TMA4115-Calculus 3
 Lecture 27, April 24

Toke Meier Carlsen
Norwegian University of Science and Technology Spring 2013

Review of last week's lecture

Review of last week's lecture

Last week we introduced and studied

Review of last week's lecture

Last week we introduced and studied

- the inner product,

Review of last week's lecture

Last week we introduced and studied

- the inner product,
- the length of a vector,

Review of last week's lecture

Last week we introduced and studied

- the inner product,
- the length of a vector,
- orthogonality and orthogonal sets in \mathbb{R}^{n},

Review of last week's lecture

Last week we introduced and studied

- the inner product,
- the length of a vector,
- orthogonality and orthogonal sets in \mathbb{R}^{n},
- orthogonal matrices,

Review of last week's lecture

Last week we introduced and studied

- the inner product,
- the length of a vector,
- orthogonality and orthogonal sets in \mathbb{R}^{n},
- orthogonal matrices,
- orthogonal projections,

Review of last week's lecture

Last week we introduced and studied

- the inner product,
- the length of a vector,
- orthogonality and orthogonal sets in \mathbb{R}^{n},
- orthogonal matrices,
- orthogonal projections,
- the Gram-Schmidt process,

Review of last week's lecture

Last week we introduced and studied

- the inner product,
- the length of a vector,
- orthogonality and orthogonal sets in \mathbb{R}^{n},
- orthogonal matrices,
- orthogonal projections,
- the Gram-Schmidt process,
- QR factorization.

Today's lecture

Today's lecture

Today we shall look at

NTNU
Norwegian University of
Science and Technology

Today's lecture

Today we shall look at

- least-squares problems,

NTNU
Norwegian University of
Science and Technology

Today's lecture

Today we shall look at

- least-squares problems,
- applications to linear models.

Least-squares problems

Least-squares problems

- Let A be an $m \times n$ matrix and \mathbf{b} a vector in \mathbb{R}^{m}.

Least-squares problems

- Let A be an $m \times n$ matrix and \mathbf{b} a vector in \mathbb{R}^{m}.
- A least-square solution of $A \mathbf{x}=\mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^{n} such that

$$
\|\mathbf{b}-A \hat{\mathbf{x}}\| \leq\|\mathbf{b}-A \mathbf{x}\|
$$

for all \mathbf{x} in \mathbb{R}^{n}.

0

Least-squares problems

- Let A be an $m \times n$ matrix and \mathbf{b} a vector in \mathbb{R}^{m}.
- A least-square solution of $A \mathbf{x}=\mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^{n} such that

$$
\|\mathbf{b}-A \hat{\mathbf{x}}\| \leq\|\mathbf{b}-A \mathbf{x}\|
$$

for all \mathbf{x} in \mathbb{R}^{n}.

- The number $\|\mathbf{b}-A \hat{\mathbf{x}}\|$ is called the least-squares error of $A \mathbf{x}=\mathbf{b}$.

Solution of the general least-squares problem

Theorem 13

The set of least-squares solutions of $A \mathbf{x}=\mathbf{b}$ coincides with the nonempty set of solutions of the normal equation $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.

Proof of Theorem 13

NTNU
Norwegian University of
Science and Technology

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$.

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.
Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$.

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.
Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in $(\operatorname{Col}(A))^{\perp}=\operatorname{Nul}\left(A^{T}\right)$,

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.
Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$. Then
$\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in $(\operatorname{Col}(A))^{\perp}=\operatorname{Nul}\left(A^{T}\right)$, so $A^{T}(\mathbf{b}-\hat{A} \hat{\mathbf{x}})=0$

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.
Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in $(\operatorname{Col}(A))^{\perp}=\operatorname{Nul}\left(A^{T}\right)$, so $A^{T}(\mathbf{b}-\hat{A} \hat{\mathbf{x}})=0$ from which it follows that $A^{\top} A \hat{\mathbf{x}}=A^{\top} \mathbf{b}$.

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.
Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in $(\operatorname{Col}(A))^{\perp}=\operatorname{Nul}\left(A^{T}\right)$, so $A^{T}(\mathbf{b}-\hat{\mathbf{x}} \hat{\mathbf{x}})=0$ from which it follows that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
Conversely, suppose $A^{\top} A \hat{\mathbf{x}}=A^{\top} \mathbf{b}$.

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.
Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in $(\operatorname{Col}(A))^{\perp}=\operatorname{Nul}\left(A^{T}\right)$, so $A^{T}(\mathbf{b}-\hat{\mathbf{A}})=0$ from which it follows that $A^{\top} A \hat{\mathbf{x}}=A^{\top} \mathbf{b}$.
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=0$, so $\mathbf{b}-A \hat{\mathbf{x}}$ is in $\operatorname{Nul}\left(A^{T}\right)=(\operatorname{Col}(A))^{\perp}$.

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.
Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in $(\operatorname{Col}(A))^{\perp}=\operatorname{Nul}\left(A^{T}\right)$, so $A^{T}(\mathbf{b}-\hat{\mathbf{x}} \hat{\mathbf{x}})=0$ from which it follows that $A^{T} A \hat{\mathbf{x}}=A^{\top} \mathbf{b}$.
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=0$, so $\mathbf{b}-A \hat{\mathbf{x}}$ is in $\operatorname{Nul}\left(A^{T}\right)=(\operatorname{Col}(A))^{\perp}$. Since $\mathbf{b}=A \hat{\mathbf{x}}+(\mathbf{b}-A \hat{\mathbf{x}})$ and $A \hat{\mathbf{x}}$ is in $\operatorname{Col}(A)$, it follows that $A \hat{\mathbf{x}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}=\hat{\mathbf{b}}$,

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.
Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in $(\operatorname{Col}(A))^{\perp}=\operatorname{Nul}\left(A^{T}\right)$, so $A^{T}(\mathbf{b}-\hat{\mathbf{A}})=0$ from which it follows that $A^{\top} A \hat{\mathbf{x}}=A^{\top} \mathbf{b}$.
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=0$, so $\mathbf{b}-A \hat{\mathbf{x}}$ is in $\operatorname{Nul}\left(A^{T}\right)=(\operatorname{Col}(A))^{\perp}$. Since $\mathbf{b}=A \hat{\mathbf{x}}+(\mathbf{b}-A \hat{\mathbf{x}})$ and $A \hat{\mathbf{x}}$ is in $\operatorname{Col}(A)$, it follows that $A \hat{\mathbf{x}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}=\hat{\mathbf{b}}$, so $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$.

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.
Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in $(\operatorname{Col}(A))^{\perp}=\operatorname{Nul}\left(A^{T}\right)$, so $A^{T}(\mathbf{b}-\hat{\mathbf{A}})=0$ from which it follows that $A^{\top} A \hat{\mathbf{x}}=A^{\top} \mathbf{b}$.
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=0$, so $\mathbf{b}-A \hat{\mathbf{x}}$ is in $\operatorname{Nul}\left(A^{T}\right)=(\operatorname{Col}(A))^{\perp}$. Since $\mathbf{b}=A \hat{\mathbf{x}}+(\mathbf{b}-A \hat{\mathbf{x}})$ and $A \hat{\mathbf{x}}$ is in $\operatorname{Col}(A)$, it follows that $A \hat{\mathbf{x}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}=\hat{\mathbf{b}}$, so $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$. Thus $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$ if and only if $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.

Proof of Theorem 13

Let $\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$.
Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$. Then $\mathbf{b}-\hat{\mathbf{b}}=\mathbf{b}-A \hat{\mathbf{x}}$ is in $(\operatorname{Col}(A))^{\perp}=\operatorname{Nul}\left(A^{T}\right)$, so $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=0$ from which it follows that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
Conversely, suppose $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Then $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=0$, so $\mathbf{b}-A \hat{\mathbf{x}}$ is in $\operatorname{Nul}\left(A^{T}\right)=(\operatorname{Col}(A))^{\perp}$. Since $\mathbf{b}=A \hat{\mathbf{x}}+(\mathbf{b}-A \hat{\mathbf{x}})$ and $A \hat{\mathbf{x}}$ is in $\operatorname{Col}(A)$, it follows that $A \hat{\mathbf{x}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}=\hat{\mathbf{b}}$, so $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$. Thus $\hat{\mathbf{x}}$ is a least-squares solutions of $A \mathbf{x}=\mathbf{b}$ if and only if $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. Since $\hat{\mathbf{b}}$ is in $\operatorname{Col}(A)$, there is at least one $\hat{\mathbf{x}}$ such that $A \hat{\mathbf{x}}=\hat{\mathbf{b}}$, so the set of solutions of $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is nonempty.

Example

Let us find a least-squares solution of $A \mathbf{x}=\mathbf{b}$ where
$A=\left[\begin{array}{cc}2 & 1 \\ -2 & 0 \\ 2 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}-5 \\ 8 \\ 1\end{array}\right]$.

Solution

Solution

$$
A^{T} A=\left[\begin{array}{ccc}
2 & -2 & 2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-2 & 0 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
4 & 8 \\
8 & 10
\end{array}\right]
$$

Solution

$$
\begin{aligned}
A^{T} A & =\left[\begin{array}{ccc}
2 & -2 & 2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-2 & 0 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
4 & 8 \\
8 & 10
\end{array}\right] \text { and } \\
A^{T} \mathbf{b} & =\left[\begin{array}{ccc}
2 & -2 & 2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
-5 \\
8 \\
1
\end{array}\right]=\left[\begin{array}{c}
-24 \\
-2
\end{array}\right]
\end{aligned}
$$

Solution

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{ccc}
2 & -2 & 2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-2 & 0 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
4 & 8 \\
8 & 10
\end{array}\right] \text { and } \\
& A^{T} \mathbf{b}
\end{aligned}=\left[\begin{array}{ccc}
2 & -2 & 2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
-5 \\
8 \\
1
\end{array}\right]=\left[\begin{array}{c}
-24 \\
-2
\end{array}\right] \text { so a least-squares }
$$

solution of $A \mathbf{x}=\mathbf{b}$ is the same as a solution of the equation

$$
\left[\begin{array}{cc}
4 & 8 \\
8 & 10
\end{array}\right] \hat{\mathbf{x}}=\left[\begin{array}{c}
-24 \\
-2
\end{array}\right]
$$

Solution (cont.)

$$
\left|\begin{array}{cc}
4 & 8 \\
8 & 10
\end{array}\right|=40-64=-24,
$$

Solution (cont.)

$$
\left|\begin{array}{cc}
4 & 8 \\
8 & 10
\end{array}\right|=40-64=-24 \text {, so }\left[\begin{array}{cc}
4 & 8 \\
8 & 10
\end{array}\right] \text { is invertible }
$$

Solution (cont.)

$\left|\begin{array}{cc}4 & 8 \\ 8 & 10\end{array}\right|=40-64=-24$, so $\left[\begin{array}{cc}4 & 8 \\ 8 & 10\end{array}\right]$ is invertible and
$\hat{\mathbf{x}}=\left[\begin{array}{cc}4 & 8 \\ 8 & 10\end{array}\right]^{-1}\left[\begin{array}{c}-24 \\ -2\end{array}\right]=\frac{1}{-24}\left[\begin{array}{cc}10 & -8 \\ -8 & 4\end{array}\right]^{-1}\left[\begin{array}{c}-24 \\ -2\end{array}\right]=\left[\begin{array}{c}\frac{28}{3} \\ \frac{-23}{3}\end{array}\right]$ is the unique least-squares solution of $A \mathbf{x}=\mathbf{b}$.

Example

Let us find all least-squares solutions of $A \mathbf{x}=\mathbf{b}$ where
$A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}7 \\ 2 \\ 3 \\ 6 \\ 5 \\ 4\end{array}\right]$.

Solution

Solution

$$
A^{T} A=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
6 & 3 & 3 \\
3 & 3 & 0 \\
3 & 0 & 3
\end{array}\right]
$$

Solution

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
6 & 3 & 3 \\
3 & 3 & 0 \\
3 & 0 & 3
\end{array}\right] \text { and } \\
& A^{T} \mathbf{b}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
7 \\
2 \\
3 \\
6 \\
5 \\
4
\end{array}\right]=\left[\begin{array}{l}
27 \\
12 \\
15
\end{array}\right],
\end{aligned}
$$

Solution (cont.)

so a least-squares solution of $A \mathbf{x}=\mathbf{b}$ is the same as a solution of the equation $\left[\begin{array}{lll}6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3\end{array}\right] \hat{\mathbf{x}}=\left[\begin{array}{l}27 \\ 12 \\ 15\end{array}\right]$.

Solution (cont.)

so a least-squares solution of $A \mathbf{x}=\mathbf{b}$ is the same as a
solution of the equation $\left[\begin{array}{lll}6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3\end{array}\right] \hat{\mathbf{x}}=\left[\begin{array}{l}27 \\ 12 \\ 15\end{array}\right]$.
We reduce the augmented matrix of the above system to its reduced echelon form.

Solution (cont.)

so a least-squares solution of $A \mathbf{x}=\mathbf{b}$ is the same as a solution of the equation $\left[\begin{array}{lll}6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3\end{array}\right] \hat{\mathbf{x}}=\left[\begin{array}{l}27 \\ 12 \\ 15\end{array}\right]$.
We reduce the augmented matrix of the above system to its reduced echelon form.

$$
\begin{aligned}
{\left[\begin{array}{llll}
6 & 3 & 3 & 27 \\
3 & 3 & 0 & 12 \\
3 & 0 & 3 & 15
\end{array}\right] \rightarrow } & {\left[\begin{array}{llll}
1 & \frac{1}{2} & \frac{1}{2} & \frac{9}{2} \\
1 & 1 & 0 & 4 \\
1 & 0 & 1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{9}{2} \\
0 & \frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} \\
0 & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] \rightarrow } \\
& {\left[\begin{array}{cccc}
1 & 0 & 1 & 5 \\
0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

Solution

So the least-squares solutions of $A \mathbf{x}=\mathbf{b}$ are
$\hat{\mathbf{x}}=\left[\begin{array}{c}5 \\ -1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ where t is a free parameter.

Uniqueness of least-squares solutions

Uniqueness of least-squares solutions

Theorem 14

Let A be an $m \times n$ matrix.

Norwegian University of
Science and Technology

Uniqueness of least-squares solutions

Theorem 14

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

Uniqueness of least-squares solutions

Theorem 14

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.
(1) The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^{m}.

Norwegian University of
Science and Technology

Uniqueness of least-squares solutions

Theorem 14

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.
(1) The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^{m}.
(2) The columns of A are linearly independent.

Norwegian University of
Science and Technology

Uniqueness of least-squares solutions

Theorem 14

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.
(1) The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^{m}.
(2) The columns of A are linearly independent.
(3) The matrix $A^{T} A$ is invertible.

Norwegian University of
Science and Technology

Uniqueness of least-squares solutions

Theorem 14

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.
(1) The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^{m}.
(2) The columns of A are linearly independent.
(3) The matrix $A^{T} A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by $\hat{\mathbf{x}}=\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{b}$.

Example

Let us find the least-squares solution of $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 4 \\ 1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}3 \\ -1 \\ 5\end{array}\right]$.

Solution

Solution

Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be the columns of A.

Solution

Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be the columns of A. Notice that \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal.

Solution

Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be the columns of A. Notice that \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal. Recall that $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\operatorname{proj}_{\mathrm{Col}(A)} \mathbf{b}$.

Solution

Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be the columns of A. Notice that \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal. Recall that $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$.
We have that $\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}=\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{b} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=A\left[\begin{array}{c}\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \\ \frac{\mathbf{b}}{\mathbf{v}_{2}} \\ \mathbf{v}_{2} \cdot \mathbf{v}_{2}\end{array}\right]$,

Solution

Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be the columns of A. Notice that \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal. Recall that $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ if and only if $A \hat{\mathbf{x}}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$.
We have that $\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}=\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{b} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=A\left[\begin{array}{c}\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \\ \frac{\mathbf{b} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\end{array}\right]$, so

$$
\hat{\mathbf{x}}=\left[\begin{array}{c}
\frac{\mathbf{b} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \\
\frac{\mathbf{b} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}
\end{array}\right]=\left[\begin{array}{c}
3 \\
\frac{1}{2}
\end{array}\right] .
$$

$Q R$-factorization and least-squares solutions

$Q R$-factorization and least-squares solutions

Theorem 15
Let A be an $m \times n$ matrix with linearly independent columns, let $A=Q R$ be a $Q R$-factorization of A and let \mathbf{b} be in \mathbb{R}^{m}. Then $\hat{\mathbf{x}}=R^{-1} Q^{T} \mathbf{b}$ is the unique least-squares solution of $A \mathbf{x}=\mathbf{b}$.

Proof of Theorem 15

NTNU
Norwegian University of
Science and Technology

Proof of Theorem 15

Since the columns of Q forms an orthonormal basis of $\operatorname{Col}(A)$, it follows that $\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}=Q Q^{\top} \mathbf{b}$.

Proof of Theorem 15

Since the columns of Q forms an orthonormal basis of $\operatorname{Col}(A)$, it follows that $\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}=Q Q^{\top} \mathbf{b}$. Let $\hat{\mathbf{x}}=R^{-1} Q^{\top} \mathbf{b}$.

Proof of Theorem 15

Since the columns of Q forms an orthonormal basis of $\operatorname{Col}(A)$, it follows that $\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}=Q Q^{\top} \mathbf{b}$.
Let $\hat{\mathbf{x}}=R^{-1} Q^{\top} \mathbf{b}$. Then
$A \hat{\mathbf{x}}=Q R R^{-1} Q^{\top} \mathbf{b}=Q Q^{\top} \mathbf{b}=\operatorname{proj}_{\operatorname{CoI}(A)} \mathbf{b}$,

Proof of Theorem 15

Since the columns of Q forms an orthonormal basis of $\operatorname{Col}(A)$, it follows that $\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}=Q Q^{\top} \mathbf{b}$.
Let $\hat{\mathbf{x}}=R^{-1} Q^{\top} \mathbf{b}$. Then
$A \hat{\mathbf{x}}=Q R R^{-1} Q^{\top} \mathbf{b}=Q Q^{\top} \mathbf{b}=\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$, so $\hat{\mathbf{x}}$ is the unique least-squares solution of $A \mathbf{x}=\mathbf{b}$.

Example

Suppose that $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 4 \\ 1 & -1 \\ 1 & 4\end{array}\right]=\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 0 & 5\end{array}\right]$.
Let us find the least-squares solution of $A \mathbf{x}=\mathbf{b}$ where
$\mathbf{b}=\left[\begin{array}{c}-1 \\ 6 \\ 5 \\ 7\end{array}\right]$.

Norwegian University of Science and Technology

Solution

Solution

The least-squares solution of $A \mathbf{x}=\mathbf{b}$ is

$$
\begin{aligned}
& \hat{\mathbf{x}}=R^{-1} Q^{T} \mathbf{b}=\left[\begin{array}{ll}
2 & 3 \\
0 & 5
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]^{T}\left[\begin{array}{c}
-1 \\
6 \\
5 \\
7
\end{array}\right] \\
&=\frac{1}{10}\left[\begin{array}{cc}
5 & -3 \\
0 & 2
\end{array}\right]\left[\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{-1}{2} & \frac{1}{2} & \frac{-1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
-1 \\
6 \\
5 \\
7
\end{array}\right] \\
&=\frac{1}{20}\left[\begin{array}{cc}
5 & -3 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
17 \\
9
\end{array}\right]=\frac{1}{20}\left[\begin{array}{l}
58 \\
18
\end{array}\right]=\left[\begin{array}{c}
2.9 \\
0.9
\end{array}\right] \\
& \mathbf{Q} \\
& \begin{array}{c}
\text { NTVU } \\
\text { Soriegian University of } \\
\text { Science and Technology }
\end{array}
\end{aligned}
$$

Least-squares lines

Least-squares lines

- Suppose we are given a finite number of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.

Least-squares lines

- Suppose we are given a finite number of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- We want to determine the line $y=\beta_{0}+\beta_{1} x$ which is as "close" to the points as possible.

Least-squares lines

- Suppose we are given a finite number of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- We want to determine the line $y=\beta_{0}+\beta_{1} x$ which is as "close" to the points as possible.
- For each point $\left(x_{j}, y_{j}\right)$ we call

Least-squares lines

- Suppose we are given a finite number of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- We want to determine the line $y=\beta_{0}+\beta_{1} x$ which is as "close" to the points as possible.
- For each point $\left(x_{j}, y_{j}\right)$ we call
- y_{j} for the observed value of y,

Least-squares lines

- Suppose we are given a finite number of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- We want to determine the line $y=\beta_{0}+\beta_{1} x$ which is as "close" to the points as possible.
- For each point $\left(x_{j}, y_{j}\right)$ we call
- y_{j} for the observed value of y,
- $\beta_{0}+\beta_{1} x_{j}$ for the predicted value of y,

Least-squares lines

- Suppose we are given a finite number of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- We want to determine the line $y=\beta_{0}+\beta_{1} x$ which is as "close" to the points as possible.
- For each point $\left(x_{j}, y_{j}\right)$ we call
- y_{j} for the observed value of y,
- $\beta_{0}+\beta_{1} x_{j}$ for the predicted value of y,
- $y_{j}-\left(\beta_{0}+\beta_{1} x_{j}\right)$ for the residual.

Least-squares lines

- Suppose we are given a finite number of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- We want to determine the line $y=\beta_{0}+\beta_{1} x$ which is as "close" to the points as possible.
- For each point $\left(x_{j}, y_{j}\right)$ we call
- y_{j} for the observed value of y,
- $\beta_{0}+\beta_{1} x_{j}$ for the predicted value of y,
- $y_{j}-\left(\beta_{0}+\beta_{1} x_{j}\right)$ for the residual.
- The least-squares line is the line $y=\beta_{0}+\beta_{1} x$ that minimizes the sum of the squares of the residuals.

Finding the least-squares line

Finding the least-squares line is equivalent to computing the least-squares solution of the equation $X \beta=\boldsymbol{y}$ where

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right], \beta=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right] \text { and } \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \text {. }
$$

Example

Let us determine the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points $(1,0),(2,1)$, $(4,2)$ and $(5,3)$.

Solution

Let $X=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 4 \\ 1 & 5\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right]$.

Solution

$$
\begin{aligned}
& \text { Let } X=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4 \\
1 & 5
\end{array}\right] \text { and } \mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right] \text {. Then } \\
& X^{\top} X=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 5
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4 \\
1 & 5
\end{array}\right]=\left[\begin{array}{cc}
4 & 12 \\
12 & 46
\end{array}\right] \text { and } \\
& X^{\top} \mathbf{y}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
6 \\
25
\end{array}\right] .
\end{aligned}
$$

Solution (cont.)

The columns of X are linearly independent

Solution (cont.)

The columns of X are linearly independent so the equation $X \beta=\mathbf{y}$ has a unique least-squares solution which is

$$
\begin{aligned}
{\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right] } & =\left(X^{\top} X\right)^{-1} X^{\top} \mathbf{y}=\left[\begin{array}{cc}
4 & 12 \\
12 & 46
\end{array}\right]^{-1}\left[\begin{array}{c}
6 \\
25
\end{array}\right] \\
& =\frac{1}{186-144}\left[\begin{array}{cc}
46 & -12 \\
-12 & 4
\end{array}\right]\left[\begin{array}{c}
6 \\
25
\end{array}\right] \\
& =\frac{1}{40}\left[\begin{array}{c}
-24 \\
28
\end{array}\right]=\left[\begin{array}{c}
-0.6 \\
0.7
\end{array}\right]
\end{aligned}
$$

Solution (cont.)

The columns of X are linearly independent so the equation $X \beta=\mathbf{y}$ has a unique least-squares solution which is

$$
\begin{aligned}
{\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right] } & =\left(X^{\top} X\right)^{-1} X^{\top} \mathbf{y}=\left[\begin{array}{cc}
4 & 12 \\
12 & 46
\end{array}\right]^{-1}\left[\begin{array}{c}
6 \\
25
\end{array}\right] \\
& =\frac{1}{186-144}\left[\begin{array}{cc}
46 & -12 \\
-12 & 4
\end{array}\right]\left[\begin{array}{c}
6 \\
25
\end{array}\right] \\
& =\frac{1}{40}\left[\begin{array}{c}
-24 \\
28
\end{array}\right]=\left[\begin{array}{c}
-0.6 \\
0.7
\end{array}\right]
\end{aligned}
$$

so $y=-0.6+0.7 x$ is the equation of the least-squares line that best fits the data points.

The general linear model

NTNU
Norwegian University of
Science and Technology

The general linear model

- Any equation of the form $X \beta=\mathbf{y}+\epsilon$ where X and \mathbf{y} are given, is referred to as a linear model.

The general linear model

- Any equation of the form $X \beta=\mathbf{y}+\epsilon$ where X and \mathbf{y} are given, is referred to as a linear model.
- The goal is to minimize the length of the residual vector ϵ.

The general linear model

- Any equation of the form $X \beta=\mathbf{y}+\epsilon$ where X and \mathbf{y} are given, is referred to as a linear model.
- The goal is to minimize the length of the residual vector ϵ.
- This amounts to finding a least-squares solution of $X \beta=\mathbf{y}$.

Example

Suppose data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ appear to lie along a parabola.
Suppose we wish to approximate the data by an equation of the form $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$.
Let us describe the linear model that produces a least-square fit of the data point to the above equation.

Solution

Solution

$$
\begin{aligned}
& \text { Let } \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], X=\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
\vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2}
\end{array}\right], \beta=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right] \text { and } \\
& \epsilon=\left[\begin{array}{c}
y_{1}-\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}\right) \\
\vdots \\
y_{n}-\left(\beta_{0}+\beta_{1} x_{n}+\beta_{2} x_{n}^{2}\right)
\end{array}\right] .
\end{aligned}
$$

Solution

Let $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right], \boldsymbol{X}=\left[\begin{array}{ccc}1 & x_{1} & x_{1}^{2} \\ \vdots & \vdots & \vdots \\ 1 & x_{n} & x_{n}^{2}\end{array}\right], \beta=\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \beta_{2}\end{array}\right]$ and
$\epsilon=\left[\begin{array}{c}y_{1}-\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}\right) \\ \vdots \\ y_{n}-\left(\beta_{0}+\beta_{1} x_{n}+\beta_{2} x_{n}^{2}\right)\end{array}\right]$.
Then $X \beta=\mathbf{y}+\epsilon$ is the linear model that produces a least-square fit of the data point to the equation $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$.

Example

Suppose we are given data points $\left(u_{1}, v_{1}, y_{1}\right), \ldots,\left(u_{n}, v_{n}, y_{n}\right)$ that we expect to satisfy an equation of the form
$y=\beta_{0}+\beta_{1} u+\beta_{2} v$.
Let us describe the linear model that produces a least-square fit of the data point to the above equation.

Solution

Solution

$$
\begin{aligned}
& \text { Let } \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], X=\left[\begin{array}{ccc}
1 & u_{1} & v_{1} \\
\vdots & \vdots & \vdots \\
1 & u_{n} & v_{n}
\end{array}\right], \beta=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right] \text { and } \\
& \epsilon=\left[\begin{array}{c}
y_{1}-\left(\beta_{0}+\beta_{1} u_{1}+\beta_{2} v_{1}\right) \\
\vdots \\
y_{n}-\left(\beta_{0}+\beta_{1} u_{n}+\beta_{2} v_{n}\right)
\end{array}\right]
\end{aligned}
$$

Solution

Let $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right], X=\left[\begin{array}{ccc}1 & u_{1} & v_{1} \\ \vdots & \vdots & \vdots \\ 1 & u_{n} & v_{n}\end{array}\right], \beta=\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \beta_{2}\end{array}\right]$ and
$\epsilon=\left[\begin{array}{c}y_{1}-\left(\beta_{0}+\beta_{1} u_{1}+\beta_{2} v_{1}\right) \\ \vdots \\ y_{n}-\left(\beta_{0}+\beta_{1} u_{n}+\beta_{2} v_{n}\right)\end{array}\right]$.
Then $X \beta=\mathbf{y}+\epsilon$ is the linear model that produces a least-square fit of the data point to the equation $y=\beta_{0}+\beta_{1} u+\beta_{2} v$.

Tomorrow's lecture

Tomorrow we shall introduce and study

- symmetric matrices,
- quadratic forms.

Sections 7.1-7.2 in "Linear Algebras and Its Applications" (pages 393-407).

