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Review of last week’s lecture

Last week we introduced and studied

the inner product,
the length of a vector,
orthogonality and orthogonal sets in Rn,
orthogonal matrices,
orthogonal projections,
the Gram-Schmidt process,
QR factorization.
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Today’s lecture

Today we shall look at

least-squares problems,
applications to linear models.
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Least-squares problems

Let A be an m × n matrix and b a vector in Rm.
A least-square solution of Ax = b is an x̂ in Rn such that

‖b− Ax̂‖ ≤ ‖b− Ax‖

for all x in Rn.
The number ‖b− Ax̂‖ is called the least-squares error of
Ax = b.
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Solution of the general
least-squares problem

Theorem 13
The set of least-squares solutions of Ax = b coincides with
the nonempty set of solutions of the normal equation
AT Ax = AT b.
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Proof of Theorem 13

Let b̂ = projCol(A) b. Then x̂ is a least-squares solution of
Ax = b if and only if Ax̂ = b̂.
Suppose x̂ is a least-squares solutions of Ax = b. Then
b− b̂ = b− Ax̂ is in (Col(A))⊥ = Nul(AT ), so AT (b− Ax̂) = 0
from which it follows that AT Ax̂ = AT b.
Conversely, suppose AT Ax̂ = AT b. Then AT (b− Ax̂) = 0, so
b− Ax̂ is in Nul(AT ) = (Col(A))⊥. Since b = Ax̂ + (b− Ax̂)
and Ax̂ is in Col(A), it follows that Ax̂ = projCol(A) b = b̂, so x̂
is a least-squares solutions of Ax = b. Thus x̂ is a
least-squares solutions of Ax = b if and only if AT Ax̂ = AT b.
Since b̂ is in Col(A), there is at least one x̂ such that Ax̂ = b̂,
so the set of solutions of AT Ax = AT b is nonempty.
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Example
Let us find a least-squares solution of Ax = b where

A =

 2 1
−2 0
2 3

 and b =

−5
8
1

.
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Solution

AT A =

[
2 −2 2
1 0 3

] 2 1
−2 0
2 3

 =

[
4 8
8 10

]
and

AT b =

[
2 −2 2
1 0 3

]−5
8
1

 =

[
−24
−2

]
so a least-squares

solution of Ax = b is the same as a solution of the equation[
4 8
8 10

]
x̂ =

[
−24
−2

]
.
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Solution (cont.)∣∣∣∣4 8
8 10

∣∣∣∣ = 40− 64 = −24,

so
[
4 8
8 10

]
is invertible and

x̂ =

[
4 8
8 10

]−1 [−24
−2

]
= 1
−24

[
10 −8
−8 4

]−1 [−24
−2

]
=

[ 28
3
−23

3

]
is

the unique least-squares solution of Ax = b.
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Example
Let us find all least-squares solutions of Ax = b where

A =


1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

 and b =


7
2
3
6
5
4

.
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Solution

AT A =

1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1




1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

 =

6 3 3
3 3 0
3 0 3

 and

AT b =

1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1




7
2
3
6
5
4

 =

27
12
15

,
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Solution (cont.)
so a least-squares solution of Ax = b is the same as a

solution of the equation

6 3 3
3 3 0
3 0 3

 x̂ =

27
12
15

.

We reduce the augmented matrix of the above system to its
reduced echelon form.6 3 3 27

3 3 0 12
3 0 3 15

→
1 1

2
1
2

9
2

1 1 0 4
1 0 1 5

→
1 1

2
1
2

9
2

0 1
2

−1
2

−1
2

0 −1
2

1
2

1
2

→
1 0 1 5

0 1 −1 −1
0 0 0 0
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12
15

.

We reduce the augmented matrix of the above system to its
reduced echelon form.6 3 3 27

3 3 0 12
3 0 3 15

→
1 1

2
1
2

9
2

1 1 0 4
1 0 1 5

→
1 1

2
1
2

9
2

0 1
2

−1
2

−1
2

0 −1
2

1
2

1
2

→
1 0 1 5

0 1 −1 −1
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Solution
So the least-squares solutions of Ax = b are

x̂ =

 5
−1
0

+ t

−1
1
1

 where t is a free parameter.
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Uniqueness of least-squares
solutions

Theorem 14
Let A be an m × n matrix.

Then the following statements are
logically equivalent.

1 The equation Ax = b has a unique least-squares
solution for each b in Rm.

2 The columns of A are linearly independent.
3 The matrix AT A is invertible.

When these statements are true, the least-squares solution x̂
is given by x̂ = (AT A)−1AT b.
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Example
Let us find the least-squares solution of Ax = b where

A =

 1 2
−1 4
1 2

 and b =

 3
−1
5

.
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Solution

Let v1,v2 be the columns of A. Notice that v1 and v2 are
orthogonal. Recall that x̂ is a least-squares solution of
Ax = b if and only if Ax̂ = projCol(A) b.

We have that projCol(A) b = b·v1
v1·v1

v1 +
b·v2
v2·v2

v2 = A

[
b·v1
v1·v1
b·v2
v2·v2

]
, so

x̂ =

[
b·v1
v1·v1
b·v2
v2·v2

]
=

[
3
1
2

]
.
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QR-factorization and least-squares
solutions

Theorem 15
Let A be an m × n matrix with linearly independent columns,
let A = QR be a QR-factorization of A and let b be in Rm.
Then x̂ = R−1QT b is the unique least-squares solution of
Ax = b.
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Proof of Theorem 15

Since the columns of Q forms an orthonormal basis of
Col(A), it follows that projCol(A) b = QQT b.
Let x̂ = R−1QT b. Then
Ax̂ = QRR−1QT b = QQT b = projCol(A) b, so x̂ is the unique
least-squares solution of Ax = b.
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Example

Suppose that A =


1 −1
1 4
1 −1
1 4

 =


1/2 −1/2
1/2 1/2
1/2 −1/2
1/2 1/2

[2 3
0 5

]
.

Let us find the least-squares solution of Ax = b where

b =


−1
6
5
7

.
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Solution

The least-squares solution of Ax = b is

x̂ = R−1QT b =

[
2 3
0 5

]−1


1/2 −1/2
1/2 1/2
1/2 −1/2
1/2 1/2


T 
−1
6
5
7



=
1
10

[
5 −3
0 2

] [ 1
2

1
2

1
2

1
2

−1
2

1
2
−1
2

1
2

]
−1
6
5
7


=

1
20

[
5 −3
0 2

] [
17
9

]
=

1
20

[
58
18

]
=

[
2.9
0.9

]
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Least-squares lines

Suppose we are given a finite number of points
(x1, y1), . . . , (xn, yn).
We want to determine the line y = β0 + β1x which is as
"close" to the points as possible.
For each point (xj , yj) we call

yj for the observed value of y ,
β0 + β1xj for the predicted value of y ,
yj − (β0 + β1xj) for the residual.

The least-squares line is the line y = β0 + β1x that
minimizes the sum of the squares of the residuals.
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Finding the least-squares line
Finding the least-squares line is equivalent to computing the
least-squares solution of the equation Xβ = y where

X =

1 x1
...

...
1 xn

, β =

[
β0

β1

]
and y =

y1
...

yn

.
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Example
Let us determine the equation y = β0 + β1x of the
least-squares line that best fits the data points (1,0), (2,1),
(4,2) and (5,3).
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Solution

Let X =


1 1
1 2
1 4
1 5

 and y =


0
1
2
3

.

Then

X T X =

[
1 1 1 1
1 2 4 5

]
1 1
1 2
1 4
1 5

 =

[
4 12
12 46

]
and

X T y =

[
1 1 1 1
1 2 4 5

]
0
1
2
3

 =

[
6
25

]
.
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Solution (cont.)
The columns of X are linearly independent

so the equation
Xβ = y has a unique least-squares solution which is[

β0

β1

]
= (X T X )−1X T y =

[
4 12

12 46

]−1 [ 6
25

]
=

1
186− 144

[
46 −12
−12 4

] [
6
25

]
=

1
40

[
−24
28

]
=

[
−0.6
0.7

]
so y = −0.6 + 0.7x is the equation of the least-squares line
that best fits the data points.
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The general linear model

Any equation of the form Xβ = y + ε where X and y are
given, is referred to as a linear model.
The goal is to minimize the length of the
residual vector ε.
This amounts to finding a least-squares solution of
Xβ = y.
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Example
Suppose data points (x1, y1), . . . , (xn, yn) appear to lie along a
parabola.
Suppose we wish to approximate the data by an equation of
the form y = β0 + β1x + β2x2.
Let us describe the linear model that produces a
least-square fit of the data point to the above equation.
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Solution

Let y =

y1
...

yn

, X =

1 x1 x2
1

...
...

...
1 xn x2

n

, β =

β0

β1

β2

 and

ε =

y1 − (β0 + β1x1 + β2x2
1 )

...
yn − (β0 + β1xn + β2x2

n )

.

Then Xβ = y + ε is the linear model that produces a
least-square fit of the data point to the equation
y = β0 + β1x + β2x2.
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Example
Suppose we are given data points (u1, v1, y1), . . . , (un, vn, yn)
that we expect to satisfy an equation of the form
y = β0 + β1u + β2v .
Let us describe the linear model that produces a
least-square fit of the data point to the above equation.
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Solution

Let y =

y1
...

yn

, X =

1 u1 v1
...

...
...

1 un vn

, β =

β0

β1

β2

 and

ε =

y1 − (β0 + β1u1 + β2v1)
...

yn − (β0 + β1un + β2vn)

.

Then Xβ = y + ε is the linear model that produces a
least-square fit of the data point to the equation
y = β0 + β1u + β2v .
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yn − (β0 + β1un + β2vn)

.

Then Xβ = y + ε is the linear model that produces a
least-square fit of the data point to the equation
y = β0 + β1u + β2v .
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Tomorrow’s lecture
Tomorrow we shall introduce and study

symmetric matrices,
quadratic forms.

Sections 7.1–7.2 in “Linear Algebras and Its Applications”
(pages 393–407).
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