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Review of yesterday’s lecture

Yesterday we introduced complex numbers and studied

the real part, the imaginary part, the absolute value (or
modulus), and the argument of a complex number,
addition and multiplication of complex numbers,
and complex conjugation.
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Today’s lecture

Today we will study

polar representation of complex numbers,
de Moivre’s Theorem,
how complex numbers can be used to derive
trigonometric identities,
roots of complex numbers.
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Complex numbers

A complex number is a number
which can be written as a + ib
where a and b are real numbers
and i satisfies i2 = −1.

A complex number z = a + ib
can be represented as the point
(a,b) in the plane.
If z = a + ib, then a is called the
real part of z and is denoted by
Re(z).
b is called the imaginary part of
z and is denoted by Im(z).

z=(a,b)

Re(z)

Im(z)
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Complex numbers

If z = a + ib, then the length√
a2 + b2 of the line from (0,0)

to (a,b) is called the modulus or
the absolute value of z and is
denoted by |z|.

The angle between the line
through (0,0) and (a,b) and the
positive part of the real axis is
called the argument of z and is
denoted by arg(z).

z=(a,b)

Re(z)

Im(z)
|z|

arg(z)
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Complex numbers

arg(z) is not unique. If θ = arg(z), then also
θ + 2π = arg(z). If we want to be precise, then arg(z) is
really the set of all angles θ which satisfies that if we
rotate the positive part of the real axis by θ, then it lands
on the line through (0,0) and (a,b).

The unique value of arg(z) in the interval (−π, π] is called
the principal argument of z and is denoted by Arg(z).
Notice that arg(z) and Arg(z) are not defined if
z = (0,0).
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Addition of complex numbers

If z1 = a + bi and z2 = c + di , then
z1 + z2 = (a + c) + (b + d)i .
Re(z1 + z2) = Re(z1) + Re(z2) and
Im(z1 + z2) = Im(z1) + Im(z2).
z1 + z2 = z2 + z1.
(z1 + z2) + z3 = z1 + (z2 + z3).
|z1 + z2| ≤ |z1|+ |z2|.
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Multiplication of complex numbers

If z1 = a + bi and z2 = c + di , then
z1z2 = (a + bi)(c + di) = ac + adi + bci + bdi2 =
(ac − bd) + (ad + bc)i .
arg(z1z2) = arg(z1) + arg(z2) and |z1z2| = |z1||z2|.
z1z2 = z2z1.
(z1z2)z3 = z1(z2z3).
z1(z2 + z3) = z1z2 + z1z3.
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Complex conjugation

When z = a + bi is a complex
number, then the number a− bi
is called the conjugate of z and
is denoted by z.
Re(z) = Re(z) and
Im(z) = − Im(z).
We get z by reflecting z in the
real line.
|z| = |z| and arg(z) = −arg(z).
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Complex conjugation

z = z if and only if Im(z) = 0.
z = −z if and only if Re(z) = 0.
z + w = z + w .
zw = z w .
zz = (a+bi)(a−bi) = a2−abi+abi−b2i2 = a2+b2 = |z|2.
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Division of complex numbers

If z and w are complex numbers and w 6= 0, then
z
w

=
zw
ww

=
zw
|w |2

.

a + bi
c + di

=
(a + bi)(c − di)

c2 + d2 =
ac + bd
c2 + d2 +

bc − ad
c2 + d2 i .

arg
( z

w

)
= arg(z)− arg(w) and

∣∣∣ z
w

∣∣∣ = |z||w | .
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Example

1 + i
2− i

=
(1 + i)(2 + i)
(2− i)(2 + i)

=
2− 1 + 3i

5
=

1
5
+

3
5

i .
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Polar representation

Every complex number z can
be written on the form
r(cos θ + i sin θ) where r and θ
are real numbers and r ≥ 0.
This is called the polar form of
z.
Notice that if
z = r(cos θ + i sin θ), then
|z| = r and arg(z) = θ.

z = r(cos θ + i sin θ)

r

θ
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Multiplication and division using
polar representations

Recall that
arg(z1z2) = arg(z1) + arg(z2) and |z1z2| = |z1||z2|, and
that
arg

( z
w

)
= arg(z)− arg(w) and

∣∣∣ z
w

∣∣∣ = |z||w | .
It follows that if z = r1(cos θ1 + i sin θ1) and
z2 = r2(cos θ2 + i sin θ2), then

z1z2 = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)) and
z1

z2
= r1

r2
(cos(θ1 − θ2) + i sin(θ1 − θ2)) (provided r2 6= 0).
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Exercise 46, page xviii

Express each of the complex numbers z = 3 + i
√

3 and
w = −1 + i

√
3 in polar form. Use these expressions to

calculate zw and z/w .
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Solution

|z| =
√

32 + (
√

3)2 =
√

12,

Arg(z) = arctan
(

Im(z)
Re(z)

)
= arctan

(√
3

3

)
= arctan

(
1√
3

)
= π

6 ,

|w | =
√
(−12) + (

√
3)2 =

√
4 = 2, and

Arg(w) = arccos
(

Re(w)
|w |

)
= arccos

(−1
2

)
= 2π

3 ,

so |zw | = |z||w | = (
√

12)2 = 4
√

3,
arg(zw) = Arg(z) + Arg(w) = π

6 + 2π
3 = 5π

6 ,
|z/w | = |z|/|w | =

√
12/2 =

√
3, and

arg(z/w) = Arg(z)− Arg(w) = π
6 −

2π
3 = −π

2 , from which it
follows that zw = 4

√
3
(
cos(5π/6) + i sin(5π/6)

)
=

4
√

3
(
−
√

3
2 + 1

2 i
)
= −6 + 2

√
(3)i , and z/w =

√
3(cos(−π/2) + sin(−π/2)) = −

√
3i .
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|w | =
√
(−12) + (

√
3)2 =

√
4 = 2, and

Arg(w) = arccos
(

Re(w)
|w |
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= arccos

(−1
2
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= 2π

3 ,

so |zw | = |z||w | = (
√

12)2 = 4
√
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arg(zw) = Arg(z) + Arg(w) = π

6 + 2π
3 = 5π
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|z/w | = |z|/|w | =

√
12/2 =

√
3, and

arg(z/w) = Arg(z)− Arg(w) = π
6 −

2π
3 = −π

2 , from which it
follows that zw = 4

√
3
(
cos(5π/6) + i sin(5π/6)

)
=

4
√

3
(
−
√

3
2 + 1

2 i
)
= −6 + 2

√
(3)i , and z/w =

√
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Complex numbers and
trigonometric identities

Polar representations of complex numbers can be used to
derive trigonometric identities like

cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2)

sin(θ1 + θ2) = cos(θ1) sin(θ2) + sin(θ1) cos(θ2)
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Proof

We have that

cos(θ1 + θ2) + i sin(θ1 + θ2)

=
(
cos θ1 + i sin θ1

)(
cos θ2 + i sin θ2)

= cos θ1 cos θ2 + i cos θ1 sin θ2 + i sin θ1 cos θ2 − sin θ1 sin θ2

= cos θ1 cos θ2 − sin θ1 sin θ2 + i(cos θ1 sin θ2 + sin θ1 cos θ2)

from which it follows that
cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2) and
sin(θ1 + θ2) = cos(θ1) sin(θ2) + sin(θ1) cos(θ2).
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de Moivre’s Theorem

Recall that arg(zw) = arg(z) + arg(w) and |zw | = |z||w |.

It follows that
(r(cos θ + i sin θ))n = r n(cos(nθ) + i sin(nθ)).
We have in particular that

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

This formula is know as de Moivre’s formula.
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Proof

It follows from de Moivre’s formula and the binomial formula
that

cos(3θ) + i sin(3θ)

= cos3(θ) + 3i cos2(θ) sin(θ) + 3i2 cos(θ) sin2(θ) + i3 sin3(θ)

= cos3(θ)− 3 cos(θ) sin2(θ) + i
(
3 cos2(θ) sin(θ)− sin3(θ)

)
from which it follows that cos(3θ) = cos3(θ)− 3 cos(θ) sin2(θ)
and sin(3θ) = 3 cos2(θ) sin(θ)− sin3(θ).
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Roots of complex numbers

If z is a complex number and n is a positive integer, then
an n’th root of z is a complex number w satisfying
wn = z.
Every complex number different from 0 has n different
n’th roots.
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Example

Let us find the 3 cube roots (3rd roots) of z = −2− 2i .

|z| =
√

(−2)2 + (−2)2 =
√

8 and Arg(z) = −3π
4 , so it follows

from de Movire’s formula that

w3 = z ⇐⇒ |w |3 = |z| =
√

8 and

3 arg(w) = arg(z) =
−3π

4
+ 2πk , k ∈ Z

⇐⇒ |w | =
3
√√

8 = 81/6 =
√

2 and

arg w =
−π
4

+
2πk

3
, k ∈ Z.
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Example
So the 3 cube roots of z = −2− 2i are

w0 =
√

2
(
cos(−π/4) + i sin(−π/4)

)
=
√

2
(

1√
2
− 1√

2
i
)

= 1− i

w1 =
√

2
(
cos(5π/12) + i sin(5π/12)

)
=
√

2

(√
3− 1
2
√

2
+ i

1 +
√

3
2
√

2
i

)
=

√
3− 1
2

+ i
1 +
√

3
2

w2 =
√

2
(
cos(13π/12) + i sin(13π/12)

)
=
√

2

(
−1 +

√
3

2
√

2
+ i
√

3− 1
2
√

2
i

)
= −1 +

√
3

2
+ i
√

3− 1
2

www.ntnu.no TMA4115 - Calculus 3, Lecture 1, Jan 17, page 25



Roots of complex numbers

If z is a complex number different from 0 and n is a positive
integer, then the n’th roots of z are

wk = |z|1/n
(

cos
(

arg(z) + 2πk
n

)
+ i sin

(
arg(z) + 2πk

n

))
where k = 0,1, . . . ,n − 1.
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Roots of unity

If n is a positive integer, then a n’th root of 1 is called a
n’th root of unity.

The n n’th roots of unity are

un = cos
(

2πk
n

)
+ i sin

(
2πk

n

)
for k = 0,1, . . . ,n − 1.
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The 6 6’th root of unity

u0 = 1

u1 = 1
2 + i

√
3

2
u2 = −1

2 + i
√

3
2

u3 = −1

u4 = −1
2 − i

√
3

2

u5 = 1
2 − i

√
3

2
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Roots of complex numbers

If z is a complex number different from 0, n is a positive
integer and w is an n’th root of z, then the other n − 1 n’th
roots of z are wu1, wu2, . . . wun−1 where u1, u2, . . . un−1 are
the n − 1 n’th roots of unity different from 1.
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Problem 1 from the exam from
August 2012

Write all of the solutions of z3 = 1 in the form z = x + iy .
Write the solutions of z3 = −3+i√

2(2+i)
in the form z = x + iy and

draw the solutions in the complex plane.
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Solution

The solutions of z3 = 1 are the 3 cube roots of unity

u0 = cos(0) + i sin(0) = 1

u1 = cos(2π/3) + i sin(2π/3) = −1
2
+ i
√

3
2

u2 = cos(4π/3) + i sin(4π/3) = −1
2
− i
√

3
2

−3 + i√
2(2 + i)

=
(−3 + i)(2− i)√
2(2 + i)(2− i)

=
−6 + 3i + 2i − 1

(
√

2)5

=
−5 + 5i√

25
=
−1√

2
+ i

1√
2
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Solution

So
∣∣∣ −3+i√

2(2+i)

∣∣∣ = ∣∣∣−1√
2
+ i 1√

2

∣∣∣ =√(−1/
√

2)2 + (1/
√

2)2 = 1 and

Arg
(
−3+i√
2(2+i)

)
= Arg

(
−1√

2
+ i 1√

2

)
= 3π

4 . It follows that the

solutions of z3 = −3+i√
2(2+i)

are

z0 = cos(π/4) + i sin(π/4) =
1√
2
+ i

1√
2

z1 = z0u1 =

(
1√
2
+ i

1√
2

)(
−1

2
+ i
√

3
2

)

=
−1−

√
3

2
√

2
+ i
√

3− 1
2
√

2
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Solution

and
z2 = z0u2 =

(
1√
2
+ i

1√
2

)(
−1

2
− i
√

3
2

)

=
−1 +

√
3

2
√

2
+ i
−
√

3− 1
2
√

2
.

z0

z1

z2
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Solution

and
z2 = z0u2 =

(
1√
2
+ i

1√
2

)(
−1

2
− i
√

3
2

)

=
−1 +

√
3

2
√

2
+ i
−
√

3− 1
2
√

2
.

z0

z1

z2
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Problem 1 from the exam from
June 2009

Find all complex numbers z = x + iy which satisfy the
equality |z + 1− i

√
3| = |z − 1+ i

√
3|. Draw the solutions in a

diagram.

www.ntnu.no TMA4115 - Calculus 3, Lecture 1, Jan 17, page 34



Solution

Let w = 1− i
√

3.

Then
|z + 1− i

√
3| = |z − (−w)| is the distance

between z and −w , and
|z − w | = |z − 1 + i

√
3| is the distance

between z and w .
So |z + 1− i

√
3| = |z − 1+ i

√
3| if and only

if z has the same to −w as it has to w .
The set of complex numbers z which
satisfy the equality
|z + 1− i

√
3| = |z − 1 + i

√
3| is therefore

the set of points that lie on the line L which
goes through 0 and which is perpendicular
to the line between w and −w .

w

−w
L
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Solution

If we rotate the point w by 90 degrees,
then we get a point that lies on the line L.

Since rotating w by 90 degrees is the
same as multiplying w by i , it follows that
wi =

√
3 + i lies on the line L.

So the points that lie on the line L are the
points of the form t(

√
3 + i) where t is a

real number.
Thus, |z + 1− i

√
3| = |z − 1 + i

√
3| if and

only if z = t(
√

3 + i) for some real number
t .

w

−w
L

wi
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Next week’s lectures

Wednesday we shall

use complex numbers to solve polynomial equations,
look at the fundamental theorem of algebra,
introduce the complex exponential function,
and study extensions of trigonometric functions to the
complex numbers.

Thursday we shall

study second-order differential equations,
introduce the Wronskian,
completely solve second-order homogeneous linear
differential equations with constant coefficients.
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