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Review of last week’s lecture

Last week we looked at
@ how to add and multiply matrices,
@ invertible matrices and their inverses,
@ the invertible matrix theorem.
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Today’s lecture

Today we shall introduce and study determinants.
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The inverse of an invertible 2 x 2
matrix

Recall the following result from last week:
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The inverse of an invertible 2 x 2
matrix

Recall the following result from last week:

Let A= {a b] . If ad — bc # 0, then A is invertible and

c d
1 d —-b
71_
A _ad—bc[—c a]'

If ad — bc = 0, then A is not invertible.

The number ad — bc is called the determinant of A.
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Determinant

@ The determinant is a value associated with a square
matrix.

NTNU
Norwegian University of
Science and Technology

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 5



Determinant

@ The determinant is a value associated with a square
matrix.

@ A square matrix A is invertible if and only if det(A) # 0.
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Determinant

@ The determinant is a value associated with a square
matrix.

@ A square matrix A is invertible if and only if det(A) # 0.

@ The determinant can be used to give an explicit formula
for the inverse of an invertible matrix.
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Determinant

@ The determinant is a value associated with a square
matrix.

@ A square matrix A is invertible if and only if det(A) # 0.

@ The determinant can be used to give an explicit formula
for the inverse of an invertible matrix.

@ det(AB) = det(A) det(B).
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Determinant

@ The determinant is a value associated with a square
matrix.

@ A square matrix A is invertible if and only if det(A) # 0.

@ The determinant can be used to give an explicit formula
for the inverse of an invertible matrix.

@ det(AB) = det(A) det(B).

@ The absolute value of the determinant gives the scale
factor by which area or volume is multiplied under the
associated linear transformation.
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The definition of the determinant

For any square matrix A, let A; denote the submatrix formed
by deleting the ith row and the jth column of A.
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The definition of the determinant

For any square matrix A, let A; denote the submatrix formed
by deleting the ith row and the jth column of A.

The determinantof a 1 x 1 matrix A = [g] is det(A) = a.
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The definition of the determinant

For any square matrix A, let A; denote the submatrix formed
by deleting the ith row and the jth column of A.

Definition
The determinantof a 1 x 1 matrix A = [g] is det(A) = a.
For n > 2, the determinant of an n x n matrix A = [g;] is

n

det(A) = > (—1)""ay; det(Ay)).

=
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Example

1 5 0
Let us compute the determinantof A= |2 4 —1
0 -2 0
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Example

1 5 0
Let us compute the determinantof A= |2 4 —1
0 -2 0

det(A) = a1 det(A11) — ai2 det(A12) + a3 det(A13)
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Example

1 5 0
Let us compute the determinant of A = [2 4 1] )
0 -2 0

det(A) = a1 det(A11) — ai2 det(A12) + a3 det(A13)
4 1 2 _1 2 4

:1"—2 0 0 0 0 -2

o ol
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Example

1 5 0
Let us compute the determinant of A = [2 4 1] )
0 -2 0

det(A) = a1 det(A11) — ai2 det(A12) + a3 det(A13)
4 1 2 _1 2 4

:1"—2 0 0 0 0 -2

o ol

= -2.
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Cofactor expansions

When A = [g;], the (i, j)-cofactor of A is the number
Cij = (—1)"" det(A)).
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Cofactor expansions

When A = [g;], the (i, j)-cofactor of A is the number
Cij = (—1)"" det(A)).

Theorem 1
Let A = [a;] be an n x n matrix. Then

det(A) = a;1Ci1 + @2Ciz + - - - + ainCin

and
det(A) = 31/'01/' + 32/'02/' qFecoaE an,-Cn,-

for any i and any j between 1 and n.
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Proof of Theorem 1
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Proof of Theorem 1

We will prove the theorem by induction over n.
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Proof of Theorem 1

We will prove the theorem by induction over n.
The theorem is obviously true for n = 1.
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Proof of Theorem 1

We will prove the theorem by induction over n.
The theorem is obviously true for n = 1.
Assume that k > 1 and that the theorem is true for n = k — 1.
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Proof of Theorem 1

We will prove the theorem by induction over n.

The theorem is obviously true for n = 1.

Assume that k > 1 and that the theorem is true for n = k — 1.
Let Abe a k x k matrix, let h be an integer between 1 and k,
and let / be an integer between 2 and k.
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Proof of Theorem 1

We will prove the theorem by induction over n.

The theorem is obviously true for n = 1.

Assume that kK > 1 and that the theorem is true for n =k — 1.
Let Abe a k x k matrix, let h be an integer between 1 and k,
and let / be an integer between 2 and k. Then Ay is a

(k —1) x (k — 1) matrix, so

h—1 k
det Ay =Y (—1)Ta;det(Amn);+ > (—1)a;det(An);
j=1 j=h+1

by the induction assumption.
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Proof of Theorem 1 (cont.)

We furthermore have that if j is an integer between 1 and k
different from h, then (Ain)j = (Aj)1h-
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Proof of Theorem 1 (cont.)

We furthermore have that if j is an integer between 1 and k
different from h, then (Ais); = (Aj)1n. Thus

k
>_aiCi
=
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Proof of Theorem 1 (cont.)

We furthermore have that if j is an integer between 1 and k
different from h, then (Ais); = (Aj)1n. Thus

k k
Z a,-,-C,-,- = Z(—1 )"”a,-j det A,'j
j=1 j=1
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Proof of Theorem 1 (cont.)

We furthermore have that if j is an integer between 1 and k
different from h, then (Ais); = (Aj)1n. Thus

k k
Z a,-,-C,-,- = Z(—1 )"”a,-j det A,'j
J=1 j=

/=

= > (-1)"a, (i<—1>1+hamdet(Aij>m

+ Z (—1 )1+”a1h th(A,y)m)

h=j+1
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Proof of Theorem 1 (cont.)

k j—1
= Z(—1)'+/a,- (Z 1+”a1hdet A1h)

j=1 h=1

+ Z 1+ha1hdet A1h) )

h=j+1
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Proof of Theorem 1 (cont.)

k j—1
= 1)+ (2: )'""a, det(Arn);

+ Z 1+ha1hdet(A1h),-,->

h=j+1
k h—1
=3 (St oot
h=1 j=1

+ ) (—1)"a,;det(A h)ij)

j=h+1
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Proof of Theorem 1 (cont.)
k
= (—1)i+ja,-,~detA1h

J
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Proof of Theorem 1 (cont.)

k
> (1) a;det Ay

1

= det A.

~
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Proof of Theorem 1 (cont.)

k
= (=1)"a;det Ay,
j=1
=det A

Similarly, if j is an integer between 1 and k, then

k
>_aiCj
i=1
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Proof of Theorem 1 (cont.)

(—1 )’*ja,-j det A1h
j=1
= det A.

Similarly, if j is an integer between 1 and k, then

k k
Z a,-jC;j = Z(—1 )’*fa,-j det A,'j
i=1 i=1
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Proof of Theorem 1 (cont.)
k
= (—1)i+ja,-,~detA1h
j=1
= det A.

Similarly, if j is an integer between 1 and k, then

k k
Z a,-jC;j = Z(—1 )’*fa,-j det A,'j
i=1 i=1

j—1
= (~1)"ajdetA; + a;det Aj+
i=1

k
D (—1)Ma;det A; g NNy

Norwegian University of
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Proof of Theorem 1 (cont.)
Z 'Ha"’(Z<—1>f+”amdet<Afj>m

h=1
+ Z 1Y a det(A,-,-),-,,)

h=j+1
+ gjdet A;

k j—1
+ 3 (—1)ay (Z(—1 Y*"ay det(Aj)n

i=j+1 h=1

+ Z ’*hajh det(A,-,-),-h
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Proof of Theorem 1 (cont.)
Z ) ay (Z(—1 Y ap det(Ap);

h=1
+ Z 1) ay, det(A,-h),-,->

h=j+1
+ gjdet A;

p =1
+ Y (-1 (Z(—1 Y+ " det(An);

i=j+1 h=1

+ Z ’*hajh det(A,-h),-,-
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Proof of Theorem 1 (cont.)

= Z(—1 T (Z( 1) a; det(Ap);

h=1 i=1
+ Z 1)* a; det(An); )

i=j+1
+ gjdet A;

k J
+ ) (~1)*a, (Z 1) a; det(Ap);

h=j+1

+ Z )+ a; det(An);

=j+1
= NTNU
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Proof of Theorem 1 (cont.)

1

~.

k
(1Y apdet Ay + a;det Ay + Y (—1)""ay, det Ay,
1 h=j+1

>
Il
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Proof of Theorem 1 (cont.)

j—1 k
=> (=1)""apdet Ay + ajdet Aj + > (—1)ay det Ay,
h=1 h=j+1
k

(— 1 )””a,-h det Ajh
h=1
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Proof of Theorem 1 (cont.)

—1

—.

k
(1Y apdet Ay + a;det Ay + Y (—1)""ay, det Ay,
1 h=j+1

(]

>
= |

(—1 )””a,-h det Ajh = det A.
h=1
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Proof of Theorem 1 (cont.)

—1

—.

k
(1Y apdet Ay + a;det Ay + Y (—1)""ay, det Ay,
1 h=j+1

(]

>
= |

(—1 )””a,-h det Ajh = det A.
h=1

Thus it follows by induction that the theorem is true for all n.

NTNU
Norwegian University of
Science and Technology

\ TMA4115 - Calculus 3, Lecture 15, March 6, page 16

www.ntnu.no \



Example

1 5 0
Let us compute the determinantof A= (2 4 —1]| by
0 -2 0

using a cofactor expansion across the third column.
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Example

1 5 0
Let us compute the determinantof A= (2 4 —1]| by
0 -2 0

using a cofactor expansion across the third column.

det(A)
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Example

1 5 0
Let us compute the determinantof A= |2 4 —1| by
0 -2 0
using a cofactor expansion across the third column.
1 5
_(__4\2+3(__
det(A) = (—1)="( 1)‘0 5
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Example

1 5 0
Let us compute the determinantof A= |2 4 —1| by
0 -2 0
using a cofactor expansion across the third column.
1 5
_(__4\2+3(__
det(A) = (—1)="( 1)‘0 5
|1 5
|0 -2
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Example

1 5 0
Let us compute the determinantof A= |2 4 —1| by
0 -2 0
using a cofactor expansion across the third column.
1 5
_(__4\2+3(__
det(A) = (—1)="( 1)‘0 5
|1 5
|0 -2
=-2
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Example

15 3 -2

: 02 5 -1

Let us compute the determinant of A = 00 -4 5
00 O -3
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Example

15 3 -2

: 02 5 -1

Let us compute the determinant of A = 00 -4 5
00 O -3

det(A) =
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Example

15 3 -2
: 02 5 -1
Let us compute the determinant of A = 00 -4 5
00 O -3
2 5 -1
det(A)=1-10 -4 5
0O 0 -3
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Example

15 3 -2
: 02 5 -1
Let us compute the determinant of A = 00 -4 5
00 0 -3
2 5 -1
det(A)=1-10 -4 5 :1.2._04 _53‘
0O 0 -3
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Example

15 3 -2
: 02 5 -1
Let us compute the determinant of A = 00 -4 5
00 0 -3
2 5 -1
det(A)=1-10 -4 5 :1.2._04 _53‘
0O 0 -3

—1.2.(~4)det([-3))
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Example

1 5 3 -2
: 02 5 -1
Let us compute the determinant of A = 00 -4 5
00 0 -3
2 5 -1
det(A)=1-10 -4 5 :1.2._04 _53‘
0O 0 -3

—=1.2.(—4)det([-3])=1-2-(—4)-(-3)
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Example

15 3 -2
: 02 5 -1
Let us compute the determinant of A = 00 -4 5
00 0 -3

2 5 -1

det(A)=1-10 -4 5 :1.2._04 _53‘

0O 0 -3

=1-2-(—4)det([-3])=1-2-(—4) - (-3)
= 24.
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The determinant of a triangular
matrix

A triangular matrix is a square matrix A = [g;] for which
aj = 0 when/>j.
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The determinant of a triangular
matrix

A triangular matrix is a square matrix A = [g;] for which
aj = 0 when/>j.

If Ais a triangular matrix, then det(A) is the product of the
entries on the main diagonal of A.
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Proof of Theorem 2
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Proof of Theorem 2

We will prove the theorem by induction over the number n of
rows (and columns) of A.
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Proof of Theorem 2

We will prove the theorem by induction over the number n of
rows (and columns) of A.
If n=1,thendetA = a4,
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Proof of Theorem 2

We will prove the theorem by induction over the number n of
rows (and columns) of A.
If n =1, then det A = a44, so the theorem is true in this case.
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Proof of Theorem 2

We will prove the theorem by induction over the number n of
rows (and columns) of A.

If n =1, then det A = a;1, so the theorem is true in this case.
Suppose n > 1 and that the theorem is true for

(n—1) x (n— 1) matrices.

NTNU
Norwegian University of
Science and Technology

www.ntnu.no \

N TMA4115 - Calculus 3, Lecture 15, March 6, page 20



Proof of Theorem 2

We will prove the theorem by induction over the number n of
rows (and columns) of A.

If n=1, then det A = a;1, so the theorem is true in this case.
Suppose n > 1 and that the theorem is true for

(n—1) x (n— 1) matrices. Then

ai 0

detA = 0 A

= a1 detA11 = ay1do2 ... Aann-
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Proof of Theorem 2

We will prove the theorem by induction over the number n of
rows (and columns) of A.

If n=1, then det A = a;1, so the theorem is true in this case.
Suppose n > 1 and that the theorem is true for

(n—1) x (n— 1) matrices. Then

ai 0

detA = 0 A

= a1 detA11 = ay1do2 ... Aann-

So it follows by induction that the theorem is true for all
matrices A.
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Properties of determinants
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Properties of determinants

Let A be a square matrix.
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Properties of determinants

Let A be a square matrix.

@ If a multiple of one row of A is added to another row to
produce a matrix B, then det(B) = det(A).
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Properties of determinants

Let A be a square matrix.

@ If a multiple of one row of A is added to another row to
produce a matrix B, then det(B) = det(A).

@ If two rows of A are interchanged to produce B, then
det(B) = — det(A).
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Properties of determinants

Let A be a square matrix.

@ If a multiple of one row of A is added to another row to
produce a matrix B, then det(B) = det(A).

@ If two rows of A are interchanged to produce B, then
det(B) = — det(A).

© If one row of A is multiplied by k to produce B, then
det(B) = k det(A).
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Proof of Theorem 3
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Proof of Theorem 3

Let Abe an n x nmatrix and let E be an elementary n x n
matrix.
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Proof of Theorem 3

Let Abe an n x nmatrix and let E be an elementary n x n
matrix. We will show that

1 if E is a row replacement matrix,
detE =< —1 if E is a row interchange matrix,
k if E is a scale a row by k matrix,
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Proof of Theorem 3

Let Abe an n x nmatrix and let E be an elementary n x n
matrix. We will show that

1 if E is a row replacement matrix,
detE =< —1 if E is a row interchange matrix,
k if E is a scale a row by k matrix,

and that det(EA) = det E det A.
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Proof of Theorem 3

Let Abe an n x nmatrix and let E be an elementary n x n
matrix. We will show that
1 if E is a row replacement matrix,
detE =< —1 if E is a row interchange matrix,
k if E is a scale a row by k matrix,

and that det(EA) = det E det A.
We will prove this by induction over n.
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Proof of Theorem 3

Let Abe an n x nmatrix and let E be an elementary n x n
matrix. We will show that
1 if E is a row replacement matrix,
detE =< —1 if E is a row interchange matrix,
k if E is a scale a row by k matrix,

and that det(EA) = det E det A.

We will prove this by induction over n.
If n=1, then E = [Kk] for some number k,
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Proof of Theorem 3

Let Abe an n x nmatrix and let E be an elementary n x n
matrix. We will show that
1 if E is a row replacement matrix,
detE =< —1 if E is a row interchange matrix,
k if E is a scale a row by k matrix,

and that det(EA) = det E det A.

We will prove this by induction over n.

If n=1, then E = [Kk] for some number k, and then
det(E) = k and det(EA) = det(kA) = kdet A.
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Proof of Theorem 3

Let Abe an n x nmatrix and let E be an elementary n x n
matrix. We will show that
1 if E is a row replacement matrix,
detE =< —1 if E is a row interchange matrix,
k if E is a scale a row by k matrix,

and that det(EA) = det E det A.

We will prove this by induction over n.

If n=1, then E = [Kk] for some number k, and then
det(E) = k and det(EA) = det(kA) = kdet A. So the
statement is true for n = 1.
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Proof of Theorem 3 (cont.)

Suppose n = 2.
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Proof of Theorem 3 (cont.)

1 k ab
Supposen:2.IfE:[0 1}andA:{C d]’
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Proof of Theorem 3 (cont.)

1 k a b
Supposen=2. If E = {0 1} and A = [c d] , then
detE =1 and
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Proof of Theorem 3 (cont.)

1 k a b
Supposen=2. If E = {0 1} and A = [c d] , then
detE =1 and

det(EA) — det [a+kc b+ kd

d
= ad + ked — cd — ckd = ad — cd = det(A).

} = (a+ kc)d — c(b + kd)
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Proof of Theorem 3 (cont.)

1 k a b
Supposen=2. If E = {0 1] and A = [c d},then
detE =1 and

det(EA) — det {a the b de} — (a+ ke)d — c(b+ kd)
= ad + ked — cd — ckd = ad — cd = det(A).
One can in a similarly way prove that if E = [2{ ﬂ , then

det E = 1 and det(EA) = det A,

NTNU
Norwegian University of
Science and Technology

www.ntnu.no ‘\ TMA4115 - Calculus 3, Lecture 15, March 6, page 23



Proof of Theorem 3 (cont.)

1 k a b
Supposen=2. If E = {0 1] and A = [c d},then
detE =1 and

det(EA) — det [a+kc b+ kd

d
= ad + ked — cd — ckd = ad — cd = det(A).

10
k 1

det E = 1 and det(EA) — det A, that if £ — [? ;}  then
det E = —1 and det(EA) = —det A,

} = (a+ kc)d — c(b + kd)

One can in a similarly way prove that if E = { } , then
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Proof of Theorem 3 (cont.)

0 0 k
det(EA) = kdet A,

and that if £ — {k ﬂ or E — F O],then det £ — k and
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Proof of Theorem 3 (cont.)

. k O 10
and that if E = {0 1} or E = {0 k],then det E = k and

det(EA) = kdet A, so the statement is true for n = 2.
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Proof of Theorem 3 (cont.)

k O 10

and that if E = 0 1} or E = 0 k],thendetE:kand

det(EA) = kdet A, so the statement is true for n = 2.

Suppose that k > 2 and that the statement holds for
n=k-1.
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Proof of Theorem 3 (cont.)

k O 10

and that if E = 0 1} or E = 0 k],thendetE:kand

det(EA) = kdet A, so the statement is true for n = 2.
Suppose that k > 2 and that the statement holds for
n=k — 1. Let E be an elementary k x k matrix.
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Proof of Theorem 3 (cont.)

and that if £ — {g ﬂ or E — [(1) 2] then det £ — k and
det(EA) = kdet A, so the statement is true for n = 2.
Suppose that k > 2 and that the statement holds for
n=k — 1. Let E be an elementary k x k matrix. Choose i

such that the ith row of E is equal to the ith row of I.
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Proof of Theorem 3 (cont.)

and that if £ — {g ﬂ or E — [(1) 2] then det E — k and
det(EA) = kdet A, so the statement is true for n = 2.
Suppose that k > 2 and that the statement holds for

n=k — 1. Let E be an elementary k x k matrix. Choose i
such that the ith row of E is equal to the ith row of /. Then
Eji is an elementary (k — 1) x (k — 1) matrix of the same kind

as E,
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Proof of Theorem 3 (cont.)

and that if £ — {g ﬂ or E — [(1) 2] then det E — k and
det(EA) = kdet A, so the statement is true for n = 2.
Suppose that k > 2 and that the statement holds for

n=k — 1. Let E be an elementary k x k matrix. Choose i
such that the ith row of E is equal to the ith row of /. Then
Eji is an elementary (k — 1) x (k — 1) matrix of the same kind

as E, and det E = (—1)"*'det E; = det E;.
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Proof of Theorem 3 (cont.)

If Aisa k x Kk,
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Proof of Theorem 3 (cont.)

If Ais a k x k, then

det(EA)
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Proof of Theorem 3 (cont.)

If Ais a k x k, then

n
det(EA) = > (—1)""a; det(EA);
j=1
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Proof of Theorem 3 (cont.)

If Ais a k x k, then

n n
det(EA) = > (—1)"a;det(EA); = Y (1) a; det(E;A;)
j=1 j=1
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Proof of Theorem 3 (cont.)

If Ais a k x k, then

n n

det(EA) = Z(—‘I )i+ja,-j de’[(EA),’j = Z(_1 )Hjaij det(E,','A,-j)
j:1 j:1
n . .
=Y (—1)"/a;det E; det A))
j=1
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Proof of Theorem 3 (cont.)

If Ais a k x k, then

n n

det(EA) = Z(—‘I )i+ja,-j de’[(EA),’j = Z(_1 )Hjaij det(E,','A,-j)
j:1 j:1
n . .
=Y (—1)"/a;det E; det A))
j=1

n
=detE > (—1)"a;detA;
j=1
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Proof of Theorem 3 (cont.)

If Ais a k x k, then

n n

det(EA) = Z(—‘I )i+ja,-j de’[(EA),’j = Z(_1 )Hjaij det(E,','A,-j)
j:1 j:1
n . .
=Y (—1)"/a;det E; det A))
j=1

n
=detE > (—1)"a;detA; = det Edet A,
j=1
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Proof of Theorem 3 (cont.)

If Ais a k x k, then

n n

det(EA) = Z(—‘I )i+ja,-j de’[(EA),’j = Z(_1 )Hjaij det(E,','A,-j)
j:1 j:1
n . .
=Y (—1)"/a;det E; det A))
j=1

n
=detE > (—1)"a;detA; = det Edet A,
j=1

It follows by induction over n that the statement, and thus the
theorem, holds for all n. B NTNU
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Properties of determinants
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Properties of determinants

@ Suppose an n x n matrix A has been reduced to an
echelon form U by row replacements and row
interchanges.
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Properties of determinants

@ Suppose an n x n matrix A has been reduced to an
echelon form U by row replacements and row
interchanges.

@ If there are r interchanges, then det(A) = (—1)"det(U).
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Properties of determinants

@ Suppose an n x n matrix A has been reduced to an
echelon form U by row replacements and row
interchanges.

@ If there are r interchanges, then det(A) = (—1)"det(U).

@ Since U is in echelon form, it is triangular, so det(U) is
the product of the diagonal entries uy1, Uso, . . ., Upp.
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Properties of determinants

@ Suppose an n x n matrix A has been reduced to an
echelon form U by row replacements and row
interchanges.

@ If there are r interchanges, then det(A) = (—1)"det(U).

@ Since U is in echelon form, it is triangular, so det(U) is
the product of the diagonal entries uy1, Uso, . . ., Upp.

@ If Ais invertible, the entries uy1, Uoo, . . ., Upy are all pivots.
Otherwise, at least one u;; is zero.
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Properties of determinants

@ Suppose an n x n matrix A has been reduced to an
echelon form U by row replacements and row
interchanges.

@ If there are r interchanges, then det(A) = (—1)"det(U).

@ Since U is in echelon form, it is triangular, so det(U) is

the product of the diagonal entries uy1, Uso, . . ., Upp.

@ If Ais invertible, the entries uy1, Uoo, . . ., Upy are all pivots.
Otherwise, at least one u;; is zero.

@ Thus,

det(A) = (—=1)"uy1U22 ... Usn  When Ais invertible
N when A is not invertible
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Properties of determinants (cont.)

Thus we have proved:

Theorem 4
A square matrix A is invertible if and only if det(A) # 0.
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Column operations

If Ais a square matrix, then det(AT) = det(A).
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Proof of Theorem 5
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Proof of Theorem 5

We will prove the theorem by induction over n where n s the
number of rows of A.
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Proof of Theorem 5

We will prove the theorem by induction over n where n s the
number of rows of A.

If n =1, then AT = A from which it follows that
det(A) = det(A7).
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Proof of Theorem 5

We will prove the theorem by induction over n where n s the
number of rows of A.

If n =1, then AT = A from which it follows that

det(A) = det(A7).

Let k be a positive integer and assume that the theorem is
true for all k x k matrices.
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Proof of Theorem 5

We will prove the theorem by induction over n where n s the
number of rows of A.

If n =1, then AT = A from which it follows that

det(A) = det(A7).

Let k be a positive integer and assume that the theorem is
true for all k x k matrices. Let n=k + 1 and let Abe an

n x n matrix.
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Proof of Theorem 5 (cont.)

Then

det(A)
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Proof of Theorem 5 (cont.)

Then

n

det(A) =) (—1)""a det(An)

i=1
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Proof of Theorem 5 (cont.)

Then

n n

det(A) => (—1)"ai det(Ay) = > (—1)""a; det((An)")

i=1 i=1
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Proof of Theorem 5 (cont.)

Then
det(A) => (—1)"ai det(Ay) = > (—1)""a; det((An)")
- Z(_1)1+"a,-1 det((A")1))
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Proof of Theorem 5 (cont.)

Then
det(A) => (—1)"ai det(Ay) = > (—1)""a; det((An)")
= Z(_1)1+"a,-1 det((A")1))
= _(=1)""(@ ) det((AT)1)
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Proof of Theorem 5 (cont.)

Then

n n

det(A) => (—1)"ai det(Ay) = > (—1)""a; det((An)")

_Z 1)+ aj det((A7)1))

= (=1)""(a")1idet((AT)1)) = det(AT).
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Proof of Theorem 5 (cont.)

Then

n n

det(A) => (—1)"ai det(Ay) = > (—1)""a; det((An)")

i=1 i=1

_Z 1)+ aj det((A7)1))

= Z )'*i(aT)q; det((AT)s;) = det(A”).

It follows by mductlon that det(A) = det(A") for all square
matrices.
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Example

10 1 —7
Let us compute the determinantof A= | 3 2 -3
-5 0 5
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Example

10 1 —7
Let us compute the determinantof A= | 3 2 -3]|.
-5 0 5

It follows from Theorem 5 and Theorem 3 that if we add the
third column to the first row, then that does not change the
determinant.
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Example

10 1 —7
Let us compute the determinantof A= | 3 2 -3]|.
-5 0 5

It follows from Theorem 5 and Theorem 3 that if we add the
third column to the first row, then that does not change the
determinant. So

10 1 -7 381 -7
det(A)=|3 2 -3/=[0 2 —3/=2.3.5=30.
50 5| (00 5
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Multiplicative property

Theorem 6
If Aand B are n x n matrices, then det(AB) = det(A) det(B).
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Multiplicative property

Theorem 6
If Aand B are n x n matrices, then det(AB) = det(A) det(B).

It follows from the theorem that if A and B are n x n matrices,
then det(AB) = det(A) det(B) = det(B) det(A) = det(BA),
even if AB # BA.
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Proof of Theorem 6
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Proof of Theorem 6

If Ais not invertible, then neither is AB,
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Proof of Theorem 6

If Ais notinvertible, then neither is AB, so
det(A)det(B) = 0 = det(AB) in that case.
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Proof of Theorem 6

If Ais not invertible, then neither is AB, so
det(A)det(B) = 0 = det(AB) in that case.
If Ais invertible, then A is row equivalent to /,,
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Proof of Theorem 6

If Ais not invertible, then neither is AB, so

det(A)det(B) = 0 = det(AB) in that case.

If Ais invertible, then A is row equivalent to /,, so there are
elementary matrices Eq, E, ..., Ep_1, Ep such that
A=EE, .. . EEil,=EE, ... EEy,
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Proof of Theorem 6

If Ais not invertible, then neither is AB, so
det(A)det(B) = 0 = det(AB) in that case.
If Ais invertible, then A is row equivalent to /,, so there are
elementary matrices Eq, E, ..., Ep_1, Ep such that
A=EEp ... E2Eil, = ELE, ... E;Eq, and then
det(AB) = det(EpEp_1 ... E2E1B)
= det(Ep) det(Ep_1 ... E2E1B)
= ... =det(Ey)det(E,_1) . ..det(Ey) det(E;) det(B)
= det(EpEp_1 . E2E1)det(B)
= det(A) det(B).
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Warnings
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Warnings

Let A and B be n x n matrices and let k be a scalar.
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Warnings

Let A and B be n x n matrices and let k be a scalar.
@ In general, det(A + B) # det(A) + det(B).
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Warnings

Let A and B be n x n matrices and let k be a scalar.
@ In general, det(A + B) # det(A) + det(B).
@ In general, det(kA) # k det(A).
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Warnings

Let Aand B be n x n matrices and let k be a scalar.
@ In general, det(A + B) # det(A) + det(B).
@ In general, det(kA) # k det(A).

In fact, det(kA) = k" det(A).
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Problem 4 from June 2005

-2 0 0 8

, , , 1 -2 0 O

Find the determinant of the matrix A = 0 1 -2 0
o o0 1 -2
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Solution
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Solution

detA =
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Solution

detA =
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Solution

detA =

\
\

www.ntnu.no

2 0
1 -2
0 1
0 0

-1 0
1 -2
0 1
0 0

-2 2
1 -2
0o 1
0 O

TMA4115 - Calculus 3, Lecture 15, March 6, page 36

0 O
0 O
-2 0
1 -2
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Solution

detA =

\

2 0
1 -2
0 1
0 0

-1 0
1 -2
0 1
0 0
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Solution

-2 0

1 -2

detA = 0 1
0O O

-1 0
=2
10 1

0 O

-2 0
—2‘1 -2
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Solution

-2 0

1 -2

detA = 0 1
0O O

-1 0
=2
10 1

0 O

-2 0
—2‘1 -2
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Problem 6 from August 2010

For which values of the parameter a are the vectors
vi = (1,-8,a),vo = (0,1,a) and v3 = (a,2,0) linearly
dependent?
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Solution
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Solution

{v1,V2,Vv3} is linearly dependent if and only if the matrix

1 0 a
A= |—-3 1 2| isnotinvertible.
a ao
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Solution

{v1,V2,Vv3} is linearly dependent if and only if the matrix

1 0 a
A= |-3 1 2] isnotinvertible.
a ao
1 0 a
detA=|-3 1 2
a ao
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Solution

{v1,V2,Vv3} is linearly dependent if and only if the matrix

1 0 a
A= |—-3 1 2| isnotinvertible.
a ao
1 0 a
detA=|-3 1 2 _| 2‘+a_3 1
ao a a
a ao

NTNU
Norwegian University of
Science and Technology

\ TMA4115 - Calculus 3, Lecture 15, March 6, page 38

www.ntnu.no \



Solution

{v1,V2,Vv3} is linearly dependent if and only if the matrix

1 0 a
A= |—-3 1 2| isnotinvertible.
a ao
1 0 a
detA=-3 1 2 _| 2‘+a_3 1 = _2a—4a°
ao a a
a ao
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Solution

{v1,V2,Vv3} is linearly dependent if and only if the matrix

1 0 a
A= |—-3 1 2| isnotinvertible.

a ao

1 0 a
detA=-3 1 2 _| 2‘+a_3 1 = _2a—4a°
ao a a
a ao
= —2a(1 + 2a).

NTNU
Norwegian University of
Science and Technology

\ TMA4115 - Calculus 3, Lecture 15, March 6, page 38

www.ntnu.no \



Solution

{v1,V2,Vv3} is linearly dependent if and only if the matrix

1 0 a
A= |—-3 1 2| isnotinvertible.

a ao

1 0 a
detA=-3 1 2 _| 2‘+a_3 1 = _2a—4a°
ao a a
a ao
= —2a(1 + 2a).

So {vi,Vz, v} is linearly dependent if and only if a= 0 or
a=-1/2.
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Problem 6 from June 2012

Let Abe a4 x 4 matrix. Let B = . Assume that

o= =N
[ N o QRGN
[ SN N
~o0oo0oo

det(AB) = 4. What is det(A)?

X4

Show that the equation A §2 —
3

X4

has only the solution

O O oo

X1:X2:X3:X4:O.
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Solution

detB
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Solution

detB =

[ JE Y
o N QTGN
= JEGIG N
—~— 00O
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Solution

detB =

[ JE Y
o N QTGN
= JEGIG N
—~— 00O
O - -
- a0
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Solution

detB = -3 31+ F

=111 1

[ JE Y
o N QTGN
= JEGIG N
—~— 00O
O - -
- a0
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Solution

14 |2 1
=111 1

= JEGIG N
—~— 00O
O_L_L
_L_L_h
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Solution

_14+21
N 1 1
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Solution

2140
det B 1110_?1;‘ 1 4] |2 1
Tror ol T g T
000 1
=-3+1=-2
It follows that det A = 58 — 4 — 2,
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Solution (cont.)

Since det A # 0, Alis invertible,
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Solution (cont.)

Since det A £ 0, Ais invertible, so the equation

X1 0 X1 0 0

Xo . 0 . Xo A 0 . 0
A x| = o has only the solution x| = A ol = lol-

X4 0 X4 0 0
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Tomorrow’s lecture

Tomorrow we shall
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Tomorrow’s lecture

Tomorrow we shall
@ look at Cramer's rule,
@ give a formula for the inverse of an invertible matrix,

@ look at the relationship between areas, volumes and
determinants.

Section 3.3 in “Linear Algebras and lts Applications” (pages
177-187).
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