

TMA4115 - Calculus 3 Lecture 27, April 24

Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013

ww.ntnu.no \ TMA4115 - Calculus 3, Lecture 27

Last week we introduced and studied

• the inner product,

- the inner product,
- the *length* of a vector,

- the inner product,
- the *length* of a vector,
- orthogonality and orthogonal sets in \mathbb{R}^n ,

- the inner product,
- the length of a vector,
- orthogonality and orthogonal sets in \mathbb{R}^n ,
- orthogonal matrices,

- the inner product,
- the length of a vector,
- orthogonality and orthogonal sets in \mathbb{R}^n ,
- orthogonal matrices,
- orthogonal projections,

- the inner product,
- the length of a vector,
- orthogonality and orthogonal sets in \mathbb{R}^n ,
- orthogonal matrices,
- orthogonal projections,
- the Gram-Schmidt process,

- the inner product,
- the length of a vector,
- orthogonality and orthogonal sets in \mathbb{R}^n ,
- orthogonal matrices,
- orthogonal projections,
- the Gram-Schmidt process,
- QR factorization.

Today we shall look at

Today we shall look at

• least-squares problems,

Today we shall look at

- least-squares problems,
- applications to linear models.

• Let A be an $m \times n$ matrix and **b** a vector in \mathbb{R}^m .

- Let A be an $m \times n$ matrix and **b** a vector in \mathbb{R}^m .
- A least-square solution of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$

for all **x** in \mathbb{R}^n .

- Let A be an $m \times n$ matrix and **b** a vector in \mathbb{R}^m .
- A least-square solution of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$

for all **x** in \mathbb{R}^n .

• The number $\|\mathbf{b} - A\hat{\mathbf{x}}\|$ is called the *least-squares error* of $A\mathbf{x} = \mathbf{b}$.

Solution of the general least-squares problem

Theorem 13

The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equation $A^T A\mathbf{x} = A^T \mathbf{b}$.

Let
$$\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$$
.

Let $\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$.

Let $\hat{\mathbf{b}} = \text{proj}_{\text{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of

 $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$.

Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$.

 $\mathbf{b} - \hat{\mathbf{b}} = \mathbf{b} - A\hat{\mathbf{x}}$ is in $(Col(A))^{\perp} = Nul(A^{T})$,

Let $\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$. Then

Let $\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$. Then

 $\mathbf{b} - \hat{\mathbf{b}} = \mathbf{b} - A\hat{\mathbf{x}}$ is in $(\text{Col}(A))^{\perp} = \text{Nul}(A^T)$, so $A^T(\mathbf{b} - A\hat{\mathbf{x}}) = 0^{-2}$

Let $\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$. Then $\mathbf{b} - \hat{\mathbf{b}} = \mathbf{b} - A\hat{\mathbf{x}}$ is in $(\operatorname{Col}(A))^{\perp} = \operatorname{Nul}(A^{T})$, so $A^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0$ from which it follows that $A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b}$.

Let $\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$. Then $\mathbf{b} - \hat{\mathbf{b}} = \mathbf{b} - A\hat{\mathbf{x}}$ is in $(\operatorname{Col}(A))^{\perp} = \operatorname{Nul}(A^{T})$, so $A^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0$ from which it follows that $A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b}$. Conversely, suppose $A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b}$.

Let $\hat{\boldsymbol{b}} = \text{proj}_{\text{Col}(A)} \boldsymbol{b}$. Then $\hat{\boldsymbol{x}}$ is a least-squares solution of

 $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$.

Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$. Then

 $\mathbf{b} - \hat{\mathbf{b}} = \mathbf{b} - A\hat{\mathbf{x}}$ is in $(\text{Col}(A))^{\perp} = \text{Nul}(A^{T})$, so $A^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0^{T}$ from which it follows that $A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b}$.

Conversely, suppose $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. Then $A^T (\mathbf{b} - A \hat{\mathbf{x}}) = 0$, so

 $\mathbf{b} - A\hat{\mathbf{x}}$ is in Nul $(A^T) = (\text{Col}(A))^{\perp}$.

Let $\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$.

Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$. Then

 $\mathbf{b} - \hat{\mathbf{b}} = \mathbf{b} - A\hat{\mathbf{x}}$ is in $(\text{Col}(A))^{\perp} = \text{Nul}(A^{T})$, so $A^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0$ from which it follows that $A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b}$.

Conversely, suppose $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. Then $A^T (\mathbf{b} - A \hat{\mathbf{x}}) = 0$, so $\mathbf{b} - A \hat{\mathbf{x}}$ is in Nul $(A^T) = (\text{Col}(A))^{\perp}$. Since $\mathbf{b} = A \hat{\mathbf{x}} + (\mathbf{b} - A \hat{\mathbf{x}})$ and $A \hat{\mathbf{x}}$ is in Col(A), it follows that $A \hat{\mathbf{x}} = \text{proj}_{\text{Col}(A)} \mathbf{b} = \hat{\mathbf{b}}$,

Let $\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$.

Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$. Then

 $\mathbf{b} - \hat{\mathbf{b}} = \mathbf{b} - A\hat{\mathbf{x}}$ is in $(\text{Col}(A))^{\perp} = \text{Nul}(A^T)$, so $A^T(\mathbf{b} - A\hat{\mathbf{x}}) = 0^{-1}$ from which it follows that $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

Conversely, suppose $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. Then $A^T (\mathbf{b} - A \hat{\mathbf{x}}) = 0$, so $\mathbf{b} - A\hat{\mathbf{x}}$ is in Nul $(A^T) = (\text{Col}(A))^{\perp}$. Since $\mathbf{b} = A\hat{\mathbf{x}} + (\mathbf{b} - A\hat{\mathbf{x}})$ and $A\hat{\mathbf{x}}$ is in Col(A), it follows that $A\hat{\mathbf{x}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b} = \hat{\mathbf{b}}$, so $\hat{\mathbf{x}}$

is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$.

TMA4115 - Calculus 3, Lecture 27, page 6

Let $\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$. Then $\mathbf{b} - \hat{\mathbf{b}} = \mathbf{b} - A\hat{\mathbf{x}}$ is in $(\text{Col}(A))^{\perp} = \text{Nul}(A^T)$, so $A^T(\mathbf{b} - A\hat{\mathbf{x}}) = 0^{-1}$ from which it follows that $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. Conversely, suppose $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. Then $A^T (\mathbf{b} - A \hat{\mathbf{x}}) = 0$, so $\mathbf{b} - A\hat{\mathbf{x}}$ is in Nul $(A^T) = (\text{Col}(A))^{\perp}$. Since $\mathbf{b} = A\hat{\mathbf{x}} + (\mathbf{b} - A\hat{\mathbf{x}})$ and $A\hat{\mathbf{x}}$ is in Col(A), it follows that $A\hat{\mathbf{x}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b} = \hat{\mathbf{b}}$, so $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$. Thus $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$ if and only if $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

Let $\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$. Then $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. Suppose $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$. Then $\mathbf{b} - \hat{\mathbf{b}} = \mathbf{b} - A\hat{\mathbf{x}}$ is in $(\text{Col}(A))^{\perp} = \text{Nul}(A^T)$, so $A^T(\mathbf{b} - A\hat{\mathbf{x}}) = 0^{-2}$ from which it follows that $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. Conversely, suppose $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. Then $A^T (\mathbf{b} - A \hat{\mathbf{x}}) = 0$, so $\mathbf{b} - A\hat{\mathbf{x}}$ is in Nul $(A^T) = (\text{Col}(A))^{\perp}$. Since $\mathbf{b} = A\hat{\mathbf{x}} + (\mathbf{b} - A\hat{\mathbf{x}})$ and $A\hat{\mathbf{x}}$ is in Col(A), it follows that $A\hat{\mathbf{x}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b} = \hat{\mathbf{b}}$, so $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$. Thus $\hat{\mathbf{x}}$ is a least-squares solutions of $A\mathbf{x} = \mathbf{b}$ if and only if $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. Since $\hat{\mathbf{b}}$ is in Col(A), there is at least one $\hat{\mathbf{x}}$ such that $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. so the set of solutions of $A^T A \mathbf{x} = A^T \mathbf{b}$ is nonempty.

Example

Let us find a least-squares solution of $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix}$.

Solution

Solution

$$A^{T}A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 8 & 10 \end{bmatrix}$$

Solution

$$A^T A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 8 & 10 \end{bmatrix}$$
 and $A^T \mathbf{b} = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} -24 \\ -2 \end{bmatrix}$

$$A^{T}A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 8 & 10 \end{bmatrix}$$
 and

$$A^T$$
b = $\begin{bmatrix} 2 & -2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} -24 \\ -2 \end{bmatrix}$ so a least-squares

solution of $A\mathbf{x} = \mathbf{b}$ is the same as a solution of the equation

$$\begin{bmatrix} 4 & 8 \\ 8 & 10 \end{bmatrix} \hat{\boldsymbol{x}} = \begin{bmatrix} -24 \\ -2 \end{bmatrix}.$$

$$\begin{vmatrix} 4 & 8 \\ 8 & 10 \end{vmatrix} = 40 - 64 = -24,$$

$$egin{bmatrix} 4 & 8 \\ 8 & 10 \end{bmatrix} = 40 - 64 = -24$$
, so $\begin{bmatrix} 4 & 8 \\ 8 & 10 \end{bmatrix}$ is invertible

$$\begin{vmatrix} 4 & 8 \\ 8 & 10 \end{vmatrix} = 40 - 64 = -24, \text{ so } \begin{bmatrix} 4 & 8 \\ 8 & 10 \end{bmatrix} \text{ is invertible and}$$

$$\hat{\mathbf{x}} = \begin{bmatrix} 4 & 8 \\ 8 & 10 \end{bmatrix}^{-1} \begin{bmatrix} -24 \\ -2 \end{bmatrix} = \frac{1}{-24} \begin{bmatrix} 10 & -8 \\ -8 & 4 \end{bmatrix}^{-1} \begin{bmatrix} -24 \\ -2 \end{bmatrix} = \begin{bmatrix} \frac{28}{3} \\ \frac{-23}{3} \end{bmatrix} \text{ is the unique least agree solution of } \mathbf{A}\mathbf{x}$$

the unique least-squares solution of $A\mathbf{x} = \mathbf{b}$.

Example

Let us find all least-squares solutions of $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 7 \\ 2 \\ 3 \\ 6 \\ 5 \\ 4 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix}$$
and

$$A^{T}\mathbf{b} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 6 \\ 5 \end{bmatrix} = \begin{bmatrix} 27 \\ 12 \\ 15 \end{bmatrix},$$

so a least-squares solution of Ax = b is the same as a

solution of the equation
$$\begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} 27 \\ 12 \\ 15 \end{bmatrix}.$$

so a least-squares solution of Ax = b is the same as a

solution of the equation
$$\begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} 27 \\ 12 \\ 15 \end{bmatrix}.$$

We reduce the augmented matrix of the above system to its reduced echelon form.

so a least-squares solution of Ax = b is the same as a

solution of the equation
$$\begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} 27 \\ 12 \\ 15 \end{bmatrix}.$$

We reduce the augmented matrix of the above system to its reduced echelon form.

$$\begin{bmatrix} 6 & 3 & 3 & 27 \\ 3 & 3 & 0 & 12 \\ 3 & 0 & 3 & 15 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{9}{2} \\ 1 & 1 & 0 & 4 \\ 1 & 0 & 1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{9}{2} \\ 0 & \frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} \\ 0 & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

So the least-squares solutions of $A\mathbf{x} = \mathbf{b}$ are

$$\hat{\mathbf{x}} = \begin{bmatrix} 5 \\ -1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$
 where *t* is a free parameter.

Theorem 14

Let A be an $m \times n$ matrix.

Theorem 14

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

Theorem 14

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

• The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .

Theorem 14

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

- **1** The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .
- 2 The columns of A are linearly independent.

Theorem 14

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

- **1** The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .
- 2 The columns of A are linearly independent.
- 3 The matrix $A^T A$ is invertible.

Theorem 14

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

- **1** The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .
- 2 The columns of A are linearly independent.
- 3 The matrix $A^T A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$.

Example

Let us find the least-squares solution of $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \\ 1 & 2 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}.$$

Let $\mathbf{v}_1, \mathbf{v}_2$ be the columns of A.

Let $\mathbf{v}_1, \mathbf{v}_2$ be the columns of A. Notice that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal.

Let $\mathbf{v}_1, \mathbf{v}_2$ be the columns of A. Notice that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. Recall that $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b}$.

Let $\mathbf{v}_1, \mathbf{v}_2$ be the columns of A. Notice that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. Recall that $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \text{proj}_{\text{Col}(A)} \mathbf{b}$.

We have that
$$\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b} = \frac{\mathbf{b} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{b} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = A \begin{bmatrix} \frac{\mathbf{b} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \\ \frac{\mathbf{b} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \end{bmatrix}$$
,

Let $\mathbf{v}_1, \mathbf{v}_2$ be the columns of A. Notice that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. Recall that $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $A\hat{\mathbf{x}} = \text{proj}_{\text{Col}(A)} \mathbf{b}$.

We have that
$$\operatorname{proj}_{\operatorname{Col}(A)} \mathbf{b} = \frac{\mathbf{b} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{b} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = A \begin{bmatrix} \frac{\mathbf{b} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \\ \frac{\mathbf{b} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \end{bmatrix}$$
, so

$$\hat{\boldsymbol{x}} = \begin{bmatrix} \frac{\boldsymbol{b} \cdot \boldsymbol{v}_1}{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1} \\ \frac{\boldsymbol{b} \cdot \boldsymbol{v}_2}{\boldsymbol{v}_2 \cdot \boldsymbol{v}_2} \end{bmatrix} = \begin{bmatrix} 3 \\ \frac{1}{2} \end{bmatrix}.$$

QR-factorization and least-squares solutions

QR-factorization and least-squares solutions

Theorem 15

Let A be an $m \times n$ matrix with linearly independent columns, let A = QR be a QR-factorization of A and let \mathbf{b} be in \mathbb{R}^m . Then $\hat{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$ is the unique least-squares solution of $A\mathbf{x} = \mathbf{b}$.

Since the columns of Q forms an orthonormal basis of Col(A), it follows that $proj_{Col(A)} \mathbf{b} = QQ^T \mathbf{b}$.

Since the columns of Q forms an orthonormal basis of Col(A), it follows that $proj_{Col(A)} \mathbf{b} = QQ^T \mathbf{b}$. Let $\hat{\mathbf{x}} = R^{-1}Q^T \mathbf{b}$.

Since the columns of Q forms an orthonormal basis of Col(A), it follows that $proj_{Col(A)} \mathbf{b} = QQ^T \mathbf{b}$.

Let
$$\hat{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$$
. Then

$$A\hat{\mathbf{x}} = QRR^{-1}Q^T\mathbf{b} = QQ^T\mathbf{b} = \operatorname{proj}_{Col(A)}\mathbf{b},$$

Since the columns of Q forms an orthonormal basis of Col(A), it follows that $proj_{Col(A)} \mathbf{b} = QQ^T \mathbf{b}$.

Let $\hat{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$. Then

 $A\hat{\mathbf{x}} = QRR^{-1}Q^T\mathbf{b} = QQ^T\mathbf{b} = \operatorname{proj}_{\operatorname{Col}(A)}\mathbf{b}$, so $\hat{\mathbf{x}}$ is the unique least-squares solution of $A\mathbf{x} = \mathbf{b}$.

Example

Suppose that
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 4 \\ 1 & -1 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}.$$

Let us find the least-squares solution of $A\mathbf{x} = \mathbf{b}$ where

$$\mathbf{b} = \begin{bmatrix} -1 \\ 6 \\ 5 \\ 7 \end{bmatrix}.$$

The least-squares solution of $A\mathbf{x} = \mathbf{b}$ is

$$\hat{\mathbf{x}} = R^{-1}Q^{T}\mathbf{b} = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \\ 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}^{T} \begin{bmatrix} -1 \\ 6 \\ 5 \\ 7 \end{bmatrix}$$

$$= \frac{1}{10} \begin{bmatrix} 5 & -3 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -1 \\ 6 \\ 5 \\ 7 \end{bmatrix}$$

$$= \frac{1}{20} \begin{bmatrix} 5 & -3 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 17 \\ 9 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 58 \\ 18 \end{bmatrix} = \begin{bmatrix} 2.9 \\ 0.9 \end{bmatrix}$$

NTNU Norwegian University of Science and Technology

• Suppose we are given a finite number of points $(x_1, y_1), \ldots, (x_n, y_n)$.

- Suppose we are given a finite number of points $(x_1, y_1), \ldots, (x_n, y_n)$.
- We want to determine the line $y = \beta_0 + \beta_1 x$ which is as "close" to the points as possible.

- Suppose we are given a finite number of points $(x_1, y_1), \ldots, (x_n, y_n)$.
- We want to determine the line $y = \beta_0 + \beta_1 x$ which is as "close" to the points as possible.
- For each point (x_j, y_j) we call

- Suppose we are given a finite number of points $(x_1, y_1), \ldots, (x_n, y_n)$.
- We want to determine the line $y = \beta_0 + \beta_1 x$ which is as "close" to the points as possible.
- For each point (x_i, y_i) we call
 - y_j for the *observed* value of y,

- Suppose we are given a finite number of points $(x_1, y_1), \ldots, (x_n, y_n)$.
- We want to determine the line $y = \beta_0 + \beta_1 x$ which is as "close" to the points as possible.
- For each point (x_i, y_i) we call
 - y_i for the *observed* value of y,
 - $\beta_0 + \beta_1 x_i$ for the *predicted* value of y,

- Suppose we are given a finite number of points $(x_1, y_1), \ldots, (x_n, y_n)$.
- We want to determine the line $y = \beta_0 + \beta_1 x$ which is as "close" to the points as possible.
- For each point (x_i, y_i) we call
 - y_i for the observed value of y,
 - $\beta_0 + \beta_1 x_i$ for the *predicted* value of y,
 - $y_j (\beta_0 + \beta_1 x_j)$ for the *residual*.

- Suppose we are given a finite number of points $(x_1, y_1), \ldots, (x_n, y_n)$.
- We want to determine the line $y = \beta_0 + \beta_1 x$ which is as "close" to the points as possible.
- For each point (x_i, y_i) we call
 - y_i for the *observed* value of y,
 - $\beta_0 + \beta_1 x_i$ for the *predicted* value of y,
 - $y_i (\beta_0 + \beta_1 x_i)$ for the *residual*.
- The *least-squares line* is the line $y = \beta_0 + \beta_1 x$ that minimizes the sum of the squares of the residuals.

Finding the least-squares line

Finding the least-squares line is equivalent to computing the least-squares solution of the equation $X\beta = \mathbf{y}$ where

$$X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \ \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \text{ and } \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

Example

Let us determine the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fits the data points (1,0), (2,1), (4,2) and (5,3).

Let
$$X = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \\ 1 & 5 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$.

Let
$$X = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \\ 1 & 5 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$. Then

$$X^T X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 12 \\ 12 & 46 \end{bmatrix}$$
 and

$$X^T \mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 25 \end{bmatrix}.$$

Solution (cont.)

The columns of *X* are linearly independent

Solution (cont.)

The columns of X are linearly independent so the equation $X\beta = \mathbf{y}$ has a unique least-squares solution which is

$$\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = (X^T X)^{-1} X^T \mathbf{y} = \begin{bmatrix} 4 & 12 \\ 12 & 46 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 25 \end{bmatrix}$$
$$= \frac{1}{186 - 144} \begin{bmatrix} 46 & -12 \\ -12 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 25 \end{bmatrix}$$
$$= \frac{1}{40} \begin{bmatrix} -24 \\ 28 \end{bmatrix} = \begin{bmatrix} -0.6 \\ 0.7 \end{bmatrix}$$

Solution (cont.)

The columns of X are linearly independent so the equation $X\beta = \mathbf{y}$ has a unique least-squares solution which is

$$\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = (X^T X)^{-1} X^T \mathbf{y} = \begin{bmatrix} 4 & 12 \\ 12 & 46 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 25 \end{bmatrix}$$
$$= \frac{1}{186 - 144} \begin{bmatrix} 46 & -12 \\ -12 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 25 \end{bmatrix}$$
$$= \frac{1}{40} \begin{bmatrix} -24 \\ 28 \end{bmatrix} = \begin{bmatrix} -0.6 \\ 0.7 \end{bmatrix}$$

so y = -0.6 + 0.7x is the equation of the least-squares line that best fits the data points.

• Any equation of the form $X\beta = \mathbf{y} + \epsilon$ where X and \mathbf{y} are given, is referred to as a *linear model*.

- Any equation of the form $X\beta = \mathbf{y} + \epsilon$ where X and \mathbf{y} are given, is referred to as a *linear model*.
- The goal is to minimize the length of the residual vector ϵ .

- Any equation of the form $X\beta = \mathbf{y} + \epsilon$ where X and \mathbf{y} are given, is referred to as a *linear model*.
- The goal is to minimize the length of the residual vector ϵ .
- This amounts to finding a least-squares solution of $X\beta = \mathbf{y}$.

Example

Suppose data points $(x_1, y_1), \dots, (x_n, y_n)$ appear to lie along a parabola.

Suppose we wish to approximate the data by an equation of the form $y = \beta_0 + \beta_1 x + \beta_2 x^2$.

Let us describe the linear model that produces a least-square fit of the data point to the above equation.

Let
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
, $X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix}$, $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$ and
$$\epsilon = \begin{bmatrix} y_1 - (\beta_0 + \beta_1 x_1 + \beta_2 x_1^2) \\ \vdots \\ y_n - (\beta_0 + \beta_1 x_n + \beta_2 x_n^2) \end{bmatrix}$$
.

Let
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
, $X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix}$, $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$ and $\epsilon = \begin{bmatrix} y_1 - (\beta_0 + \beta_1 x_1 + \beta_2 x_1^2) \\ \vdots \\ y_n - (\beta_0 + \beta_1 x_n + \beta_2 x_n^2) \end{bmatrix}$.

Then $X\beta = \mathbf{y} + \epsilon$ is the linear model that produces a least-square fit of the data point to the equation $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \beta_2 \mathbf{x}^2$.

Example

Suppose we are given data points $(u_1, v_1, y_1), \dots, (u_n, v_n, y_n)$ that we expect to satisfy an equation of the form $y = \beta_0 + \beta_1 u + \beta_2 v$.

Let us describe the linear model that produces a least-square fit of the data point to the above equation.

Let
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
, $X = \begin{bmatrix} 1 & u_1 & v_1 \\ \vdots & \vdots & \vdots \\ 1 & u_n & v_n \end{bmatrix}$, $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$ and
$$\epsilon = \begin{bmatrix} y_1 - (\beta_0 + \beta_1 u_1 + \beta_2 v_1) \\ \vdots \\ y_n - (\beta_0 + \beta_1 u_n + \beta_2 v_n) \end{bmatrix}$$
.

Let
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
, $X = \begin{bmatrix} 1 & u_1 & v_1 \\ \vdots & \vdots & \vdots \\ 1 & u_n & v_n \end{bmatrix}$, $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$ and
$$\epsilon = \begin{bmatrix} y_1 - (\beta_0 + \beta_1 u_1 + \beta_2 v_1) \\ \vdots \\ y_n - (\beta_0 + \beta_1 u_n + \beta_2 v_n) \end{bmatrix}$$
.

Then $X\beta = \mathbf{y} + \epsilon$ is the linear model that produces a least-square fit of the data point to the equation $\mathbf{v} = \beta_0 + \beta_1 \mathbf{u} + \beta_2 \mathbf{v}$.

Tomorrow's lecture

Tomorrow we shall introduce and study

- symmetric matrices,
- quadratic forms.

Sections 7.1–7.2 in "Linear Algebras and Its Applications" (pages 393–407).

