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Review of last week’s lecture

Last week we looked at

how to add and multiply matrices,
invertible matrices and their inverses,
the invertible matrix theorem.
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Today’s lecture

Today we shall introduce and study determinants.
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The inverse of an invertible 2× 2
matrix

Recall the following result from last week:

Theorem 4

Let A =

[
a b
c d

]
. If ad − bc 6= 0, then A is invertible and

A−1 =
1

ad − bc

[
d −b
−c a

]
.

If ad − bc = 0, then A is not invertible.

The number ad − bc is called the determinant of A.
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Determinant

The determinant is a value associated with a square
matrix.
A square matrix A is invertible if and only if det(A) 6= 0.
The determinant can be used to give an explicit formula
for the inverse of an invertible matrix.
det(AB) = det(A)det(B).
The absolute value of the determinant gives the scale
factor by which area or volume is multiplied under the
associated linear transformation.
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The definition of the determinant

For any square matrix A, let Aij denote the submatrix formed
by deleting the i th row and the j th column of A.

Definition
The determinant of a 1× 1 matrix A = [a] is det(A) = a.
For n ≥ 2, the determinant of an n × n matrix A = [aij ] is

det(A) =
n∑

j=1

(−1)1+ja1j det(A1j).
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Example

Let us compute the determinant of A =

1 5 0
2 4 −1
0 −2 0

.

det(A) = a11 det(A11)− a12 det(A12) + a13 det(A13)

= 1 ·
∣∣∣∣ 4 −1
−2 0

∣∣∣∣− 5 ·
∣∣∣∣2 −1
0 0

∣∣∣∣+ 0 ·
∣∣∣∣2 4
0 −2

∣∣∣∣
= −2.
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Cofactor expansions

When A = [aij ], the (i , j)-cofactor of A is the number
Cij = (−1)i+j det(Aij).

Theorem 1
Let A = [aij ] be an n × n matrix. Then

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

and
det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj

for any i and any j between 1 and n.
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Proof of Theorem 1

We will prove the theorem by induction over n.
The theorem is obviously true for n = 1.
Assume that k > 1 and that the theorem is true for n = k − 1.
Let A be a k × k matrix, let h be an integer between 1 and k ,
and let i be an integer between 2 and k . Then A1h is a
(k − 1)× (k − 1) matrix, so

det A1h =
h−1∑
j=1

(−1)i+jaij det(A1h)ij +
k∑

j=h+1

(−1)i+jaij det(A1h)ij

by the induction assumption.
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Proof of Theorem 1 (cont.)

We furthermore have that if j is an integer between 1 and k
different from h, then (A1h)ij = (Aij)1h.

Thus
k∑

j=1

aijCij

=
k∑

j=1

(−1)i+jaij det Aij

=
k∑

j=1

(−1)i+jaij

( j−1∑
h=1

(−1)1+ha1h det(Aij)1h

+
k∑

h=j+1

(−1)1+ha1h det(Aij)1h

)
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Proof of Theorem 1 (cont.)

=
k∑

j=1

(−1)i+jaij det A1h

= det A.

Similarly, if j is an integer between 1 and k , then
k∑

i=1

aijCij

=
k∑

i=1

(−1)i+jaij det Aij

=

j−1∑
i=1

(−1)i+jaij det Aij + ajj det Ajj+

k∑
i=j+1

(−1)i+jaij det Aij
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Proof of Theorem 1 (cont.)

=

j−1∑
i=1

(−1)i+jaij

( j−1∑
h=1

(−1)j+hajh det(Aij)jh

+
k∑

h=j+1

(−1)j+hajh det(Aij)jh

)
+ ajj det Ajj

+
k∑

i=j+1

(−1)i+jaij

( j−1∑
h=1

(−1)j+hajh det(Aij)jh

+
k∑

h=j+1

(−1)j+hajh det(Aij)jh

)
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Proof of Theorem 1 (cont.)

=

j−1∑
h=1

(−1)j+hajh det Ajh + ajj det Ajj +
k∑

h=j+1

(−1)j+hahj det Ajh

=
k∑

h=1

(−1)j+hajh det Ajh = det A.

Thus it follows by induction that the theorem is true for all n.
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Example

Let us compute the determinant of A =

1 5 0
2 4 −1
0 −2 0

 by

using a cofactor expansion across the third column.

det(A)

= (−1)2+3(−1)
∣∣∣∣1 5
0 −2

∣∣∣∣
=

∣∣∣∣1 5
0 −2

∣∣∣∣
= −2
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The determinant of a triangular
matrix

A triangular matrix is a square matrix A = [aij ] for which
aij = 0 when i > j .

Theorem 2
If A is a triangular matrix, then det(A) is the product of the
entries on the main diagonal of A.
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Proof of Theorem 2

We will prove the theorem by induction over the number n of
rows (and columns) of A.
If n = 1, then det A = a11, so the theorem is true in this case.
Suppose n > 1 and that the theorem is true for
(n − 1)× (n − 1) matrices. Then

det A =

∣∣∣∣a11 0
0 A11

∣∣∣∣ = a11 det A11 = a11a22 . . . ann.

So it follows by induction that the theorem is true for all
matrices A.
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Properties of determinants

Theorem 3
Let A be a square matrix.

1 If a multiple of one row of A is added to another row to
produce a matrix B, then det(B) = det(A).

2 If two rows of A are interchanged to produce B, then
det(B) = −det(A).

3 If one row of A is multiplied by k to produce B, then
det(B) = k det(A).

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 21



Properties of determinants

Theorem 3
Let A be a square matrix.

1 If a multiple of one row of A is added to another row to
produce a matrix B, then det(B) = det(A).

2 If two rows of A are interchanged to produce B, then
det(B) = −det(A).

3 If one row of A is multiplied by k to produce B, then
det(B) = k det(A).

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 21



Properties of determinants

Theorem 3
Let A be a square matrix.

1 If a multiple of one row of A is added to another row to
produce a matrix B, then det(B) = det(A).

2 If two rows of A are interchanged to produce B, then
det(B) = −det(A).

3 If one row of A is multiplied by k to produce B, then
det(B) = k det(A).

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 21



Properties of determinants

Theorem 3
Let A be a square matrix.

1 If a multiple of one row of A is added to another row to
produce a matrix B, then det(B) = det(A).

2 If two rows of A are interchanged to produce B, then
det(B) = −det(A).

3 If one row of A is multiplied by k to produce B, then
det(B) = k det(A).

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 21



Properties of determinants

Theorem 3
Let A be a square matrix.

1 If a multiple of one row of A is added to another row to
produce a matrix B, then det(B) = det(A).

2 If two rows of A are interchanged to produce B, then
det(B) = −det(A).

3 If one row of A is multiplied by k to produce B, then
det(B) = k det(A).

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 21



Proof of Theorem 3

Let A be an n × n matrix and let E be an elementary n × n
matrix. We will show that

det E =


1 if E is a row replacement matrix,
−1 if E is a row interchange matrix,
k if E is a scale a row by k matrix,

and that det(EA) = det E det A.
We will prove this by induction over n.
If n = 1, then E = [k ] for some number k , and then
det(E) = k and det(EA) = det(kA) = k det A. So the
statement is true for n = 1.
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Proof of Theorem 3 (cont.)

Suppose n = 2.

If E =

[
1 k
0 1

]
and A =

[
a b
c d

]
, then

det E = 1 and

det(EA) = det
[
a + kc b + kd

c d

]
= (a + kc)d − c(b + kd)

= ad + kcd − cd − ckd = ad − cd = det(A).

One can in a similarly way prove that if E =

[
1 0
k 1

]
, then

det E = 1 and det(EA) = det A, that if E =

[
0 1
1 0

]
, then

det E = −1 and det(EA) = −det A,
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Proof of Theorem 3 (cont.)

and that if E =

[
k 0
0 1

]
or E =

[
1 0
0 k

]
, then det E = k and

det(EA) = k det A,

so the statement is true for n = 2.
Suppose that k > 2 and that the statement holds for
n = k − 1. Let E be an elementary k × k matrix. Choose i
such that the i th row of E is equal to the i th row of Ik . Then
Eii is an elementary (k − 1)× (k − 1) matrix of the same kind
as E , and det E = (−1)i+i det Eii = det Eii .
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Proof of Theorem 3 (cont.)

If A is a k × k ,

then

det(EA)

=
n∑

j=1

(−1)i+jaij det(EA)ij =
n∑

j=1

(−1)i+jaij det(EiiAij)

=
n∑

j=1

(−1)i+jaij det Eii det Aij)

= det E
n∑

j=1

(−1)i+jaij det Aij = det E det A.

It follows by induction over n that the statement, and thus the
theorem, holds for all n.
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Properties of determinants

Suppose an n × n matrix A has been reduced to an
echelon form U by row replacements and row
interchanges.
If there are r interchanges, then det(A) = (−1)r det(U).
Since U is in echelon form, it is triangular, so det(U) is
the product of the diagonal entries u11,u22, . . . ,unn.
If A is invertible, the entries u11,u22, . . . ,unn are all pivots.
Otherwise, at least one uii is zero.
Thus,

det(A) =

{
(−1)r u11u22 . . . unn when A is invertible
0 when A is not invertible
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Properties of determinants (cont.)

Thus we have proved:

Theorem 4
A square matrix A is invertible if and only if det(A) 6= 0.
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Column operations

Theorem 5
If A is a square matrix, then det(AT ) = det(A).
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Proof of Theorem 5

We will prove the theorem by induction over n where n is the
number of rows of A.
If n = 1, then AT = A from which it follows that
det(A) = det(AT ).
Let k be a positive integer and assume that the theorem is
true for all k × k matrices. Let n = k + 1 and let A be an
n × n matrix.
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Proof of Theorem 5 (cont.)

Then

det(A)

=
n∑

i=1

(−1)1+iai1 det(Ai1) =
n∑

i=1

(−1)1+iai1 det((Ai1)
T )

=
n∑

i=1

(−1)1+iai1 det((AT )1i)

=
n∑

i=1

(−1)1+i(aT )1i det((AT )1i) = det(AT ).

It follows by induction that det(A) = det(AT ) for all square
matrices.
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Example

Let us compute the determinant of A =

10 1 −7
3 2 −3
−5 0 5

.

It follows from Theorem 5 and Theorem 3 that if we add the
third column to the first row, then that does not change the
determinant. So

det(A) =

∣∣∣∣∣∣
10 1 −7
3 2 −3
−5 0 5

∣∣∣∣∣∣ =
∣∣∣∣∣∣
3 1 −7
0 2 −3
0 0 5

∣∣∣∣∣∣ = 2 · 3 · 5 = 30.
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Multiplicative property

Theorem 6
If A and B are n × n matrices, then det(AB) = det(A)det(B).

It follows from the theorem that if A and B are n× n matrices,
then det(AB) = det(A)det(B) = det(B)det(A) = det(BA),
even if AB 6= BA.
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Proof of Theorem 6

If A is not invertible, then neither is AB, so
det(A)det(B) = 0 = det(AB) in that case.
If A is invertible, then A is row equivalent to In, so there are
elementary matrices E1,E2, . . . ,Ep−1,Ep such that
A = EpEp−1 . . .E2E1In = EpEp−1 . . .E2E1, and then

det(AB) = det(EpEp−1 . . .E2E1B)

= det(Ep)det(Ep−1 . . .E2E1B)

= · · · = det(Ep)det(Ep−1) . . . det(E2)det(E1)det(B)

= det(EpEp−1 . . .E2E1)det(B)

= det(A)det(B).
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Warnings

Let A and B be n × n matrices and let k be a scalar.

In general, det(A + B) 6= det(A) + det(B).
In general, det(kA) 6= k det(A).

In fact, det(kA) = kn det(A).
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Problem 4 from June 2005

Find the determinant of the matrix A =


−2 0 0 8
1 −2 0 0
0 1 −2 0
0 0 1 −2

.
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Solution

det A =

∣∣∣∣∣∣∣∣
−2 0 0 8
1 −2 0 0
0 1 −2 0
0 0 1 −2

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
−2 2 0 0
1 −2 0 0
0 1 −2 0
0 0 1 −2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−1 0 0 0
1 −2 0 0
0 1 −2 0
0 0 1 −2

∣∣∣∣∣∣∣∣ = −
∣∣∣∣∣∣
−2 0 0
1 −2 0
0 1 −2

∣∣∣∣∣∣
= 2

∣∣∣∣−2 0
1 −2

∣∣∣∣ = 8.
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0 1 −2

∣∣∣∣∣∣
= 2

∣∣∣∣−2 0
1 −2

∣∣∣∣ = 8.
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Problem 6 from August 2010

For which values of the parameter a are the vectors
v1 = (1,−3,a), v2 = (0,1,a) and v3 = (a,2,0) linearly
dependent?
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Solution

{v1,v2,v3} is linearly dependent if and only if the matrix

A =

 1 0 a
−3 1 2
a a 0

 is not invertible.

det A =

∣∣∣∣∣∣
1 0 a
−3 1 2
a a 0

∣∣∣∣∣∣

=

∣∣∣∣1 2
a 0

∣∣∣∣+ a
∣∣∣∣−3 1

a a

∣∣∣∣ = −2a− 4a2

= −2a(1 + 2a).

So {v1,v2,v3} is linearly dependent if and only if a = 0 or
a = −1/2.

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 38



Solution

{v1,v2,v3} is linearly dependent if and only if the matrix

A =

 1 0 a
−3 1 2
a a 0

 is not invertible.

det A =

∣∣∣∣∣∣
1 0 a
−3 1 2
a a 0

∣∣∣∣∣∣

=

∣∣∣∣1 2
a 0

∣∣∣∣+ a
∣∣∣∣−3 1

a a

∣∣∣∣ = −2a− 4a2

= −2a(1 + 2a).

So {v1,v2,v3} is linearly dependent if and only if a = 0 or
a = −1/2.

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 38



Solution

{v1,v2,v3} is linearly dependent if and only if the matrix

A =

 1 0 a
−3 1 2
a a 0

 is not invertible.

det A =

∣∣∣∣∣∣
1 0 a
−3 1 2
a a 0

∣∣∣∣∣∣

=

∣∣∣∣1 2
a 0

∣∣∣∣+ a
∣∣∣∣−3 1

a a

∣∣∣∣ = −2a− 4a2

= −2a(1 + 2a).

So {v1,v2,v3} is linearly dependent if and only if a = 0 or
a = −1/2.

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 38



Solution

{v1,v2,v3} is linearly dependent if and only if the matrix

A =

 1 0 a
−3 1 2
a a 0

 is not invertible.

det A =

∣∣∣∣∣∣
1 0 a
−3 1 2
a a 0

∣∣∣∣∣∣ =
∣∣∣∣1 2
a 0

∣∣∣∣+ a
∣∣∣∣−3 1

a a

∣∣∣∣

= −2a− 4a2

= −2a(1 + 2a).

So {v1,v2,v3} is linearly dependent if and only if a = 0 or
a = −1/2.

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 38



Solution

{v1,v2,v3} is linearly dependent if and only if the matrix

A =

 1 0 a
−3 1 2
a a 0

 is not invertible.

det A =

∣∣∣∣∣∣
1 0 a
−3 1 2
a a 0

∣∣∣∣∣∣ =
∣∣∣∣1 2
a 0

∣∣∣∣+ a
∣∣∣∣−3 1

a a

∣∣∣∣ = −2a− 4a2

= −2a(1 + 2a).

So {v1,v2,v3} is linearly dependent if and only if a = 0 or
a = −1/2.

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 38



Solution

{v1,v2,v3} is linearly dependent if and only if the matrix

A =

 1 0 a
−3 1 2
a a 0

 is not invertible.

det A =

∣∣∣∣∣∣
1 0 a
−3 1 2
a a 0

∣∣∣∣∣∣ =
∣∣∣∣1 2
a 0

∣∣∣∣+ a
∣∣∣∣−3 1

a a

∣∣∣∣ = −2a− 4a2

= −2a(1 + 2a).

So {v1,v2,v3} is linearly dependent if and only if a = 0 or
a = −1/2.

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 38



Solution

{v1,v2,v3} is linearly dependent if and only if the matrix

A =

 1 0 a
−3 1 2
a a 0

 is not invertible.

det A =

∣∣∣∣∣∣
1 0 a
−3 1 2
a a 0

∣∣∣∣∣∣ =
∣∣∣∣1 2
a 0

∣∣∣∣+ a
∣∣∣∣−3 1

a a

∣∣∣∣ = −2a− 4a2

= −2a(1 + 2a).

So {v1,v2,v3} is linearly dependent if and only if a = 0 or
a = −1/2.

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 38



Problem 6 from June 2012

Let A be a 4× 4 matrix. Let B =


2 1 4 0
1 1 1 0
1 0 1 0
0 0 0 1

. Assume that

det(AB) = 4. What is det(A)?

Show that the equation A


x1

x2

x3

x4

 =


0
0
0
0

 has only the solution

x1 = x2 = x3 = x4 = 0.
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Solution

det B

=

∣∣∣∣∣∣∣∣
2 1 4 0
1 1 1 0
1 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
2 1 4
1 1 1
1 0 1

∣∣∣∣∣∣ =
∣∣∣∣1 4
1 1

∣∣∣∣+ ∣∣∣∣2 1
1 1

∣∣∣∣
= −3 + 1 = −2.

It follows that det A = det(AB)
det B = 4

−2 = −2.
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∣∣∣∣∣∣
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∣∣∣∣
= −3 + 1 = −2.

It follows that det A = det(AB)
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−2 = −2.
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Solution (cont.)

Since det A 6= 0, A is invertible,

so the equation

A


x1

x2

x3

x4

 =


0
0
0
0

 has only the solution


x1

x2

x3

x4

 = A−1


0
0
0
0

 =


0
0
0
0

.
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Solution (cont.)

Since det A 6= 0, A is invertible, so the equation
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0

.

www.ntnu.no TMA4115 - Calculus 3, Lecture 15, March 6, page 41



Tomorrow’s lecture

Tomorrow we shall

look at Cramer’s rule,
give a formula for the inverse of an invertible matrix,
look at the relationship between areas, volumes and
determinants.

Section 3.3 in “Linear Algebras and Its Applications” (pages
177–187).
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