TMA4115-Calculus 3 Lecture 11, Feb 20

Toke Meier Carlsen
Norwegian University of Science and Technology Spring 2013

Review of last week's lecture

Review of last week's lecture

Last week we

Review of last week's lecture

Last week we

- introduced and solved homogeneous and nonhomegeneous matrix equations,

Review of last week's lecture

Last week we

- introduced and solved homogeneous and nonhomegeneous matrix equations,
- learned how to write solution sets in parametric vector form,

Review of last week's lecture

Last week we

- introduced and solved homogeneous and nonhomegeneous matrix equations,
- learned how to write solution sets in parametric vector form,
- looked at applications of linear systems,

Review of last week's lecture

Last week we

- introduced and solved homogeneous and nonhomegeneous matrix equations,
- learned how to write solution sets in parametric vector form,
- looked at applications of linear systems,
- introduced and studied linear dependence and linear independence of vectors.

Today's lecture

Today's lecture

We shall introduce and study

0

Today's lecture

We shall introduce and study

- linear transformations,

NTNU
Norwegian University of
Science and Technology

Today's lecture

We shall introduce and study

- linear transformations,
- the standard matrix of a linear transformation,

Today's lecture

We shall introduce and study

- linear transformations,
- the standard matrix of a linear transformation,
- onto linear transformations,

Today's lecture

We shall introduce and study

- linear transformations,
- the standard matrix of a linear transformation,
- onto linear transformations,
- one-to-one linear transformations.

Transformations

Transformations

- A transformation (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.

Transformations

- A transformation (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.
- The set \mathbb{R}^{n} is called domain of T, and \mathbb{R}^{m} is called the codomain of T.

Transformations

- A transformation (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.
- The set \mathbb{R}^{n} is called domain of T, and \mathbb{R}^{m} is called the codomain of T.
- The notation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ indicates that the domain of T is \mathbb{R}^{n} and the codomain is \mathbb{R}^{m}.

NTNU
Norwegian University of
Science and Technology

Transformations

- A transformation (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.
- The set \mathbb{R}^{n} is called domain of T, and \mathbb{R}^{m} is called the codomain of T.
- The notation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ indicates that the domain of T is \mathbb{R}^{n} and the codomain is \mathbb{R}^{m}.
- For \mathbf{x} in \mathbb{R}^{n}, the vector $T(\mathbf{x})$ in \mathbb{R}^{m} is called the image of \mathbf{x} (under the action of T).

0

Transformations

- A transformation (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.
- The set \mathbb{R}^{n} is called domain of T, and \mathbb{R}^{m} is called the codomain of T.
- The notation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ indicates that the domain of T is \mathbb{R}^{n} and the codomain is \mathbb{R}^{m}.
- For \mathbf{x} in \mathbb{R}^{n}, the vector $T(\mathbf{x})$ in \mathbb{R}^{m} is called the image of \mathbf{x} (under the action of T).
- The set of all images $T(\mathbf{x})$ is called the range (or image) of T.

0

Example

Example

For each $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3}$, let

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} \\
\cos \left(x_{1} x_{2} x_{3} \pi\right)
\end{array}\right]
$$

Example

For each $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3}$, let

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} \\
\cos \left(x_{1} x_{2} x_{3} \pi\right)
\end{array}\right]
$$

Then T is a transformation from \mathbb{R}^{3} to \mathbb{R}^{2}.

Example

For each $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3}$, let

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} \\
\cos \left(x_{1} x_{2} x_{3} \pi\right)
\end{array}\right]
$$

Then T is a transformation from \mathbb{R}^{3} to \mathbb{R}^{2}.
The image of $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is $\left[\begin{array}{c}\sqrt{1}^{2}+1^{2}+1^{2} \\ \cos (\pi)\end{array}\right]=\left[\begin{array}{c}\sqrt{3} \\ -1\end{array}\right]$.

Example (cont.)

The range of T is $\left\{\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]: y \geq 0, y_{2} \in[-1,1]\right\}$ (this is not completely obvious).

Example (cont.)

The range of T is $\left\{\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]: y \geq 0, y_{2} \in[-1,1]\right\}$ (this is not completely obvious).
If $f_{1}\left(x_{1}, x_{2}, x_{3}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$ and
$f_{2}\left(x_{1}, x_{2}, x_{3}\right)=\cos \left(x_{1} x_{2} x_{3} \pi\right)$, then f_{1} and f_{2} are real-valued functions on \mathbb{R}^{3} and

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
f_{1}\left(x_{1}, x_{2}, x_{3}\right) \\
f_{2}\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right]
$$

for all $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3}$.

Transformations and real-valued functions of several variables

Transformations and real-valued functions of several variables

If $f_{1}, f_{2}, \ldots, f_{m}$ are real-valued functions on \mathbb{R}^{n}, then

$$
T\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\left[\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right]
$$

defines a transformation from \mathbb{R}^{n} to \mathbb{R}^{m}.

0
Norwegian University of Science and Technology

Transformations and real-valued functions of several variables

Conversely, if T is a transformation from \mathbb{R}^{n} to \mathbb{R}^{m}, then there exist real-valued functions $f_{1}, f_{2}, \ldots, f_{m}$ on \mathbb{R}^{n} such that

$$
T\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\left[\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right]
$$

for all $\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] \in \mathbb{R}^{n}$.

Example

Example

For each $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$, let

$$
S\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2} \\
x_{1} \\
3 x_{2}
\end{array}\right]
$$

Example

For each $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$, let

$$
S\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2} \\
x_{1} \\
3 x_{2}
\end{array}\right]
$$

Then S is a transformation from \mathbb{R}^{2} to \mathbb{R}^{3}.

Example

For each $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$, let

$$
S\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2} \\
x_{1} \\
3 x_{2}
\end{array}\right]
$$

Then S is a transformation from \mathbb{R}^{2} to \mathbb{R}^{3}. Notice that

$$
\begin{aligned}
S\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=x_{1}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right]= & {\left[\begin{array}{cc}
2 & -1 \\
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } \\
& \left(\begin{array}{l}
\text { NTNU } \\
\text { Norwegian University of } \\
\text { Science and Technology }
\end{array}\right.
\end{aligned}
$$

Example (cont.)

It follows that the range of S is Span $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right]\right\}$.

Matrix transformations

0
Norwegian University of
Science and Technology

Matrix transformations

If A is an $m \times n$ matrix and we for every \mathbf{x} in \mathbb{R}^{n} let $T(\mathbf{x})=A \mathbf{x}$, then T is a transformation from \mathbb{R}^{n} to \mathbb{R}^{m}.

Matrix transformations

If A is an $m \times n$ matrix and we for every \mathbf{x} in \mathbb{R}^{n} let $T(\mathbf{x})=A \mathbf{x}$, then T is a transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. The range of A is $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ where $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are the columns of A.

Linear transformations

0

Linear transformations

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if:

Linear transformations

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if:
(1) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in \mathbb{R}^{n};

Linear transformations

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if:
(1) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in \mathbb{R}^{n};
(2) $T(c \mathbf{u})=c T(\mathbf{u})$ for all scalars c and all \mathbf{u} in \mathbb{R}^{n}.

0

Matrix transformations are linear

Matrix transformations are linear

Every matrix transformation is linear because if A is an $m \times n$ matrix, then $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$ for all \mathbf{u}, \mathbf{v} in \mathbb{R}^{n} and $A(c \mathbf{u})=c A \mathbf{u}$ for all scalars c and all \mathbf{u} in \mathbb{R}^{n}.

Properties of linear transformations

Properties of linear transformations

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then:

Properties of linear transformations

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then:
(1) $T(\mathbf{0})=\mathbf{0}$ because $T(\mathbf{0})=T(0 \mathbf{u})=0 T(\mathbf{u})=\mathbf{0}$ for any vector \mathbf{u} in \mathbb{R}^{n}.

0

Properties of linear transformations

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then:
(1) $T(\mathbf{0})=\mathbf{0}$ because $T(\mathbf{0})=T(0 \mathbf{u})=0 T(\mathbf{u})=\mathbf{0}$ for any vector \mathbf{u} in \mathbb{R}^{n}.
(2) $T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})$ for all scalars c and d and all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, because
$T(c \mathbf{u}+d \mathbf{v})=T(c \mathbf{u})+T(d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})$.

D

Example

Example

A company manufactures two products. For $\$ 1.00$ worth of product B, the company spends $\$ 0.45$ on material, $\$ 0.25$ on labor, and $\$ 0.15$ on overhead. For $\$ 1.00$ worth of product C, the company spends $\$ 0.40$ on material, $\$ 0.30$ on labor, and $\$ 0.15$ on overhead.

NTNU
Norwegian University of
Science and Technology

Example

A company manufactures two products. For $\$ 1.00$ worth of product B, the company spends $\$ 0.45$ on material, $\$ 0.25$ on labor, and $\$ 0.15$ on overhead. For $\$ 1.00$ worth of product C, the company spends $\$ 0.40$ on material, $\$ 0.30$ on labor, and $\$ 0.15$ on overhead.
Let x_{1} denote the value of product B and x_{2} the value of product C that the company manufactures.

NTNU
Norwegian University of
Science and Technology

Example

A company manufactures two products. For $\$ 1.00$ worth of product B, the company spends $\$ 0.45$ on material, $\$ 0.25$ on labor, and $\$ 0.15$ on overhead. For $\$ 1.00$ worth of product C , the company spends $\$ 0.40$ on material, $\$ 0.30$ on labor, and $\$ 0.15$ on overhead.
Let x_{1} denote the value of product B and x_{2} the value of product C that the company manufactures.
Let y_{1}, y_{2} and y_{3} denote the costs of material, labor and overhead the company spends on this.

Example (cont.)

Then

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
0.45 x_{1}+0.40 x_{2} \\
0.25 x_{1}+0.30 x_{2} \\
0.15 x_{1}+0.15 x_{2}
\end{array}\right]
$$

0

Example (cont.)

Then

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
0.45 x_{1}+0.40 x_{2} \\
0.25 x_{1}+0.30 x_{2} \\
0.15 x_{1}+0.15 x_{2}
\end{array}\right]
$$

So if we define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by

$$
T(\mathbf{x})=\left[\begin{array}{ll}
0.45 & 0.40 \\
0.25 & 0.30 \\
0.15 & 0.15
\end{array}\right] \mathbf{x}
$$

then $\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=T(\mathbf{x})$.

Example

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that
 $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-3 \\ 5 \\ 7\end{array}\right]$.

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that
$T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-3 \\ 5 \\ 7\end{array}\right]$.
(c) Let $\mathbf{u}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$. Let us find the image $T(\mathbf{u})$ of \mathbf{u} under T.

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that
$T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-3 \\ 5 \\ 7\end{array}\right]$.
(1) Let $\mathbf{u}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$. Let us find the image $T(\mathbf{u})$ of \mathbf{u} under T.

$$
\begin{aligned}
T(\mathbf{u}) & =T\left(2\left[\begin{array}{l}
1 \\
0
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=2 T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)-T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =2\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]-\left[\begin{array}{c}
-3 \\
5 \\
7
\end{array}\right]=\left[\begin{array}{c}
5 \\
1 \\
-9
\end{array}\right], \begin{array}{l}
\text { NTNU } \\
\text { Norwegian University of } \\
\text { Science and Technology }
\end{array}
\end{aligned}
$$

Example (cont.)

(2) Let us find the image under T of $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

Example (cont.)

(2) Let us find the image under T of $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

$$
\begin{aligned}
T(\mathbf{x}) & =T\left(x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=x_{1} T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+x_{2} T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =x_{1}\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
5 \\
7
\end{array}\right]=\left[\begin{array}{c}
x_{1}-3 x_{2} \\
3 x_{1}+5 x_{2} \\
-x_{1}+7 x_{2}
\end{array}\right]
\end{aligned}
$$

Example (cont.)

(2) Let us find the image under T of $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

$$
\begin{aligned}
T(\mathbf{x}) & =T\left(x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=x_{1} T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+x_{2} T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =x_{1}\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
5 \\
7
\end{array}\right]=\left[\begin{array}{c}
x_{1}-3 x_{2} \\
3 x_{1}+5 x_{2} \\
-x_{1}+7 x_{2}
\end{array}\right]
\end{aligned}
$$

It follows that $T(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{2}$ where

$$
A=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]
$$

Example (cont.)

(3) Is there more than one \mathbf{x} whose image under T is

$$
\left[\begin{array}{c}
5 \\
1 \\
-9
\end{array}\right] ?
$$

Example (cont.)

(3) Is there more than one \mathbf{x} whose image under T is
$\left[\begin{array}{c}5 \\ 1 \\ -9\end{array}\right] ?$

The question is equivalent to the question: Does the equation $A \mathbf{x}=\left[\begin{array}{c}5 \\ 1 \\ -9\end{array}\right]$ have more than one solution?

Example (cont.)

(3) Is there more than one \mathbf{x} whose image under T is
$\left[\begin{array}{c}5 \\ 1 \\ -9\end{array}\right]$?

The question is equivalent to the question: Does the equation $A \mathbf{x}=\left[\begin{array}{c}5 \\ 1 \\ -9\end{array}\right]$ have more than one solution?
To answer that question we reduce the augmented matrix of the equation to an echelon form.

0

Example (cont.)

$$
\left[\begin{array}{ccc}
1 & -3 & 5 \\
3 & 5 & 1 \\
-1 & 7 & -9
\end{array}\right]
$$

Example (cont.)

$$
\left[\begin{array}{ccc}
1 & -3 & 5 \\
3 & 5 & 1 \\
-1 & 7 & -9
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 5 \\
0 & 14 & -14 \\
0 & 4 & -4
\end{array}\right]
$$

Example (cont.)

$$
\left[\begin{array}{ccc}
1 & -3 & 5 \\
3 & 5 & 1 \\
-1 & 7 & -9
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 5 \\
0 & 14 & -14 \\
0 & 4 & -4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 5 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Example (cont.)

$$
\left[\begin{array}{ccc}
1 & -3 & 5 \\
3 & 5 & 1 \\
-1 & 7 & -9
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 5 \\
0 & 14 & -14 \\
0 & 4 & -4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 5 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

We see that there is no free variable, so there is only one \mathbf{x}
such that $T(\mathbf{x})=\left[\begin{array}{c}5 \\ 1 \\ -9\end{array}\right]$.

Example (cont.)

(4) Let $\mathbf{c}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$. Let us determine if \mathbf{c} is in the range of T.

Example (cont.)

(9) Let $\mathbf{c}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$. Let us determine if \mathbf{c} is in the range of T. \mathbf{c} is in the range of T if and only if the equation $A \mathbf{x}=\mathbf{c}$ is consistent.

Example (cont.)

(9) Let $\mathbf{c}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$. Let us determine if \mathbf{c} is in the range of T.
\mathbf{c} is in the range of T if and only if the equation $A \mathbf{x}=\mathbf{c}$ is consistent.
In order to determine whether the equation $A \mathbf{x}=\mathbf{c}$ is consistent or not, we reduce the augmented matrix $[A \mathbf{c}$] to an echelon form.

Example (cont.)

$$
\left[\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & 5
\end{array}\right]
$$

Example (cont.)

$$
\left[\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 14 & -7 \\
0 & 4 & 8
\end{array}\right]
$$

Example (cont.)

$$
\left[\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 14 & -7 \\
0 & 4 & 8
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 2 & -1 \\
0 & 1 & 2
\end{array}\right]
$$

Example (cont.)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 14 & -7 \\
0 & 4 & 8
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 2 & -1 \\
0 & 1 & 2
\end{array}\right]} \\
& \quad \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & 2 \\
0 & 2 & -1
\end{array}\right]
\end{aligned}
$$

Example (cont.)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 14 & -7 \\
0 & 4 & 8
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 2 & -1 \\
0 & 1 & 2
\end{array}\right]} \\
& \quad \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & 2 \\
0 & 2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & 2 \\
0 & 0 & -5
\end{array}\right]
\end{aligned}
$$

Example (cont.)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 14 & -7 \\
0 & 4 & 8
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 2 & -1 \\
0 & 1 & 2
\end{array}\right]} \\
& \\
& \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & 2 \\
0 & 2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & 2 \\
0 & 0 & -5
\end{array}\right]
\end{aligned}
$$

We see that the system is inconsistent, so \mathbf{c} is not in the range of T.

The matrix of a linear transformation

The matrix of a linear transformation

Theorem 10

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}.

The matrix of a linear transformation

Theorem 10

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}. In fact, if we for each $j=1, \ldots n$ let \mathbf{e}_{j} be the j th column of the identity matrix I_{n}, then A is the $m \times n$ matrix $\left[T\left(\mathbf{e}_{1}\right) \ldots T\left(\mathbf{e}_{n}\right)\right]$ whose j th column is the vector $T\left(\mathbf{e}_{j}\right)$.

D

The matrix of a linear transformation

Theorem 10

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}. In fact, if we for each $j=1, \ldots n$ let \mathbf{e}_{j} be the j th column of the identity matrix I_{n}, then A is the $m \times n$ matrix $\left[T\left(\mathbf{e}_{1}\right) \ldots T\left(\mathbf{e}_{n}\right)\right]$ whose j th column is the vector $T\left(\mathbf{e}_{j}\right)$.

The matrix A is called the standard matrix of T.

Proof

Proof

$$
\text { Let } A=\left[T\left(\mathbf{e}_{1}\right) \ldots T\left(\mathbf{e}_{n}\right)\right] \text {. }
$$

Proof

Let $A=\left[T\left(\mathbf{e}_{1}\right) \ldots T\left(\mathbf{e}_{n}\right)\right]$. We must show that $T(\mathbf{x})=A \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}.

Proof

Let $A=\left[T\left(\mathbf{e}_{1}\right) \ldots T\left(\mathbf{e}_{n}\right)\right]$. We must show that $T(\mathbf{x})=A \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}.
Let $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ be a vector in \mathbb{R}^{n}.

Proof (cont.)

Then

$$
\begin{aligned}
T(\mathbf{x}) & =T\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=T\left(x_{1}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]\right) \\
& =T\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}\right) \\
& =x_{1} T\left(\mathbf{e}_{1}\right)+x_{2} T\left(\mathbf{e}_{2}\right)+\cdots+x_{n} T\left(\mathbf{e}_{n}\right) \\
& =A\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=A \mathbf{x} .
\end{aligned}
$$

Example

Example

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-3 x_{2}-x_{3}, x_{2}+4 x_{3}, 2 x_{1}+9 x_{2}+5 x_{3}\right)$. Let us find the standard matrix of T.

Solution

Solution

$$
T\left(\mathbf{e}_{1}\right)=T(1,0,0)=(1,0,2)=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],
$$

Solution

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=T(1,0,0)=(1,0,2)=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \\
& T\left(\mathbf{e}_{2}\right)=T(0,1,0)=(-3,1,9)=\left[\begin{array}{c}
-3 \\
1 \\
9
\end{array}\right],
\end{aligned}
$$

Solution

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=T(1,0,0)=(1,0,2)=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \\
& T\left(\mathbf{e}_{2}\right)=T(0,1,0)=(-3,1,9)=\left[\begin{array}{c}
-3 \\
1 \\
9
\end{array}\right], \\
& T\left(\mathbf{e}_{3}\right)=T(0,0,1)=(-1,4,5)=\left[\begin{array}{c}
-1 \\
4 \\
5
\end{array}\right],
\end{aligned}
$$

Solution

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=T(1,0,0)=(1,0,2)=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \\
& T\left(\mathbf{e}_{2}\right)=T(0,1,0)=(-3,1,9)=\left[\begin{array}{c}
-3 \\
1 \\
9
\end{array}\right], \\
& T\left(\mathbf{e}_{3}\right)=T(0,0,1)=(-1,4,5)=\left[\begin{array}{c}
-1 \\
4 \\
5
\end{array}\right], \text { so the standard } \\
& \text { matrix of } T \text { is }\left[\begin{array}{ccc}
1 & -3 & -1 \\
0 & 1 & 4 \\
2 & 9 & 5
\end{array}\right] .
\end{aligned}
$$

Example

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function given by $T(\mathbf{x})=\mathbf{y}$ where \mathbf{y} is the vector we obtain from rotating \mathbf{x} by an angle of θ around zero.
Let us show that T is a linear transformation and find its standard matrix.

Solution

Solution

Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ be a vector in \mathbb{R}^{2}, and let $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=T(\mathbf{x})$.

Solution

Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ be a vector in \mathbb{R}^{2}, and let $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=T(\mathbf{x})$.
Let $r=\left|x_{1}+i x_{2}\right|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and $\phi=\operatorname{Arg}\left(x_{1}+i x_{2}\right)$.

Solution

Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ be a vector in \mathbb{R}^{2}, and let $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=T(\mathbf{x})$.
Let $r=\left|x_{1}+i x_{2}\right|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and $\phi=\operatorname{Arg}\left(x_{1}+i x_{2}\right)$. Then $x_{1}=r \cos \phi$ and $x_{2}=r \sin \phi$,

Solution

Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ be a vector in \mathbb{R}^{2}, and let $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=T(\mathbf{x})$.
Let $r=\left|x_{1}+i x_{2}\right|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and $\phi=\operatorname{Arg}\left(x_{1}+i x_{2}\right)$. Then
$x_{1}=r \cos \phi$ and $x_{2}=r \sin \phi$, so $y_{1}=r \cos (\phi+\theta)=$ $r \cos \phi \cos \theta-r \sin \phi \sin \theta=x_{1} \cos \theta-x_{2} \sin \theta$

Solution

Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ be a vector in \mathbb{R}^{2}, and let $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=T(\mathbf{x})$.
Let $r=\left|x_{1}+i x_{2}\right|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and $\phi=\operatorname{Arg}\left(x_{1}+i x_{2}\right)$. Then $x_{1}=r \cos \phi$ and $x_{2}=r \sin \phi$, so $y_{1}=r \cos (\phi+\theta)=$ $r \cos \phi \cos \theta-r \sin \phi \sin \theta=x_{1} \cos \theta-x_{2} \sin \theta$ and $y_{2}=$ $r \sin (\phi+\theta)=r \sin \phi \cos \theta+r \cos \phi \sin \theta=x_{2} \cos \theta+x_{1} \sin \theta$.

Solution

Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ be a vector in \mathbb{R}^{2}, and let $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=T(\mathbf{x})$.
Let $r=\left|x_{1}+i x_{2}\right|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and $\phi=\operatorname{Arg}\left(x_{1}+i x_{2}\right)$. Then $x_{1}=r \cos \phi$ and $x_{2}=r \sin \phi$, so $y_{1}=r \cos (\phi+\theta)=$ $r \cos \phi \cos \theta-r \sin \phi \sin \theta=x_{1} \cos \theta-x_{2} \sin \theta$ and $y_{2}=$ $r \sin (\phi+\theta)=r \sin \phi \cos \theta+r \cos \phi \sin \theta=x_{2} \cos \theta+x_{1} \sin \theta$. So if we let $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, then $T(\mathbf{x})=A \mathbf{x}$ for every \mathbf{x} in \mathbb{R}^{2}.

Solution

Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ be a vector in \mathbb{R}^{2}, and let $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=T(\mathbf{x})$.
Let $r=\left|x_{1}+i x_{2}\right|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and $\phi=\operatorname{Arg}\left(x_{1}+i x_{2}\right)$. Then
$x_{1}=r \cos \phi$ and $x_{2}=r \sin \phi$, so $y_{1}=r \cos (\phi+\theta)=$
$r \cos \phi \cos \theta-r \sin \phi \sin \theta=x_{1} \cos \theta-x_{2} \sin \theta$ and $y_{2}=$ $r \sin (\phi+\theta)=r \sin \phi \cos \theta+r \cos \phi \sin \theta=x_{2} \cos \theta+x_{1} \sin \theta$. So if we let $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, then $T(\mathbf{x})=A \mathbf{x}$ for every \mathbf{x} in \mathbb{R}^{2}.
It follows that T is linear, and that A is the standard matrix of T.

One-to-one transformations

NTNU
Norwegian University of
Science and Technology

One-to-one transformations

Definition of one-to-one transformations

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be one-to-one (or injective) if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

a

One-to-one transformations

Definition of one-to-one transformations

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be one-to-one (or injective) if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

Notice that each \mathbf{b} in \mathbb{R}^{m} does not have to be in the image of T in order for T to be one-to-one.

0

One-to-one transformations

Theorem 11

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if and only the equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof

Proof

We have that $T(\mathbf{0})=\mathbf{0}$ since T is linear.

Proof

We have that $T(\mathbf{0})=\mathbf{0}$ since T is linear.
If T is one-to-one, then there is at most one \mathbf{x} such that $T(\mathbf{x})=\mathbf{0}$.

Proof

We have that $T(\mathbf{0})=\mathbf{0}$ since T is linear.
If T is one-to-one, then there is at most one \mathbf{x} such that $T(\mathbf{x})=\mathbf{0}$. So the equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Proof

We have that $T(\mathbf{0})=\mathbf{0}$ since T is linear.
If T is one-to-one, then there is at most one \mathbf{x} such that $T(\mathbf{x})=\mathbf{0}$. So the equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.
If T is not one-to-one, then there are two different vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} such that $T(\mathbf{u})=T(\mathbf{v})$.

Proof

We have that $T(\mathbf{0})=\mathbf{0}$ since T is linear.
If T is one-to-one, then there is at most one \mathbf{x} such that $T(\mathbf{x})=\mathbf{0}$. So the equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.
If T is not one-to-one, then there are two different vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} such that $T(\mathbf{u})=T(\mathbf{v})$. We then have that $T(\mathbf{u}-\mathbf{v})=T(\mathbf{u})-T(\mathbf{v})=\mathbf{0}$, so $\mathbf{x}=\mathbf{u}-\mathbf{v}$ is a nontrivial solution to the equation $T(\mathbf{x})=\mathbf{0}$.

Example

Example

Let T be the linear transformation whose standard matrix is

$$
A=\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
-1 & 2 & 4 & 5
\end{array}\right]
$$

Let us determine if T is one-to-one.

Solution

Solution

T is one-to-one if and only if the equation $A \mathbf{x}=\mathbf{0}$ only has the trivial solution.

Solution

T is one-to-one if and only if the equation $A \mathbf{x}=\mathbf{0}$ only has the trivial solution. So we reduce A to an echelon form and check if A has a pivot position in every column.

Solution

T is one-to-one if and only if the equation $A \mathbf{x}=\mathbf{0}$ only has the trivial solution. So we reduce A to an echelon form and check if A has a pivot position in every column.

$$
\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
-1 & 2 & 4 & 5
\end{array}\right]
$$

D

Solution

T is one-to-one if and only if the equation $A \mathbf{x}=\mathbf{0}$ only has the trivial solution. So we reduce A to an echelon form and check if A has a pivot position in every column.

$$
\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
-1 & 2 & 4 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
0 & 0 & 0 & 12
\end{array}\right]
$$

0

Solution

T is one-to-one if and only if the equation $A \mathbf{x}=\mathbf{0}$ only has the trivial solution. So we reduce A to an echelon form and check if A has a pivot position in every column.

$$
\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
-1 & 2 & 4 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
0 & 0 & 0 & 12
\end{array}\right]
$$

Since A does not have a pivot position in every column, the equation $A \mathbf{x}=\mathbf{0}$ has a free position and therefore a nontrivial solution, so T is not one-to-one.

How to determine if a linear transformation is one-to-one

How to determine if a linear transformation is one-to-one

The following procedure outlines how to determine if a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one:

How to determine if a linear transformation is one-to-one

The following procedure outlines how to determine if a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one:
(1) Find the standard matrix A of T.

How to determine if a linear transformation is one-to-one

The following procedure outlines how to determine if a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one:
(1) Find the standard matrix A of T.
(2) Reduce A to an echelon form.

How to determine if a linear transformation is one-to-one

The following procedure outlines how to determine if a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one:
(1) Find the standard matrix A of T.
(2) Reduce A to an echelon form.
(3) If A has a pivot position in every column, then the equation $A \mathbf{x}=\mathbf{0}$ has no free variable, so the equation $A \mathbf{x}=\mathbf{0}$ only has the trivial solution, and T is one-to-one.

Onto transformations

\square
NTNU
Norwegian University of
Science and Technology

Onto transformations

Definition of onto transformations

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be onto (or surjective) if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}.

0

Onto transformations

Definition of onto transformations

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be onto (or surjective) if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}.

Notice that a transformation T is onto if and only if the image of T is all of \mathbb{R}^{m}.

Example

Example

Let T be the linear transformation whose standard matrix is

$$
A=\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
-1 & 2 & 4 & 5
\end{array}\right]
$$

Let us determine if T is onto.

Solution

Solution

T is onto if and only if the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{3}.

Solution

T is onto if and only if the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{3}. We know that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{3} if and only if A has a pivot position in every row,

Solution

T is onto if and only if the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{3}. We know that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{3} if and only if A has a pivot position in every row, So we reduce A to an echelon form and check if A has a pivot position in every row.

Solution

T is onto if and only if the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{3}. We know that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{3} if and only if A has a pivot position in every row, So we reduce A to an echelon form and check if A has a pivot position in every row.

$$
\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
-1 & 2 & 4 & 5
\end{array}\right]
$$

Solution

T is onto if and only if the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{3}. We know that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{3} if and only if A has a pivot position in every row, So we reduce A to an echelon form and check if A has a pivot position in every row.

$$
\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
-1 & 2 & 4 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
0 & 0 & 0 & 12
\end{array}\right]
$$

Solution

T is onto if and only if the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{3}. We know that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{3} if and only if A has a pivot position in every row, So we reduce A to an echelon form and check if A has a pivot position in every row.

$$
\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
-1 & 2 & 4 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & -4 & 7 \\
0 & 2 & 6 & -3 \\
0 & 0 & 0 & 12
\end{array}\right]
$$

We see that A has a pivot position in every row, so T is onto.

How to determine if a linear transformation is onto

How to determine if a linear transformation is onto

The following procedure outlines how to determine if a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto:

How to determine if a linear transformation is onto

The following procedure outlines how to determine if a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto:
(1) Find the standard matrix A of T.

0

How to determine if a linear transformation is onto

The following procedure outlines how to determine if a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto:
(1) Find the standard matrix A of T.
(2) Reduce A to an echelon form.

How to determine if a linear transformation is onto

The following procedure outlines how to determine if a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto:
(1) Find the standard matrix A of T.
(2) Reduce A to an echelon form.
(3) If A has a pivot position in every row, then the equation $A \mathbf{x}=\mathbf{b}$ is consistent for all \mathbf{b} in \mathbb{R}^{m} and T is onto.

0

Onto and one-to-one linear transformations

Onto and one-to-one linear transformations

Theorem 12

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the standard matrix for T.

Onto and one-to-one linear transformations

Theorem 12

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the standard matrix for T. Then:

Onto and one-to-one linear transformations

Theorem 12

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the standard matrix for T. Then:
(1) T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if the columns of A span \mathbb{R}^{m}.

Onto and one-to-one linear transformations

Theorem 12

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the standard matrix for T. Then:
(1) T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if the columns of A span \mathbb{R}^{m}.
(2) T is one-to-one if and only if the columns of A are linearly independent.

Proof

Proof

T is onto

Proof

T is onto \Longleftrightarrow the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every $b \in \mathbb{R}^{m}$

Proof

T is onto \Longleftrightarrow the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every $b \in \mathbb{R}^{m}$
\Longleftrightarrow the columns of A span \mathbb{R}^{m}.

Proof

T is onto \Longleftrightarrow the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every $b \in \mathbb{R}^{m}$
\Longleftrightarrow the columns of A span \mathbb{R}^{m}.
T is one-to-one

Proof

T is onto \Longleftrightarrow the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every $b \in \mathbb{R}^{m}$
\Longleftrightarrow the columns of A span \mathbb{R}^{m}.
T is one-to-one \Longleftrightarrow the equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution

Proof

T is onto \Longleftrightarrow the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every $b \in \mathbb{R}^{m}$
\Longleftrightarrow the columns of A span \mathbb{R}^{m}.
T is one-to-one \Longleftrightarrow the equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution
\Longleftrightarrow the columns of A are linearly independent.

Example

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T\left(x_{1}, x_{2}\right)=\left(x_{1}+2 x_{2}, 2 x_{1}+x_{2}, 0\right)$. Let us determine if T is onto and if it is one-to-one.

0

Solution

Every linear combination of $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ has a zero as its third entry, so the columns of A does not span \mathbb{R}^{3}.

Solution

Every linear combination of $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ has a zero as its third entry, so the columns of A does not span \mathbb{R}^{3}. It follows that T is not onto.

Solution

Every linear combination of $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ has a zero as its third entry, so the columns of A does not span \mathbb{R}^{3}. It follows that T is not onto.
Since $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ is not multiple of $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$, and $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ is not a multiple of
, the columns of A are linearly independent.

Solution

Every linear combination of $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ has a zero as its third entry, so the columns of A does not span \mathbb{R}^{3}. It follows that T is not onto.
Since $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ is not multiple of $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$, and $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ is not a multiple of
$\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$
, the columns of A are linearly independent. It follows
that T is one-to-one.

Tomorrow's lecture

Tomorrow we shall

- look at applications of linear models,
- look at the use of Maple and WolframAlpha.

Section 1.10 in "Linear Algebras and Its Applications" (pages 80-90).

