 −2

0 1 −1
0 0 0


It follows that the set of eigenvectors of A corresponding to 4

is

t

2
1
1

 : t 6= 0

.
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Solution (cont.)
To find a matrix P and a diagonal matrix D such that
A = PDPT we will orthogonally diagonalize A.

For that we
need an orthonormal basis for R3 consisting of eigenvectors
of A. Since A is symmetric, eigenvectors of A corresponding
to different eigenvalues are orthogonal to each other, so we
just have to find a unit vector in each of the 3 eigenspaces of
A.
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Solution (cont.)

We have that


−1√

3
1√
3

1√
3

 is a unit eigenvector of A corresponding

to 1, that

 0
1√
2
−1√

2

 is a unit eigenvector of A corresponding to 2,

and that


2√
6

1√
6

1√
6

 is a unit eigenvector of A corresponding to 4.
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Solution (cont.)

So if we let P =

 0 2√
6

−1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

 and D =

2 0 0
0 4 0
0 0 1

,

then

A = PDP−1 = PDPT .
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Solution (cont.)

So if we let P =

 0 2√
6

−1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

 and D =

2 0 0
0 4 0
0 0 1

, then

A = PDP−1 = PDPT .

www.ntnu.no TMA4115 - Calculus 3, Lecture 28, page 34



Solution (cont.)
The coefficient matrix the system

y ′1 = 3y1 + y2 + y3

y ′2 = y1 + 2y2

y ′3 = y1 + 2y3

is A,
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Solution (cont.)

so since the eigenvalues of A are 1,2 and 4, and

−1
1
1

 is an

eigenvector of A corresponding to 1,

 0
1
−1

 is an eigenvector

of A corresponding to 2, and

2
1
1

 is an eigenvector of A

corresponding to 4,

the general solution of the system isy1(t)
y2(t)
y3(t)

 = c1

−1
1
1

et + c2

 0
1
−1

e2t + c3

2
1
1

e4t .
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Solution (cont.)

If

y1(t)
y2(t)
y3(t)

 = c1

−1
1
1

et + c2

 0
1
−1

e2t + c3

2
1
1

e4t , then

y1(0)
y2(0)
y3(0)

 = c1

−1
1
1

+ c2

 0
1
−1

+ c3

2
1
1


=

−1 0 2
1 1 1
1 −1 1

c1

c2

c3


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Solution (cont.)
so y1(0) = 3, y2(0) = 2, y3(0) = −2 if and only if−1 0 2

1 1 1
1 −1 1

c1

c2

c3

 =

 3
2
−2

 .

We reduce the augmented matrix of the above system to its
reduced echelon form.
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Solution (cont.)
so y1(0) = 3, y2(0) = 2, y3(0) = −2 if and only if−1 0 2

1 1 1
1 −1 1

c1

c2

c3

 =

 3
2
−2

 .
We reduce the augmented matrix of the above system to its
reduced echelon form.
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Solution (cont.)

−1 0 2 3
1 1 1 2
1 −1 1 −2

→
1 0 −2 −3

0 1 3 5
0 −1 3 1

→
1 0 −2 −3

0 1 3 5
0 0 6 6


→

1 0 −2 −3
0 1 3 5
0 0 1 1

→
1 0 0 −1

0 1 0 2
0 0 1 1



We see that the solution to the system 0 2 −1
1 1 1
−1 1 1

c1

c2

c3

 =

 3
2
−2

 .
is c1 = −1, c2 = 2, c3 = 1.
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Solution (cont.)

−1 0 2 3
1 1 1 2
1 −1 1 −2

→
1 0 −2 −3

0 1 3 5
0 −1 3 1

→
1 0 −2 −3

0 1 3 5
0 0 6 6


→

1 0 −2 −3
0 1 3 5
0 0 1 1

→
1 0 0 −1

0 1 0 2
0 0 1 1


We see that the solution to the system 0 2 −1

1 1 1
−1 1 1

c1

c2

c3

 =

 3
2
−2

 .
is c1 = −1, c2 = 2, c3 = 1.
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Solution (cont.)
So the solution to the system of differential equations

y ′1 = 3y1 + y2 + y3

y ′2 = y1 + 2y2

y ′3 = y1 + 2y3

with initial position y1(0) = 3, y2(0) = 2, y3(0) = −2, isy1(t)
y2(t)
y3(t)

 = −

−1
1
1

et+2

 0
1
−1

e2t+

2
1
1

e4t =

 2e4t + et

e4t + 2e2t − et

e4t − 2e2t − et

 .
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