TMA4115-Calculus 3
 Lecture 28, April 25

Toke Meier Carlsen
Norwegian University of Science and Technology
Spring 2013

Yesterday's lecture

Yesterday's lecture

Yesterday we looked at

NTNU
Norwegian University of
Science and Technology

Yesterday's lecture

Yesterday we looked at

- least-squares problems,

NTNU
Norwegian University of
Science and Technology

Yesterday's lecture

Yesterday we looked at

- least-squares problems,
- applications to linear models.

NTNU
Norwegian University of
Science and Technology

Today's lecture

Today's lecture

Today we shall introduce and study

Today's lecture

Today we shall introduce and study

- symmetric matrices,

Today's lecture

Today we shall introduce and study

- symmetric matrices,
- quadratic forms.

Symmetric matrices

NTNU
Norwegian University of
Science and Technology

Symmetric matrices

- A symmetric matrix is a matrix A such that $A^{T}=A$.

Symmetric matrices

- A symmetric matrix is a matrix A such that $A^{T}=A$.
- A symmetric matrix is necessarily square.

Symmetric matrices

- A symmetric matrix is a matrix A such that $A^{T}=A$.
- A symmetric matrix is necessarily square.
- We will in this lecture see that every symmetric matrix is orthogonally diagonalizable,

Symmetric matrices

- A symmetric matrix is a matrix A such that $A^{T}=A$.
- A symmetric matrix is necessarily square.
- We will in this lecture see that every symmetric matrix is orthogonally diagonalizable, that is, if A is symmetric, then $A=P D P^{-1}$ where P is an orthogonal matrix and D is a diagonal matrix.

NTNU
Norwegian University of
Science and Technology

Examples of symmetric matrices

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & -3 \\
1 & 2 & 4 \\
-3 & 4 & 7
\end{array}\right]
$$

Orthogonal matrices

Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose columns form an orthonormal set.

Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose columns form an orthonormal set.

Theorem

Let P be an $n \times n$ matrix. Then the following statements are logically equivalent:

NTNU
Norwegian University of
Science and Technology

Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose columns form an orthonormal set.

Theorem

Let P be an $n \times n$ matrix. Then the following statements are logically equivalent:
(1) P is an orthogonal matrix.

NTNU
Norwegian University of
Science and Technology

Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose columns form an orthonormal set.

Theorem

Let P be an $n \times n$ matrix. Then the following statements are logically equivalent:
(1) P is an orthogonal matrix.
(2) The columns of P form an orthonormal basis for \mathbb{R}^{n}.

Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose columns form an orthonormal set.

Theorem

Let P be an $n \times n$ matrix. Then the following statements are logically equivalent:
(1) P is an orthogonal matrix.
(2) The columns of P form an orthonormal basis for \mathbb{R}^{n}.
(3) $P^{T} P=I_{n}$.

Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose columns form an orthonormal set.

Theorem

Let P be an $n \times n$ matrix. Then the following statements are logically equivalent:
(1) P is an orthogonal matrix.
(2) The columns of P form an orthonormal basis for \mathbb{R}^{n}.
(3) $P^{T} P=I_{n}$.
(9) P is invertible and $P^{-1}=P^{T}$.

Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose columns form an orthonormal set.

Theorem

Let P be an $n \times n$ matrix. Then the following statements are logically equivalent:
(1) P is an orthogonal matrix.
(2) The columns of P form an orthonormal basis for \mathbb{R}^{n}.
(3) $P^{T} P=I_{n}$.
(9) P is invertible and $P^{-1}=P^{T}$.
(5) $P P^{T}=I_{n}$.

Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose columns form an orthonormal set.

Theorem

Let P be an $n \times n$ matrix. Then the following statements are logically equivalent:
(1) P is an orthogonal matrix.
(2) The columns of P form an orthonormal basis for \mathbb{R}^{n}.
(3) $P^{T} P=I_{n}$.
(9) P is invertible and $P^{-1}=P^{T}$.
(5) $P P^{T}=I_{n}$.
(0) The rows of P form an orthonormal basis for \mathbb{R}^{n}.

D

Orthogonal matrices

Recall that an orthogonal matrix is a square matrix whose columns form an orthonormal set.

Theorem

Let P be an $n \times n$ matrix. Then the following statements are logically equivalent:
(1) P is an orthogonal matrix.
(2) The columns of P form an orthonormal basis for \mathbb{R}^{n}.
(3) $P^{T} P=I_{n}$.
(9) P is invertible and $P^{-1}=P^{T}$.
(6) $P P^{T}=I_{n}$.
(0) The rows of P form an orthonormal basis for \mathbb{R}^{n}.
(3) P^{T} is an orthogonal matrix.

Example

Example

$$
\text { Let } P=\left[\begin{array}{lll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\
0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}
\end{array}\right] \text {. }
$$

Example

Let $P=\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\ 0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}\end{array}\right]$.
Then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set,

Example

$$
\text { Let } P=\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\
0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}
\end{array}\right] \text {. }
$$

Then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set, so P is an orthogonal matrix.

Example

$$
\text { Let } P=\left[\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\
0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}
\end{array}\right] \text {. }
$$

Then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set, so P is an orthogonal matrix. Notice also that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal basis for \mathbb{R}^{3}.

Example

$$
\text { Let } P=\left[\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\
0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}
\end{array}\right] \text {. }
$$

Then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set, so P is an orthogonal matrix. Notice also that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal basis for \mathbb{R}^{3}.
We have that

$$
P^{T} P=\left[\begin{array}{lll}
\mathbf{u}_{1} \cdot \mathbf{u}_{1} & \mathbf{u}_{1} \cdot \mathbf{u}_{2} & \mathbf{u}_{1} \cdot \mathbf{u}_{3} \\
\mathbf{u}_{2} \cdot \mathbf{u}_{1} & \mathbf{u}_{2} \cdot \mathbf{u}_{2} & \mathbf{u}_{2} \cdot \mathbf{u}_{3} \\
\mathbf{u}_{3} \cdot \mathbf{u}_{1} & \mathbf{u}_{3} \cdot \mathbf{u}_{2} & \mathbf{u}_{3} \cdot \mathbf{u}_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I_{3} .
$$

0

Example

$$
\text { Let } P=\left[\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\
0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}
\end{array}\right] \text {. }
$$

Then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set, so P is an orthogonal matrix. Notice also that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal basis for \mathbb{R}^{3}.
We have that
$P^{T} P=\left[\begin{array}{lll}\mathbf{u}_{1} \cdot \mathbf{u}_{1} & \mathbf{u}_{1} \cdot \mathbf{u}_{2} & \mathbf{u}_{1} \cdot \mathbf{u}_{3} \\ \mathbf{u}_{2} \cdot \mathbf{u}_{1} & \mathbf{u}_{2} \cdot \mathbf{u}_{2} & \mathbf{u}_{2} \cdot \mathbf{u}_{3} \\ \mathbf{u}_{3} \cdot \mathbf{u}_{1} & \mathbf{u}_{3} \cdot \mathbf{u}_{2} & \mathbf{u}_{3} \cdot \mathbf{u}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I_{3}$.
It follows (from the inverse matrix theorem) that P is invertible and $P^{-1}=P^{T}$.

Example

$$
\text { Let } P=\left[\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\
0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}
\end{array}\right] \text {. }
$$

Then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set, so P is an orthogonal matrix. Notice also that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal basis for \mathbb{R}^{3}.
We have that
$P^{T} P=\left[\begin{array}{lll}\mathbf{u}_{1} \cdot \mathbf{u}_{1} & \mathbf{u}_{1} \cdot \mathbf{u}_{2} & \mathbf{u}_{1} \cdot \mathbf{u}_{3} \\ \mathbf{u}_{2} \cdot \mathbf{u}_{1} & \mathbf{u}_{2} \cdot \mathbf{u}_{2} & \mathbf{u}_{2} \cdot \mathbf{u}_{3} \\ \mathbf{u}_{3} \cdot \mathbf{u}_{1} & \mathbf{u}_{3} \cdot \mathbf{u}_{2} & \mathbf{u}_{3} \cdot \mathbf{u}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I_{3}$.
It follows (from the inverse matrix theorem) that P is invertible and $P^{-1}=P^{T}$. So $P^{T} P=I_{3}$,

Example

$$
\text { Let } P=\left[\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\
0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}
\end{array}\right] \text {. }
$$

Then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set, so P is an orthogonal matrix. Notice also that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal basis for \mathbb{R}^{3}.
We have that
$P^{T} P=\left[\begin{array}{lll}\mathbf{u}_{1} \cdot \mathbf{u}_{1} & \mathbf{u}_{1} \cdot \mathbf{u}_{2} & \mathbf{u}_{1} \cdot \mathbf{u}_{3} \\ \mathbf{u}_{2} \cdot \mathbf{u}_{1} & \mathbf{u}_{2} \cdot \mathbf{u}_{2} & \mathbf{u}_{2} \cdot \mathbf{u}_{3} \\ \mathbf{u}_{3} \cdot \mathbf{u}_{1} & \mathbf{u}_{3} \cdot \mathbf{u}_{2} & \mathbf{u}_{3} \cdot \mathbf{u}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I_{3}$.
It follows (from the inverse matrix theorem) that P is invertible and $P^{-1}=P^{T}$. So $P^{T} P=I_{3}$, which means that the rows of P forms an orthonormal basis for \mathbb{R}^{3} and that P^{\top} is orthogonal.

Orthogonally diagonalization

Orthogonally diagonalization

An $n \times n$ matrix A is orthogonally diagonalizable if there is an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

Orthogonally diagonalization

An $n \times n$ matrix A is orthogonally diagonalizable if there is an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

Theorem 2

An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is symmetric.

Example

Let $A=\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right]$.
Let us find an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

Solution

Solution

The eigenvalues of A are -2 and 7 .

Solution

The eigenvalues of A are -2 and 7 .
$\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$ form a basis for the eigenspace of A corresponding to 7 .

Solution

The eigenvalues of A are -2 and 7 .
$\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$ form a basis for the eigenspace of
A corresponding to 7 .
$\mathbf{v}_{3}=\left[\begin{array}{c}-2 \\ -1 \\ 2\end{array}\right]$ is an eigenvector of A corresponding to -2 .

Solution

The eigenvalues of A are -2 and 7 .
$\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$ form a basis for the eigenspace of A corresponding to 7 .
$\mathbf{v}_{3}=\left[\begin{array}{c}-2 \\ -1 \\ 2\end{array}\right]$ is an eigenvector of A corresponding to -2 .
Notice that $\mathbf{v}_{1} \cdot \mathbf{v}_{3}=\mathbf{v}_{2} \cdot \mathbf{v}_{3}=0$.

Solution

The eigenvalues of A are -2 and 7 .
$\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$ form a basis for the eigenspace of
A corresponding to 7 .
$\mathbf{v}_{3}=\left[\begin{array}{c}-2 \\ -1 \\ 2\end{array}\right]$ is an eigenvector of A corresponding to -2 .
Notice that $\mathbf{v}_{1} \cdot \mathbf{v}_{3}=\mathbf{v}_{2} \cdot \mathbf{v}_{3}=0$.
Let $\mathbf{z}_{1}=\mathbf{v}_{1}$

Solution

The eigenvalues of A are -2 and 7 .
$\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$ form a basis for the eigenspace of
A corresponding to 7 .
$\mathbf{v}_{3}=\left[\begin{array}{c}-2 \\ -1 \\ 2\end{array}\right]$ is an eigenvector of A corresponding to -2 .
Notice that $\mathbf{v}_{1} \cdot \mathbf{v}_{3}=\mathbf{v}_{2} \cdot \mathbf{v}_{3}=0$.
Let $\mathbf{z}_{1}=\mathbf{v}_{1}$ and $\mathbf{z}_{2}=\mathbf{v}_{2}-\frac{\mathbf{v}_{1} \cdot \mathbf{z}_{1}}{z_{1} \cdot \mathbf{z}_{1}} \mathbf{z}_{1}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]-\frac{-1}{2}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}\frac{-1}{2} \\ 2 \\ \frac{1}{2}\end{array}\right]$.
NTNU
Norwegian University of
Science and Technology

Solution (cont.)

And let $\mathbf{z}_{3}=\mathbf{v}_{3}$.

Solution (cont.)

And let $\mathbf{z}_{3}=\mathbf{v}_{3}$. Then $\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}\right\}$ is an orthogonal set.

Solution (cont.)

And let $\mathbf{z}_{3}=\mathbf{v}_{3}$. Then $\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}\right\}$ is an orthogonal set. Let

$$
\begin{aligned}
& \mathbf{x}_{1}=\frac{1}{\left\|\mathbf{z}_{1}\right\|} \mathbf{z}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right], \\
& \mathbf{x}_{2}=\frac{1}{\left\|\mathbf{z}_{2}\right\|} \mathbf{z}_{2}=\left[\begin{array}{c}
\frac{-1}{\sqrt{18}} \\
\frac{4}{\sqrt{18}} \\
\frac{1}{\sqrt{18}}
\end{array}\right] \text { and } \\
& \mathbf{x}_{3}=\frac{1}{\left\|\mathbf{z}_{3}\right\|} \mathbf{z}_{3}=\left[\begin{array}{c}
\frac{-2}{3} \\
\frac{-1}{3} \\
\frac{2}{3}
\end{array}\right] .
\end{aligned}
$$

Solution (cont.)

Then $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is an orthogonal set,

Solution (cont.)

Then $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is an orthogonal set, so if we let
$P=\left[\begin{array}{lll}\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\ 0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}\end{array}\right]$,

Solution (cont.)

Then $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is an orthogonal set, so if we let
$P=\left[\begin{array}{lll}\mathbf{x}_{1} & \mathbf{x}_{2} \mathbf{x}_{3}\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\ 0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}\end{array}\right]$, then P is an orthogonal
matrix,

0

Solution (cont.)

Then $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is an orthogonal set, so if we let
$P=\left[\begin{array}{lll}\mathbf{x}_{1} & \mathbf{x}_{2} \mathbf{x}_{3}\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\ 0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}\end{array}\right]$, then P is an orthogonal
matrix, and if we let $D=\left[\begin{array}{ccc}7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -2\end{array}\right]$,

Solution (cont.)

Then $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is an orthogonal set, so if we let
$P=\left[\begin{array}{lll}\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\ 0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3}\end{array}\right]$, then P is an orthogonal
matrix, and if we let $D=\left[\begin{array}{ccc}7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -2\end{array}\right]$, then $A=P D P^{-1}$.

Orthogonal eigenvectors

Orthogonal eigenvectors

Theorem 1

If A is a symmetric matrix, then any two eigenvectors from different eigenspaces are orthogonal.

Proof of Theorem 1

NTNU
Norwegian University of
Science and Technology

Proof of Theorem 1

Let \mathbf{v}_{1} and \mathbf{v}_{2} be eigenvectors of A corresponding to λ_{1} and λ_{2}, respectively, and assume that $\lambda_{1} \neq \lambda_{2}$.

Proof of Theorem 1

Let \mathbf{v}_{1} and \mathbf{v}_{2} be eigenvectors of A corresponding to λ_{1} and λ_{2}, respectively, and assume that $\lambda_{1} \neq \lambda_{2}$. Then

$$
\begin{aligned}
\lambda_{1} \mathbf{v}_{1} \cdot \mathbf{v}_{2} & =\left(\lambda_{1} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\left(A \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\mathbf{v}_{1}^{T} A^{T} \mathbf{v}_{2} \\
& =\mathbf{v}_{1}^{T} A \mathbf{v}_{2}=\mathbf{v}_{1}^{T} \lambda_{2} \mathbf{v}_{2}=\mathbf{v}_{1} \cdot\left(\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{2} \mathbf{v}_{1} \cdot \mathbf{v}_{2}
\end{aligned}
$$

Proof of Theorem 1

Let \mathbf{v}_{1} and \mathbf{v}_{2} be eigenvectors of \boldsymbol{A} corresponding to λ_{1} and λ_{2}, respectively, and assume that $\lambda_{1} \neq \lambda_{2}$. Then

$$
\begin{aligned}
\lambda_{1} \mathbf{v}_{1} \cdot \mathbf{v}_{2} & =\left(\lambda_{1} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\left(A \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\mathbf{v}_{1}^{T} A^{T} \mathbf{v}_{2} \\
& =\mathbf{v}_{1}^{T} A \mathbf{v}_{2}=\mathbf{v}_{1}^{T} \lambda_{2} \mathbf{v}_{2}=\mathbf{v}_{1} \cdot\left(\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{2} \mathbf{v}_{1} \cdot \mathbf{v}_{2}
\end{aligned}
$$

so $\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$.

Proof of Theorem 1

Let \mathbf{v}_{1} and \mathbf{v}_{2} be eigenvectors of \boldsymbol{A} corresponding to λ_{1} and λ_{2}, respectively, and assume that $\lambda_{1} \neq \lambda_{2}$. Then

$$
\begin{aligned}
\lambda_{1} \mathbf{v}_{1} \cdot \mathbf{v}_{2} & =\left(\lambda_{1} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\left(A \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\mathbf{v}_{1}^{T} A^{T} \mathbf{v}_{2} \\
& =\mathbf{v}_{1}^{T} A \mathbf{v}_{2}=\mathbf{v}_{1}^{T} \lambda_{2} \mathbf{v}_{2}=\mathbf{v}_{1} \cdot\left(\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{2} \mathbf{v}_{1} \cdot \mathbf{v}_{2}
\end{aligned}
$$

so $\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$. Since $\lambda_{1} \neq \lambda_{2}$, it follows that $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$.

The spectral theorem for symmetric matrices

The spectral theorem for symmetric matrices

Theorem 3

An $n \times n$ symmetric matrix A has the following properties:

0

The spectral theorem for symmetric matrices

Theorem 3

An $n \times n$ symmetric matrix A has the following properties:
(1) A has n real eigenvalues, counting multiplicities.

The spectral theorem for symmetric matrices

Theorem 3

An $n \times n$ symmetric matrix A has the following properties:
(1) A has n real eigenvalues, counting multiplicities.
(2) The dimensions of the eigenspace for each eigenvalue λ equals the multiplicity of λ.

Norwegian University of
Science and Technology

The spectral theorem for symmetric matrices

Theorem 3

An $n \times n$ symmetric matrix A has the following properties:
(1) A has n real eigenvalues, counting multiplicities.
(2) The dimensions of the eigenspace for each eigenvalue λ equals the multiplicity of λ.
(3) The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.

Spectral decomposition

Spectral decomposition

Suppose $A=P D P^{-1}$ where $P=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{n}\right]$ is an orthogonal
matrix and $D=\left[\begin{array}{ccc}\lambda_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_{n}\end{array}\right]$.

Spectral decomposition

Suppose $A=P D P^{-1}$ where $P=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{n}\right]$ is an orthogonal
matrix and $D=\left[\begin{array}{ccc}\lambda_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_{n}\end{array}\right]$.
If \mathbf{x} is in \mathbb{R}^{n}, then $\mathbf{x}=\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{x} \cdot \mathbf{u}_{n}\right) \mathbf{u}_{n}$ and $A \mathbf{x}=\lambda_{1}\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\lambda_{n}\left(\mathbf{x} \cdot \mathbf{u}_{n}\right) \mathbf{u}_{n}$.

Spectral decomposition

Suppose $A=P D P^{-1}$ where $P=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{n}\right]$ is an orthogonal
matrix and $D=\left[\begin{array}{ccc}\lambda_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_{n}\end{array}\right]$.
If \mathbf{x} is in \mathbb{R}^{n}, then $\mathbf{x}=\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{x} \cdot \mathbf{u}_{n}\right) \mathbf{u}_{n}$ and $A \mathbf{x}=\lambda_{1}\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\lambda_{n}\left(\mathbf{x} \cdot \mathbf{u}_{n}\right) \mathbf{u}_{n}$.
We furthermore have that

$$
\boldsymbol{A}=\lambda \mathbf{u}_{1} \mathbf{u}_{1}^{T}+\cdots+\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T} .
$$

Spectral decomposition

Suppose $A=P D P^{-1}$ where $P=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{n}\right]$ is an orthogonal
matrix and $D=\left[\begin{array}{ccc}\lambda_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_{n}\end{array}\right]$.
If \mathbf{x} is in \mathbb{R}^{n}, then $\mathbf{x}=\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{x} \cdot \mathbf{u}_{n}\right) \mathbf{u}_{n}$ and $A \mathbf{x}=\lambda_{1}\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\lambda_{n}\left(\mathbf{x} \cdot \mathbf{u}_{n}\right) \mathbf{u}_{n}$.
We furthermore have that

$$
\boldsymbol{A}=\lambda \mathbf{u}_{1} \mathbf{u}_{1}^{T}+\cdots+\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T} .
$$

This is called a spectral decomposition of A.

Example

Example
 If $A=\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right]$,

Example

If $A=\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right]$, then

$$
\begin{aligned}
& A= 7\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{lll}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]+7\left[\begin{array}{c}
\frac{-1}{\sqrt{18}} \\
\frac{4}{\sqrt{18}} \\
\frac{1}{\sqrt{18}}
\end{array}\right]\left[\begin{array}{lll}
\frac{-1}{\sqrt{18}} & \frac{4}{\sqrt{18}} & \frac{1}{\sqrt{18}}
\end{array}\right] \\
&-2\left[\begin{array}{c}
\frac{-2}{3} \\
\frac{-1}{3} \\
\frac{2}{3}
\end{array}\right]\left[\begin{array}{lll}
\frac{-2}{3} & \frac{-1}{3} & \frac{2}{3}
\end{array}\right] \\
&=7\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]+7\left[\begin{array}{ccc}
\frac{1}{18} & \frac{-4}{18} & \frac{-1}{18} \\
\frac{-4}{18} & \frac{16}{18} & \frac{4}{18} \\
\frac{-1}{18} & \frac{4}{18} & \frac{1}{18}
\end{array}\right]-2\left[\begin{array}{ccc}
\frac{4}{9} & \frac{2}{9} & \frac{-4}{9} \\
\frac{2}{9} & \frac{1}{9} & \frac{-2}{9} \\
\frac{-4}{9} & \frac{-2}{9} & \frac{4}{9}
\end{array}\right] \\
& \text { a } \\
& \text { arivegian Univerisiy of } \\
& \text { Science and Technology }
\end{aligned}
$$

Quadratic forms

Quadratic forms

- A quadratic form on \mathbb{R}^{n} is a function Q defined on \mathbb{R}^{n} such that $Q(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}$ for some symmetric $n \times n$ matrix A.

Quadratic forms

- A quadratic form on \mathbb{R}^{n} is a function Q defined on \mathbb{R}^{n} such that $Q(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}$ for some symmetric $n \times n$ matrix A.
- The matrix A is called the matrix of Q.

Quadratic forms

- A quadratic form on \mathbb{R}^{n} is a function Q defined on \mathbb{R}^{n} such that $Q(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}$ for some symmetric $n \times n$ matrix A.
- The matrix A is called the matrix of Q.
- Quadratic forms occupy a central place in various branches of mathematics, including
- number theory,
- linear algebra,
- group theory,
- differential geometry,
- differential topology,
- Lie theory.

Examples of quadratic forms

Examples of quadratic forms

- $\mathbf{x} \rightarrow\|\mathbf{x}\|^{2}$ is a quadratic form because $\|\mathbf{x}\|^{2}=\mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{\top} \mathbf{x}=\mathbf{x}^{\top} I_{n} \mathbf{x}$.

Examples of quadratic forms

- $\mathbf{x} \rightarrow\|\mathbf{x}\|^{2}$ is a quadratic form because

$$
\|\mathbf{x}\|^{2}=\mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{T} \mathbf{x}=\mathbf{x}^{T} I_{n} \mathbf{x}
$$

- $\left(x_{1}, x_{2}\right) \mapsto 6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2}$ is a quadratic from because

$$
6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
6 & -12 \\
-12 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Examples of quadratic forms

- $\mathbf{x} \rightarrow\|\mathbf{x}\|^{2}$ is a quadratic form because $\|\mathbf{x}\|^{2}=\mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{T} \mathbf{x}=\mathbf{x}^{T} I_{n} \mathbf{x}$.
- $\left(x_{1}, x_{2}\right) \mapsto 6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2}$ is a quadratic from because $6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{cc}6 & -12 \\ -12 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
Let $y_{1}=\frac{4}{5} x_{1}-\frac{3}{5} x_{2}$ and $y_{2}=\frac{3}{5} x_{1}+\frac{4}{5} x_{2}$. Then
$6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2}=15 y_{1}^{2}-10 y_{2}^{2}$.

The principal axes theorem

Theorem 4

Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, $\mathbf{x}=P \mathbf{y}$, that transforms the quadratic form $\mathbf{x}^{\top} A \mathbf{x}$ into a quadratic form $\mathbf{y}^{\top} D \mathbf{y}$ with no cross-product term.

The principal axes theorem

Theorem 4

Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, $\mathbf{x}=P \mathbf{y}$, that transforms the quadratic form $\mathbf{x}^{\top} A \mathbf{x}$ into a quadratic form $\mathbf{y}^{\top} D \mathbf{y}$ with no cross-product term.

The above theorem can be used to classify conic sections.

NTNU
Norwegian University of
Science and Technology

Example

Example

Consider the quadratic form $\left(x_{1}, x_{2}\right) \mapsto 6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2}$.

Example

Consider the quadratic form $\left(x_{1}, x_{2}\right) \mapsto 6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2}$.
The matrix of this quadratic form is $A=\left[\begin{array}{cc}6 & -12 \\ -12 & -1\end{array}\right]$.

Example

Consider the quadratic form $\left(x_{1}, x_{2}\right) \mapsto 6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2}$.
The matrix of this quadratic form is $A=\left[\begin{array}{cc}6 & -12 \\ -12 & -1\end{array}\right]$.
$\operatorname{det}\left(A-\lambda I_{2}\right)=\left|\begin{array}{cc}6-\lambda & -12 \\ -12 & -1-\lambda\end{array}\right|=(6-\lambda)(-1-\lambda)-144=$ $\lambda^{2}-5 \lambda-150$.

Example

Consider the quadratic form $\left(x_{1}, x_{2}\right) \mapsto 6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2}$.
The matrix of this quadratic form is $A=\left[\begin{array}{cc}6 & -12 \\ -12 & -1\end{array}\right]$.
$\operatorname{det}\left(A-\lambda I_{2}\right)=\left|\begin{array}{cc}6-\lambda & -12 \\ -12 & -1-\lambda\end{array}\right|=(6-\lambda)(-1-\lambda)-144=$
$\lambda^{2}-5 \lambda-150$. and the zeros of $\lambda^{2}-5 \lambda-150$ are
$\lambda=\frac{5 \pm \sqrt{5^{2}-4(-150)}}{2}=\frac{5 \pm \sqrt{625}}{2}=\frac{5 \pm 25}{2}=\left\{\begin{array}{l}15 \\ -10\end{array}\right.$,

Example

Consider the quadratic form $\left(x_{1}, x_{2}\right) \mapsto 6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2}$.
The matrix of this quadratic form is $A=\left[\begin{array}{cc}6 & -12 \\ -12 & -1\end{array}\right]$.
$\operatorname{det}\left(A-\lambda I_{2}\right)=\left|\begin{array}{cc}6-\lambda & -12 \\ -12 & -1-\lambda\end{array}\right|=(6-\lambda)(-1-\lambda)-144=$ $\lambda^{2}-5 \lambda-150$. and the zeros of $\lambda^{2}-5 \lambda-150$ are $\lambda=\frac{5 \pm \sqrt{5^{2}-4(-150)}}{2}=\frac{5 \pm \sqrt{625}}{2}=\frac{5 \pm 25}{2}=\left\{\begin{array}{l}15 \\ -10\end{array}\right.$, so the eigenvalues of A are 15 and -10.

Example (cont.)

$A-15 I_{2}=\left[\begin{array}{cc}-9 & -12 \\ -12 & -16\end{array}\right]$ so $\mathbf{v}_{1}\left[\begin{array}{c}4 \\ -3\end{array}\right]$ is an eigenvalue of A corresponding to the eigenvalue 15 .

Example (cont.)

$A-15 I_{2}=\left[\begin{array}{cc}-9 & -12 \\ -12 & -16\end{array}\right]$ so $\mathbf{v}_{1}\left[\begin{array}{c}4 \\ -3\end{array}\right]$ is an eigenvalue of A corresponding to the eigenvalue 15 .
$A+10 I_{2}=\left[\begin{array}{cc}16 & -12 \\ -12 & 9\end{array}\right]$ so $\mathbf{v}_{2}\left[\begin{array}{l}3 \\ 4\end{array}\right]$ is an eigenvalue of A
corresponding to the eigenvalue -10 .

Example (cont.)

$A-15 I_{2}=\left[\begin{array}{cc}-9 & -12 \\ -12 & -16\end{array}\right]$ so $\mathbf{v}_{1}\left[\begin{array}{c}4 \\ -3\end{array}\right]$ is an eigenvalue of A corresponding to the eigenvalue 15 .
$A+10 I_{2}=\left[\begin{array}{cc}16 & -12 \\ -12 & 9\end{array}\right]$ so $\mathbf{v}_{2}\left[\begin{array}{l}3 \\ 4\end{array}\right]$ is an eigenvalue of A
corresponding to the eigenvalue -10 .
$\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$ and $\left\|\mathbf{v}_{1}\right\|=\left\|\mathbf{v}_{2}\right\|=5$,

Example (cont.)

$A-15 I_{2}=\left[\begin{array}{cc}-9 & -12 \\ -12 & -16\end{array}\right]$ so $\mathbf{v}_{1}\left[\begin{array}{c}4 \\ -3\end{array}\right]$ is an eigenvalue of A corresponding to the eigenvalue 15 .
$A+10 I_{2}=\left[\begin{array}{cc}16 & -12 \\ -12 & 9\end{array}\right]$ so $\mathbf{v}_{2}\left[\begin{array}{l}3 \\ 4\end{array}\right]$ is an eigenvalue of A
corresponding to the eigenvalue -10 .
$\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0$ and $\left\|\mathbf{v}_{1}\right\|=\left\|\mathbf{v}_{2}\right\|=5$, so if we let $P=\frac{1}{5}\left[\begin{array}{cc}4 & 3 \\ -3 & 4\end{array}\right]$
and $D=\left[\begin{array}{cc}15 & 0 \\ 0 & -10\end{array}\right]$, then P is an orthogonal matrix and
$A=P D P^{-1}$.

Example (cont.)

$$
\begin{aligned}
& \text { Let }\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=P^{-1}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=P^{T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{1}{5}\left[\begin{array}{cc}
4 & -3 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]= \\
& {\left[\begin{array}{l}
\frac{4}{5} x_{1}+\frac{3}{5} x_{2} \\
\frac{-3}{5} x_{1}+\frac{4}{5} x_{2}
\end{array}\right] \text {. }}
\end{aligned}
$$

Example (cont.)

Let $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=P^{-1}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=P^{T}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\frac{1}{5}\left[\begin{array}{cc}4 & -3 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=$
$\left[\begin{array}{l}\frac{4}{5} x_{1}+\frac{3}{5} x_{2} \\ \frac{-3}{5} x_{1}+\frac{4}{5} x_{2}\end{array}\right]$.
Then

$$
\begin{aligned}
6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2} & =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] P^{-1} D P\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right] D\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]\left[\begin{array}{cc}
15 & 0 \\
0 & -10
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \\
& =15 y_{1}^{2}-10 y_{2}^{2}
\end{aligned}
$$

Norwegian University of Science and Technology

Example (cont.)

The set of points $\left(y_{1}, y_{2}\right)$ satisfying $15 y_{1}^{2}-10 y_{2}^{2}=1$ is a hyperbola.

Example (cont.)

The set of points $\left(y_{1}, y_{2}\right)$ satisfying $15 y_{1}^{2}-10 y_{2}^{2}=1$ is a hyperbola. It follows that the set of points $\left(x_{1}, x_{2}\right)$ satisfying $6 x_{1}^{2}-24 x_{1} x_{2}-x_{2}^{2}=1$ is a rotated hyperbola.

Classifying quadratic forms

Classifying quadratic forms

Definition
 A quadratic form Q is said to be:

Classifying quadratic forms

Definition

A quadratic form Q is said to be:

- positive definite if $Q(\mathbf{x})>0$ for all $\mathbf{x} \neq \mathbf{0}$,

Classifying quadratic forms

Definition

A quadratic form Q is said to be:

- positive definite if $Q(\mathbf{x})>0$ for all $\mathbf{x} \neq \mathbf{0}$,
- negative definite if $Q(\mathbf{x})<0$ for all $\mathbf{x} \neq \mathbf{0}$,

Classifying quadratic forms

Definition

A quadratic form Q is said to be:

- positive definite if $Q(\mathbf{x})>0$ for all $\mathbf{x} \neq \mathbf{0}$,
- negative definite if $Q(\mathbf{x})<0$ for all $\mathbf{x} \neq \mathbf{0}$,
- indefinite if $Q(\mathbf{x})$ assumes both positive and negative values.

Classifying quadratic forms

Definition

A quadratic form Q is said to be:

- positive definite if $Q(\mathbf{x})>0$ for all $\mathbf{x} \neq \mathbf{0}$,
- negative definite if $Q(\mathbf{x})<0$ for all $\mathbf{x} \neq \mathbf{0}$,
- indefinite if $Q(\mathbf{x})$ assumes both positive and negative values.
- If Q is a positive definite quadratic form on \mathbb{R}^{2}, then set of points (x_{1}, x_{2}) satisfying $Q\left(x_{1}, x_{2}\right)=1$ forms an ellipse.

Classifying quadratic forms

Definition

A quadratic form Q is said to be:

- positive definite if $Q(\mathbf{x})>0$ for all $\mathbf{x} \neq \mathbf{0}$,
- negative definite if $Q(\mathbf{x})<0$ for all $\mathbf{x} \neq \mathbf{0}$,
- indefinite if $Q(\mathbf{x})$ assumes both positive and negative values.
- If Q is a positive definite quadratic form on \mathbb{R}^{2}, then set of points (x_{1}, x_{2}) satisfying $Q\left(x_{1}, x_{2}\right)=1$ forms an ellipse.
- If Q is an indefinite quadratic form on \mathbb{R}^{2}, then set of points (x_{1}, x_{2}) satisfying $Q\left(x_{1}, x_{2}\right)=1$ forms a hyperbola.

NTNU
Norwegian University of
Science and Technology

Quadratic forms and eigenvalues

NTNU
Norwegian University of
Science and Technology

Quadratic forms and eigenvalues

Theorem 5

Let A be an $n \times n$ symmetric matrix, and let Q be the quadratic form $x \mapsto \mathbf{x}^{t} A \mathbf{x}$.

0

Quadratic forms and eigenvalues

Theorem 5

Let A be an $n \times n$ symmetric matrix, and let Q be the quadratic form $x \mapsto \mathbf{x}^{t} A \mathbf{x}$.
(1) Q is positive definite if and only if the eigenvalues of A are all positive.

Quadratic forms and eigenvalues

Theorem 5

Let A be an $n \times n$ symmetric matrix, and let Q be the quadratic form $x \mapsto \mathbf{x}^{t} A \mathbf{x}$.
(1) Q is positive definite if and only if the eigenvalues of A are all positive.
(2) Q is negative definite if and only if the eigenvalues of A are all negative.

Quadratic forms and eigenvalues

Theorem 5

Let A be an $n \times n$ symmetric matrix, and let Q be the quadratic form $x \mapsto \mathbf{x}^{t} A \mathbf{x}$.
(1) Q is positive definite if and only if the eigenvalues of A are all positive.
(2) Q is negative definite if and only if the eigenvalues of A are all negative.
(3) Q is indefinite if and only if A has both positive and negative eigenvalues.

Problem 7 from June 2010

Let $A=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$.
(1) Find the eigenvalues and eigenvectors of A.
(2) Find a matrix P and a diagonal matrix D such that $A=P D P^{\top}$.
(3) Solve the system of differential equations

$$
\begin{aligned}
& y_{1}^{\prime}=3 y_{1}+y_{2}+y_{3} \\
& y_{2}^{\prime}=y_{1}+2 y_{2} \\
& y_{3}^{\prime}=y_{1}+2 y_{3}
\end{aligned}
$$

with initial position $y_{1}(0)=3, y_{2}(0)=2, y_{3}(0)=-2$.

Solution

Solution

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{3}\right) & =\left|\begin{array}{ccc}
3-\lambda & 1 & 1 \\
1 & 2-\lambda & 0 \\
1 & 0 & 2-\lambda
\end{array}\right| \\
& =\left|\begin{array}{cc}
1 & 2-\lambda \\
1 & 0
\end{array}\right|+(2-\lambda)\left|\begin{array}{cc}
3-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right| \\
& =-(2-\lambda)+(2-\lambda)((3-\lambda)(2-\lambda)-1) \\
& =(2-\lambda)((3-\lambda)(2-\lambda)-2) \\
& =(2-\lambda)\left(\lambda^{2}-5 \lambda-4\right)
\end{aligned}
$$

Solution

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{3}\right) & =\left|\begin{array}{ccc}
3-\lambda & 1 & 1 \\
1 & 2-\lambda & 0 \\
1 & 0 & 2-\lambda
\end{array}\right| \\
& =\left|\begin{array}{cc}
1 & 2-\lambda \\
1 & 0
\end{array}\right|+(2-\lambda)\left|\begin{array}{cc}
3-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right| \\
& =-(2-\lambda)+(2-\lambda)((3-\lambda)(2-\lambda)-1) \\
& =(2-\lambda)((3-\lambda)(2-\lambda)-2) \\
& =(2-\lambda)\left(\lambda^{2}-5 \lambda-4\right)
\end{aligned}
$$

and $\lambda^{2}-5 \lambda-4=0$ if and only if

$$
\lambda=\frac{5 \pm \sqrt{5^{2}-4(-4)}}{2}=\frac{5 \pm 3^{2}}{2}=\left\{\begin{array}{l}
4 \\
1
\end{array}\right.
$$

Norwegian University of
Science and Technology

Solution (cont.)

so the eigenvalues of A are 1,2 and 4 .

Solution (cont.)

so the eigenvalues of A are 1,2 and 4 .
To find the eigenvectors of A corresponding to 1 , we reduce $A-I_{3}$ to its reduced echelon form.

Solution (cont.)

so the eigenvalues of A are 1,2 and 4 .
To find the eigenvectors of A corresponding to 1 , we reduce $A-I_{3}$ to its reduced echelon form.

$$
A-I_{3}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1 \\
0 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Solution (cont.)

so the eigenvalues of A are 1,2 and 4 .
To find the eigenvectors of A corresponding to 1, we reduce $A-I_{3}$ to its reduced echelon form.

$$
A-I_{3}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1 \\
0 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

It follows that the set of eigenvectors of A corresponding to 1
is $\left\{t\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]: t \neq 0\right\}$.

Norwegian University of
Science and Technology

Solution (cont.)

$$
A-2 I_{3}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Solution (cont.)

$A-2 I_{3}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$ so the set of eigenvectors of A
corresponding to 2 is $\left\{t\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]: t \neq 0\right\}$.

Solution (cont.)

To find the eigenvectors of A corresponding to 4 , we reduce $A-4 I_{3}$ to its reduced echelon form.

Solution (cont.)

To find the eigenvectors of A corresponding to 4 , we reduce $A-4 I_{3}$ to its reduced echelon form.

$$
A-4 I_{3}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -2 & 0 \\
1 & 0 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Solution (cont.)

To find the eigenvectors of A corresponding to 4, we reduce $A-4 I_{3}$ to its reduced echelon form.

$$
A-4 I_{3}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -2 & 0 \\
1 & 0 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

It follows that the set of eigenvectors of A corresponding to 4
is $\left\{t\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]: t \neq 0\right\}$.

Solution (cont.)

To find a matrix P and a diagonal matrix D such that $A=P D P^{\top}$ we will orthogonally diagonalize A.

Solution (cont.)

To find a matrix P and a diagonal matrix D such that $A=P D P^{\top}$ we will orthogonally diagonalize A. For that we need an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of A.

Solution (cont.)

To find a matrix P and a diagonal matrix D such that $A=P D P^{\top}$ we will orthogonally diagonalize A. For that we need an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of A. Since A is symmetric, eigenvectors of A corresponding to different eigenvalues are orthogonal to each other, so we just have to find a unit vector in each of the 3 eigenspaces of A.

NTNU
Norwegian University of
Science and Technology

Solution (cont.)

We have that $\left[\begin{array}{c}\frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right]$ is a unit eigenvector of A corresponding
to 1, that $\left[\begin{array}{c}0 \\ \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}}\end{array}\right]$ is a unit eigenvector of A corresponding to 2 ,
and that $\left[\begin{array}{c}\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}}\end{array}\right]$
is a unit eigenvector of A corresponding to 4 .

Solution (cont.)

So if we let $P=\left[\begin{array}{ccc}0 & \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]$ and $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$,

Solution (cont.)

So if we let $P=\left[\begin{array}{ccc}0 & \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]$ and $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$, then
$A=P D P^{-1}=P D P^{T}$.

Solution (cont.)

The coefficient matrix the system

$$
\begin{aligned}
& y_{1}^{\prime}=3 y_{1}+y_{2}+y_{3} \\
& y_{2}^{\prime}=y_{1}+2 y_{2} \\
& y_{3}^{\prime}=y_{1}+2 y_{3}
\end{aligned}
$$

is A,

Solution (cont.)

so since the eigenvalues of A are 1,2 and 4 , and $\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ is an eigenvector of A corresponding to 1, $\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$ is an eigenvector of A corresponding to 2 , and corresponding to 4 ,

Solution (cont.)

so since the eigenvalues of A are 1,2 and 4, and $\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ is an
eigenvector of A corresponding to 1 ,
$\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$ is an eigenvector
is an eigenvector of A corresponding to 4 , the general solution of the system is

Solution (cont.)

$$
\text { If } \begin{aligned}
{\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]=} & c_{1}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] e^{t}+c_{2}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] e^{2 t}+c_{3}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] e^{4 t}, \text { then } \\
{\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0) \\
y_{3}(0)
\end{array}\right] } & =c_{1}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]+c_{3}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 0 & 2 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
\end{aligned}
$$

Solution (cont.)

$$
\text { so } y_{1}(0)=3, y_{2}(0)=2, y_{3}(0)=-2 \text { if and only if }
$$

$$
\left[\begin{array}{ccc}
-1 & 0 & 2 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right] .
$$

Solution (cont.)

so $y_{1}(0)=3, y_{2}(0)=2, y_{3}(0)=-2$ if and only if

$$
\left[\begin{array}{ccc}
-1 & 0 & 2 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right] .
$$

We reduce the augmented matrix of the above system to its reduced echelon form.

Norwegian University of
Science and Technology

Solution (cont.)

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
-1 & 0 & 2 & 3 \\
1 & 1 & 1 & 2 \\
1 & -1 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -2 & -3 \\
0 & 1 & 3 & 5 \\
0 & -1 & 3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -2 & -3 \\
0 & 1 & 3 & 5 \\
0 & 0 & 6 & 6
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{cccc}
1 & 0 & -2 & -3 \\
0 & 1 & 3 & 5 \\
0 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Solution (cont.)

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
-1 & 0 & 2 & 3 \\
1 & 1 & 1 & 2 \\
1 & -1 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -2 & -3 \\
0 & 1 & 3 & 5 \\
0 & -1 & 3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -2 & -3 \\
0 & 1 & 3 & 5 \\
0 & 0 & 6 & 6
\end{array}\right]} \\
&
\end{aligned}+\left[\begin{array}{cccc}
1 & 0 & -2 & -3 \\
0 & 1 & 3 & 5 \\
0 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right] \quad .
$$

We see that the solution to the system

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 2 & -1 \\
1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right] .} \\
& \text { is } c_{1}=-1, c_{2}=2, c_{3}=1 \text {. }
\end{aligned}
$$

Solution (cont.)

So the solution to the system of differential equations

$$
\begin{aligned}
& y_{1}^{\prime}=3 y_{1}+y_{2}+y_{3} \\
& y_{2}^{\prime}=y_{1}+2 y_{2} \\
& y_{3}^{\prime}=y_{1}+2 y_{3}
\end{aligned}
$$

with initial position $y_{1}(0)=3, y_{2}(0)=2, y_{3}(0)=-2$, is

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]=-\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] e^{t}+2\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] e^{2 t}+\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] e^{4 t}=\left[\begin{array}{c}
2 e^{4 t}+e^{t} \\
e^{4 t}+2 e^{2 t}-e^{t} \\
e^{4 t}-2 e^{2 t}-e^{t}
\end{array}\right]
$$

