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Yesterday’s lecture

Yesterday we introduced and studied

the inner product,
the length of a vector,
orthogonality and orthogonal sets in Rn,
the orthogonal complement of a subspace,
orthogonal bases and orthonormal bases,
orthogonal matrices.
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Today’s lecture

Today we shall introduce and study

orthogonal projections,
the Gram-Schmidt process,
QR factorization.
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Orthogonal complements

Let W be a subspace of Rn. The set of all vectors z that are
orthogonal to W is called the orthogonal complement of W
and is denoted by W⊥.
W⊥ is a subspace of Rn.
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The orthogonal complements of
Row(A) and Col(A)

Theorem 3
Let A be an m × n matrix. Then

1 (Row(A))⊥ = Nul(A).
2 (Col(A))⊥ = Nul(AT ).
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Orthogonal sets and bases

A set of vectors {v1, . . . ,vp} in Rn is said to be an
orthogonal set if each pair of distinct vectors from the set
is orthogonal, that is, if vi · vj = 0 whenever i 6= j .
An orthogonal basis for a subspace W of Rn is a basis
for W that is also an orthogonal set.
{v1, . . . ,vp} is an orthogonal basis for W if and only if
{v1, . . . ,vp} is an orthogonal set and
Span{v1, . . . ,vp} = W .

Theorem 5
Let B = {v1, . . . ,vp} be an orthogonal basis for a subspace
W of Rn and let y be in W .

Then the coordinates c1, . . . , cp

of y relative to B is given by cj =
y·vj
vj ·vj

.
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Orthonormal sets and bases

An orthonormal set is an orthogonal set of unit vectors.
{v1, . . . ,vp} is an orthonormal set if and only if

vi · vj =

{
1 if i = j
0 if i 6= j

An orthonormal basis for a subspace W of Rn is a basis
for W that is also an orthonormal set.
{v1, . . . ,vp} is an orthonormal basis for W if and only if
{v1, . . . ,vp} is an orthonormal set and
Span{v1, . . . ,vp} = W .
If B = {v1, . . . ,vp} be an orthonormal basis for a
subspace W of Rn and y is in W , then the coordinates
c1, . . . , cp of y relative to B is given by cj = y · vj .
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Matrices with orthonormal
columns

Theorem 6
An m × n matrix U has orthonormal columns if and only if
UT U = In.

Theorem 7
Let U be an m × n matrix with orthonormal columns and let x
and y be in Rn. Then

1 (Ux) · (Uy) = x · y.
2 ‖Ux‖ = ‖x‖.
3 (Ux) · (Uy) = 0 if and only if x · y = 0.
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Orthogonal matrices

A square matrix with orthonormal columns is called an
orthogonal matrix.
A square matrix U is orthogonal if and only if U is invertible
and U−1 = UT .
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Orthogonal projections

Let u and y be vectors in Rn and assume that u 6= 0.
Let L = Span{u}.
The vector projL y = y·u

u·uu is called the orthogonal
projection of y onto L (or onto u).
If z = y− projL y, then z is orthogonal to u and
y = projL y + z.
The vector z = y− projL y is called the component of y
orthogonal to L (or to u).
‖z‖ is called the distance from y to L.
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Example
Let y =

[
5
2

]
and u =

[
1
1

]
. Let us compute the distance from

y to the line through u and the origin.
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Solution

The line through u and the origin is the line L = Span{u}.

projL y =
y · u
u · u

u =
7
2

[
1
1

]
=

[
7/2
7/2

]
so the distance from y to L is

‖y− projL y‖ =
∥∥∥∥[ 3/2
−3/2

]∥∥∥∥
=
√

(3/2)2 + (−3/2)2 =
√

9/2 =
3√
2
.
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The orthogonal decomposition
theorem

Theorem 8
Let W be a subspace of Rn and let y be in Rn.

1 Then y can be written uniquely in the form y = w + z
where w is in W and z is in W⊥.

2 If {u1, . . . ,up} is an orthogonal basis for W , then
w = y·u1

u1·u1
u1 + · · ·+ y·up

up·up
up and z = y−w.

The vector w = y·u1
u1·u1

u1 + · · ·+ y·up
up·up

up is called the orthogonal
projection of y onto W and is denoted by projW y.
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Proof of Theorem 8

Let {u1, . . . ,up} be an orthogonal basis for W and let
w = y·u1

u1·u1
u1 + · · ·+ y·up

up·up
up.

Then w is in W . Let z = y−w. Then
z · uk = y · uk − y · uk = 0 for each k , so z is in W⊥.
Suppose y = w′ + z′ where w′ is in W and z′ is in W⊥. Then
w−w′ = z′ − z is both in W and in W⊥, so
w−w′ = z′ − z = 0, from which it follows that w = w′ and
z = z′.
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The best approximation theorem

Theorem 9
Let W be a subspace of Rn, let y be in Rn, and let
w = projW y.
Then w is the closest point in W to y in the sense that
‖y−w‖ < ‖y− x‖ for all x in W distinct from w.
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Proof of Theorem 9

Let x be a vector in W distinct from w. Then w− x is in W
and y−w is in W⊥, so w− x and y−w are orthogonal.
It follows that

‖y− x‖2 = ‖(y−w) + (w− x)‖2 = ‖y−w‖2 + ‖w− x‖2.

Since x 6= w, it follows that ‖w− x‖ > 0, and thus that
‖y−w‖ < ‖y− x‖.
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Example

Let u1 =

 2
5
−1

, u2 =

−2
1
1

, y =

1
2
3

, and

W = Span{u1,u2}. Let us find the closest point in W to y.
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Solution

The closest point in W to y is projW y. We have that
u1 · u2 = 0, so {u1,u2} is an orthogonal basis for W . It
follows that

projW y =
y · u1

u1 · u1
u1 +

y · u2

u2 · u2
u2

=
9
30

 2
5
−1

+
3
6

−2
1
1


=

−2/5
2

1/5

 .
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Orthogonal projections onto
orthonormal bases

Theorem 10
Let {u1, . . . ,up} be an orthonormal basis for a subspace W
of Rn and let y be in Rn.

1 Then projW y = (y · u1)u1 + · · ·+ (y · up)up.
2 If U = [u1 . . .up], then projW y = UUT y.
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Proof of Theorem 10

Let {u1, . . . ,up} be an orthonormal basis for W . Then
uk · uk = 1 for each k , so
projW y = y·u1

u1·u1
u1 + · · ·+ y·up

up·up
up = (y · u1)u1 + · · ·+ (y · up)up

for each y in Rn.
Let U = [u1 . . .up]. Then

UUT y = [u1 . . .up][u1 . . .up]
T y = [u1 . . .up]

u1 · y
...

up · y


= (y · u1)u1 + · · ·+ (y · up)up = projW y

for each y in Rn.
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Example

Let u1 =

 2
5
−1

, u2 =

−2
1
1

, y =

1
2
3

, and

W = Span{u1,u2}. Let us use Theorem 10 to find the
closest point in W to y.
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Solution

‖u1‖2 = u1 · u1 = 30 and ‖u2‖2 = u2 · u2 = 6, so
 2/

√
30

5/
√

30
−1/
√

30

 ,

−2/
√

6
1/
√

6
1/
√

6

 is an orthonormal basis for W .

Let U =

 2/
√

30 −2/
√

6
5/
√

30 1/
√

6
−1/
√

30 1/
√

6

.
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Solution
Then

UUT =

 2/
√

30 −2/
√

6
5/
√

30 1/
√

6
−1/
√

30 1/
√

6

[2/
√

30 5/
√

30 −1/
√

30
−2/
√

6 1/
√

6 1/
√

6

]

=
1

30

 24 0 −12
0 30 0
−12 0 6



so projW y = UUT y = 1
30

 24 0 −12
0 30 0
−12 0 6

1
2
3

 =

−2/5
2

1/5

.
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An algorithm for producing an
orthogonal basis for a subspace of
Rn

Let {x1, . . . ,xp} be a basis for a subspace W of Rn.

1 Let v1 = x1 and W1 = Span{v1}.
2 Let v2 = x2 − projW1

x2 = x2 − x2·v1
v1·v1

v1 and
W2 = Span{v1,v2}.

3 If appropriate, scale v2 to simplify later calculations.
4 Let v3 = x3 − projW2

x3 = x3 − x3·v1
v1·v1

v1 − x3·v2
v2·v2

v2, let
W3 = Span{v1,v2,v3}, and scale v3 to simplify later
calculations (if appropriate).
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An algorithm for producing an
orthogonal basis for a subspace of
Rn

5 Continue like this and produce vectors v1,v2, . . . ,vp

where, for 1 < k ≤ p, vk is an appropriate multiple of
xk−projSpan{v1,...,vk−1} xk = xk− xk ·v1

v1·v1
v1−· · ·− xk ·vk−1

vk−1·vk−1
vk−1.

6 Then {v1, . . .vp} is an orthogonal basis for W .
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The Gram-Schmidt process

Theorem 11
Let {x1, . . . ,xp} be a linearly independent subset of Rn.

Let

v1 = x1

v2 = x2 −
x2 · v1

v1 · v1
...

vp = xk −
xp · v1

v1 · v1
v1 − · · · −

xp · vp−1

vp−1 · vp−1
vp−1

Then {v1, . . . ,vp} is an orthogonal set, and
Span{v1, . . . ,vk} = Span{x1, . . . ,xk} for 1 ≤ k ≤ p.
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Proof of Theorem 11

Let Wk = Span{x1, . . . ,xk} for each 1 ≤ k ≤ p. Then {v1} is
an orthogonal basis for W1.
Suppose that 1 ≤ k < p and that {v1, . . . ,vk} is an
orthogonal basis for Wk . Then vk+1 = xk+1 − projWk

xk+1 is
orthogonal to Wk and in Wk+1, so {v1, . . . ,vk+1} is an
orthogonal set in Wk+1. Since dim(Wk+1) = k + 1, it follows
that {v1, . . . ,vk+1} is an orthogonal basis for Wk+1.
It follows that {v1, . . . ,vk} is an orthogonal basis for Wk for all
1 ≤ k ≤ p.
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Example

Let x1 =


1
1
1
1

, x2 =


0
1
1
1

, x3 =


0
0
1
1

, and

W = Span{x1,x2,x3}.
Let us find an orthogonal basis for W .
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Solution

{x1,x2,x3} is linearly independent and therefore a basis for
W . Let v1 = x1 and W1 = Span{v1} = Span{x1}.
Let

v2 = x2 − projW1
x2 = x2 − x2·v1

v1·v1
v1 =


0
1
1
1

− 3
4


1
1
1
1

 = 1
4


−3
1
1
1

,

v′2 = 4v2 =


−3
1
1
1

, and

W2 = Span{v1,v′2} = Span{v1,v2} = Span{x1,x2}.
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Solution
Let

v3 = x3 − projW2
x3

= x3 −
x3 · v1

v1 · v1
v1 −

x3 · v′2
v′2 · v′2

v′2

=


0
0
1
1

− 2
4


1
1
1
1

− 2
12


−3
1
1
1



=
1
3


0
−2
1
1


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Solution (cont.)

and v′3 = 3v3 =


0
−2
1
1

.

Then

{v1,v′2,v
′
3} =




1
1
1
1

 ,


−3
1
1
1

 ,


0
−2
1
1


 is an orthogonal basis

for W .
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The QR factorization

Theorem 12
If A is an m × n matrix with linearly independent columns,
then A can be factored as A = QR, where

Q is an m × n matrix whose columns form an
orthonormal basis for Col(A),
R is an n × n upper triangular invertible matrix with
positive entries on its diagonal.
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Proof of Theorem 12

Let A = [x1 . . . xn] and let {v1, . . . ,vn} be an orthogonal set
such that Span{v1, . . . ,vk} = Span{x1, . . . ,xk} for each
1 ≤ k ≤ p.
Then we have for each 1 ≤ k ≤ p that there exist scalars
r1k , r2k , . . . , rkk such that xk = r1kv1 + . . . rkkvk .
We must have that rkk 6= 0 because otherwise xk would be in
Span{v1, . . . ,vk1} = Span{x1, . . . ,xk1} which would
contradict the assumption that {x1, . . . ,xn} is linearly
independent.
We may assume that rkk > 0, because if rkk < 0, then we can
replace vk by −vk and rkk by −rkk , and then rkk > 0.
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Proof of Theorem 12 (cont.)

Let Q = [v1 . . . vn] and R =


r11 r12 . . . r1n

0 r22 . . . r2n
...

... . . .
...

0 0 . . . rnn

.

Then QR = [x1 . . . xn] = A.
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Proof of Theorem 12 (cont.)

Let Q = [v1 . . . vn] and R =


r11 r12 . . . r1n

0 r22 . . . r2n
...

... . . .
...

0 0 . . . rnn

.

Then QR = [x1 . . . xn] = A.
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Example

Let us find a QR factorization of A =


1 0 0
1 1 0
1 1 1
1 1 1

.
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Solution

Let x1 =


1
1
1
1

, x2 =


0
1
1
1

, x3 =


0
0
1
1

, v1 = 1
2


1
1
1
1

,

v2 = 1√
12


−3
1
1
1

, v3 = 1√
6


0
−2
1
1

.
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Solution

Let x1 =


1
1
1
1

, x2 =


0
1
1
1

, x3 =


0
0
1
1

, v1 = 1
2


1
1
1
1

,

v2 = 1√
12


−3
1
1
1

, v3 = 1√
6


0
−2
1
1

.
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Solution (cont.)
Then A = [x1 x2 x3], and {v1,v2,v3} is an orthonormal set
such that

x1 = 2v1

x2 =
3
2

v1 +

√
3

2
v2

x3 = v1 +
1√
3

v2 +

√
2√
3

v3
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Solution (cont.)

So if we let Q = [v1 v2 v3] =


1
2

−3√
12

0
1
2

1√
12

−2√
6

1
2

1√
12

1√
6

1
2

1√
12

1√
6

 and

R =

2 3
2 1

0
√

3
2

1√
3

0 0
√

2√
3

, then QR = A is a QR factorization of A.
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Problem 6 from June 2010
Let A be the following matrix; find a basis for each of the
spaces Nul(A), Col(A), (Col(A))⊥, and Row(A).

A =

1 2 0 1 2 1
3 6 1 0 2 −1
4 8 2 −2 0 −4



Find the orthogonal projection of

0
0
1

 on to Col(A).
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Solution

We start by reducing A to its reduced echelon form.1 2 0 1 2 1
3 6 1 0 2 −1
4 8 2 −2 0 −4

→
1 2 0 1 2 1

0 0 1 −3 −4 −4
0 0 2 −6 −8 −8

→
1 2 0 1 2 1

0 0 1 −3 −4 −4
0 0 0 0 0 0


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Solution
We start by reducing A to its reduced echelon form.

1 2 0 1 2 1
3 6 1 0 2 −1
4 8 2 −2 0 −4

→
1 2 0 1 2 1

0 0 1 −3 −4 −4
0 0 2 −6 −8 −8

→
1 2 0 1 2 1

0 0 1 −3 −4 −4
0 0 0 0 0 0


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Solution
We start by reducing A to its reduced echelon form.1 2 0 1 2 1

3 6 1 0 2 −1
4 8 2 −2 0 −4

→
1 2 0 1 2 1

0 0 1 −3 −4 −4
0 0 2 −6 −8 −8

→
1 2 0 1 2 1

0 0 1 −3 −4 −4
0 0 0 0 0 0


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Solution

We see that




−2
1
0
0
0
0

 ,


−1
0
3
1
0
0

 ,


−2
0
4
0
1
0

 ,


−1
0
4
0
0
1




is a basis for

Nul(A),

that


1

3
4

 ,

0
1
2

 is a basis for Col(A),
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Solution

We see that




−2
1
0
0
0
0

 ,


−1
0
3
1
0
0

 ,


−2
0
4
0
1
0

 ,


−1
0
4
0
0
1




is a basis for

Nul(A), that


1

3
4

 ,

0
1
2

 is a basis for Col(A),
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Solution (cont.)

and that




1
2
0
1
2
1

 ,


0
0
1
−3
−4
−4




is a basis for Row(A).
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Solution (cont.)x1

x2

x3

 is in (Col(A))⊥ if and only ifx1

x2

x3

 ·
1

3
4

 = x1 + 3x2 + 4x3 = 0 andx1

x2

x3

 ·
0

1
2

 = x2 + 2x3 = 0.

We reduce the coefficient matrix of the system

x1 + 3x2 + 4x3 = 0
x2 + 2x3 = 0

to its reduced echelon form.
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Solution (cont.)x1

x2

x3

 is in (Col(A))⊥ if and only ifx1

x2

x3

 ·
1

3
4

 = x1 + 3x2 + 4x3 = 0 andx1

x2

x3

 ·
0

1
2

 = x2 + 2x3 = 0.

We reduce the coefficient matrix of the system

x1 + 3x2 + 4x3 = 0
x2 + 2x3 = 0

to its reduced echelon form.
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Solution (cont.)
[
1 3 4
0 1 2

]
→
[
1 0 −2
0 1 2

]

We see that (Col(A))⊥ = Span


 2
−2
1

, so


 2
−2
1

 is a

basis for (Col(A))⊥.
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Solution (cont.)
[
1 3 4
0 1 2

]
→
[
1 0 −2
0 1 2

]

We see that (Col(A))⊥ = Span


 2
−2
1

, so


 2
−2
1

 is a

basis for (Col(A))⊥.
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Solution (cont.)

The orthogonal projection of

0
0
1

 on to (Col(A))⊥ is


0
0
1

·


2
−2
1




2
−2
1

·


2
−2
1



 2
−2
1

 = 1
9

 2
−2
1



so the orthogonal projection of

0
0
1

 on to Col(A) is

0
0
1

− 1
9

 2
−2
1

 = 1
9

−2
2
8

.
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Solution (cont.)

The orthogonal projection of

0
0
1

 on to (Col(A))⊥ is


0
0
1

·


2
−2
1




2
−2
1

·


2
−2
1



 2
−2
1

 = 1
9

 2
−2
1

 so the orthogonal projection of

0
0
1

 on to Col(A) is

0
0
1

− 1
9

 2
−2
1

 = 1
9

−2
2
8

.
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Problem 5 from June 2011
Let V be the column space of the matrix 1 3 0 1

2 1 5 −3
−1 −1 −2 1


and let

b =

1
7
3

 .

Find the nearest point in V to b (that is, the orthogonal
projection of b on to V ).
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Solution

We start by reducing the matrix to an echelon form. 1 3 0 1
2 1 5 −3
−1 −1 −2 1

→
1 3 0 1

0 −5 5 −5
0 2 −2 2

→
1 3 0 1

0 1 −1 1
0 0 0 0



We see that


 1

2
−1

 ,

 3
1
−1

 is a basis for V . We then find

an orthogonal basis for V by using the Gram-Schmidt

process on


 1

2
−1

 ,

 3
1
−1

.
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Solution
We start by reducing the matrix to an echelon form.

 1 3 0 1
2 1 5 −3
−1 −1 −2 1

→
1 3 0 1

0 −5 5 −5
0 2 −2 2

→
1 3 0 1

0 1 −1 1
0 0 0 0



We see that


 1

2
−1

 ,

 3
1
−1

 is a basis for V . We then find

an orthogonal basis for V by using the Gram-Schmidt

process on


 1

2
−1

 ,

 3
1
−1

.
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Solution
We start by reducing the matrix to an echelon form. 1 3 0 1

2 1 5 −3
−1 −1 −2 1

→
1 3 0 1

0 −5 5 −5
0 2 −2 2

→
1 3 0 1

0 1 −1 1
0 0 0 0



We see that


 1

2
−1

 ,

 3
1
−1

 is a basis for V . We then find

an orthogonal basis for V by using the Gram-Schmidt

process on


 1

2
−1

 ,

 3
1
−1

.
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Solution
We start by reducing the matrix to an echelon form. 1 3 0 1

2 1 5 −3
−1 −1 −2 1

→
1 3 0 1

0 −5 5 −5
0 2 −2 2

→
1 3 0 1

0 1 −1 1
0 0 0 0



We see that


 1

2
−1

 ,

 3
1
−1

 is a basis for V .

We then find

an orthogonal basis for V by using the Gram-Schmidt

process on


 1

2
−1

 ,

 3
1
−1

.
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Solution
We start by reducing the matrix to an echelon form. 1 3 0 1

2 1 5 −3
−1 −1 −2 1

→
1 3 0 1

0 −5 5 −5
0 2 −2 2

→
1 3 0 1

0 1 −1 1
0 0 0 0



We see that


 1

2
−1

 ,

 3
1
−1

 is a basis for V . We then find

an orthogonal basis for V by using the Gram-Schmidt

process on


 1

2
−1

 ,

 3
1
−1

.
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Solution (cont.)

 3
1
−1

−
 3

1
−1

 ·
 1

2
−1


 1

2
−1

 ·
 1

2
−1


 1

2
−1

 =

 3
1
−1

− 6
6

 1
2
−1

 =

 2
−1
0



so


 1

2
−1

 ,

 2
−1
0

 is an orthogonal basis for V .
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Solution (cont.)
We then have that

projV b =

1
7
3

 ·
 1

2
−1


 1

2
−1

 ·
 1

2
−1


 1

2
−1

+

1
7
3

 ·
 2
−1
0


 2
−1
0

 ·
 2
−1
0


 2
−1
0



=
12
6

 1
2
−1

+
−5
5

 2
−1
0

 =

 0
5
−2

 .
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Problem 5 from December 2010
Let V ⊆ R4 be the solution space of the linear system

x + y − z + w = 0
x + 2y − 2z + w = 0

1 Find an orthogonal basis for V .

2 Find the orthogonal projection of b =


1
1
1
1

 on to V .

3 Find an orthogonal basis for R4 in which the first two first
basis vectors are the once we found in (1).
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Solution

We start by reducing the coefficient matrix of the system to
its reduced echelon form.[

1 1 −1 1
1 2 −2 1

]
→
[
1 1 −1 1
0 1 −1 0

]
→
[
1 0 0 1
0 1 −1 0

]

We see that



−1
0
0
1

 ,


0
1
1
0


 is a basis for V and that it is

orthogonal.
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Solution
We start by reducing the coefficient matrix of the system to
its reduced echelon form.

[
1 1 −1 1
1 2 −2 1

]
→
[
1 1 −1 1
0 1 −1 0

]
→
[
1 0 0 1
0 1 −1 0

]

We see that



−1
0
0
1

 ,


0
1
1
0


 is a basis for V and that it is

orthogonal.
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Solution
We start by reducing the coefficient matrix of the system to
its reduced echelon form.[

1 1 −1 1
1 2 −2 1

]
→
[
1 1 −1 1
0 1 −1 0

]
→
[
1 0 0 1
0 1 −1 0

]

We see that



−1
0
0
1

 ,


0
1
1
0


 is a basis for V and that it is

orthogonal.
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Solution
We start by reducing the coefficient matrix of the system to
its reduced echelon form.[

1 1 −1 1
1 2 −2 1

]
→
[
1 1 −1 1
0 1 −1 0

]
→
[
1 0 0 1
0 1 −1 0

]

We see that



−1
0
0
1

 ,


0
1
1
0


 is a basis for V and that it is

orthogonal.
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Solution (cont.)
The orthogonal projection of b on to V is

1
1
1
1

 ·

−1
0
0
1



−1
0
0
1

 ·

−1
0
0
1




−1
0
0
1

+


1
1
1
1

 ·


0
1
1
0




0
1
1
0

 ·


0
1
1
0




0
1
1
0

 =


0
1
1
0


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Solution (cont.)
Let A be the coefficient matrix of the system.

Then

V⊥ = (Nul(A))⊥ = Row(A) = Span




1
0
0
1

 ,


0
1
−1
0


, so



−1
0
0
1

 ,


0
1
1
0

 ,


1
0
0
1

 ,


0
1
−1
0


 is an orthogonal basis for R4.
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Solution (cont.)
Let A be the coefficient matrix of the system. Then

V⊥ = (Nul(A))⊥ = Row(A) = Span




1
0
0
1

 ,


0
1
−1
0


,

so



−1
0
0
1

 ,


0
1
1
0

 ,


1
0
0
1

 ,


0
1
−1
0


 is an orthogonal basis for R4.
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Solution (cont.)
Let A be the coefficient matrix of the system. Then

V⊥ = (Nul(A))⊥ = Row(A) = Span




1
0
0
1

 ,


0
1
−1
0


, so



−1
0
0
1

 ,


0
1
1
0

 ,


1
0
0
1

 ,


0
1
−1
0


 is an orthogonal basis for R4.
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Plan for next week

Wednesday we shall look at

least-squares problems,
applications to linear models.

Sections 6.5–6.6 in “Linear Algebras and Its Applications”
(pages 360–375).
Thursday we shall introduce and study

symmetric matrices,
quadratic forms.

Sections 7.1–7.2 in “Linear Algebras and Its Applications”
(pages 393–407).
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