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Review of last week’s lecture

Last week we

introduced and solved homogeneous and
nonhomegeneous matrix equations,
learned how to write solution sets in parametric vector
form,
looked at applications of linear systems,
introduced and studied linear dependence and linear
independence of vectors.
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Today’s lecture

We shall introduce and study

linear transformations,
the standard matrix of a linear transformation,
onto linear transformations,
one-to-one linear transformations.
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Transformations

A transformation (or function or mapping) T from Rn to
Rm is a rule that assigns to each vector x in Rn a vector
T (x) in Rm.
The set Rn is called domain of T , and Rm is called the
codomain of T .
The notation T : Rn → Rm indicates that the domain of T
is Rn and the codomain is Rm.
For x in Rn, the vector T (x) in Rm is called the image of
x (under the action of T ).
The set of all images T (x) is called the range (or image)
of T .
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Example

For each

x1

x2

x3

 ∈ R3, let

T

x1

x2

x3

 =

[√
x2

1 + x2
2 + x2

3

cos(x1x2x3π)

]

Then T is a transformation from R3 to R2.

The image of

1
1
1

 is
[√

12 + 12 + 12

cos(π)

]
=

[√
3
−1

]
.
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Example (cont.)

The range of T is
{[

y1

y2

]
: y ≥ 0, y2 ∈ [−1,1]

}
(this is not

completely obvious).

If f1(x1, x2, x3) =
√

x2
1 + x2

2 + x2
3 and

f2(x1, x2, x3) = cos(x1x2x3π), then f1 and f2 are real-valued
functions on R3 and

T

x1

x2

x3

 =

[
f1(x1, x2, x3)
f2(x1, x2, x3)

]

for all

x1

x2

x3

 ∈ R3.
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Transformations and real-valued
functions of several variables

If f1, f2, . . . , fm are real-valued functions on Rn, then

T




x1

x2
...

xn


 =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fm(x1, x2, . . . , xn)


defines a transformation from Rn to Rm.
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Transformations and real-valued
functions of several variables
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Example

For each
[
x1

x2

]
∈ R2, let

S
([

x1

x2

])
=

2x1 − x2

x1

3x2


Then S is a transformation from R2 to R3.
Notice that

S
([

x1

x2

])
= x1

2
1
0

+ x2

−1
0
3

 =

2 −1
1 0
0 3

[x1

x2

]
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Example (cont.)

It follows that the range of S is Span


2

1
0

 ,
−1

0
3

.
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Matrix transformations

If A is an m × n matrix and we for every x in Rn let
T (x) = Ax, then T is a transformation from Rn to Rm.
The range of A is Span{a1,a2, . . . ,an} where a1,a2, . . . ,an

are the columns of A.
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Linear transformations

A transformation T : Rn → Rm is linear if:

1 T (u + v) = T (u) + T (v) for all u,v in Rn;
2 T (cu) = cT (u) for all scalars c and all u in Rn.
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Matrix transformations are linear

Every matrix transformation is linear because if A is an m× n
matrix, then A(u + v) = Au + Av for all u,v in Rn and
A(cu) = cAu for all scalars c and all u in Rn.
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Properties of linear
transformations

If T : Rn → Rm is a linear transformation, then:

1 T (0) = 0 because T (0) = T (0u) = 0T (u) = 0 for any
vector u in Rn.

2 T (cu + dv) = cT (u) + dT (v) for all scalars c and d and
all vectors u and v in Rn, because
T (cu + dv) = T (cu) + T (dv) = cT (u) + dT (v).
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Example

A company manufactures two products. For $1.00 worth of
product B, the company spends $0.45 on material, $0.25 on
labor, and $0.15 on overhead. For $1.00 worth of product C,
the company spends $0.40 on material, $0.30 on labor, and
$0.15 on overhead.
Let x1 denote the value of product B and x2 the value of
product C that the company manufactures.
Let y1, y2 and y3 denote the costs of material, labor and
overhead the company spends on this.
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Example (cont.)

Then y1

y2

y3

 =

0.45x1 + 0.40x2

0.25x1 + 0.30x2

0.15x1 + 0.15x2



So if we define T : R2 → R3 by

T (x) =

0.45 0.40
0.25 0.30
0.15 0.15

x

then

y1

y2

y3

 = T (x).
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Example

Let T : R2 → R3 be a linear transformation such that

T
([

1
0

])
=

 1
3
−1

 and T
([

0
1

])
=

−3
5
7

.

1 Let u =

[
2
−1

]
. Let us find the image T (u) of u under T .

T (u) = T
(

2
[
1
0

]
−
[
0
1

])
= 2T

([
1
0

])
− T

([
0
1

])

= 2

 1
3
−1

−
−3

5
7

 =

 5
1
−9
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Example (cont.)

2 Let us find the image under T of x =

[
x1

x2

]
.

T (x) = T
(

x1

[
1
0

]
+ x2

[
0
1

])
= x1T

([
1
0

])
+ x2T

([
0
1

])

= x1

 1
3
−1

+ x2

−3
5
7

 =

 x1 − 3x2

3x1 + 5x2

−x1 + 7x2


It follows that T (x) = Ax for all x ∈ R2 where

A =

 1 −3
3 5
−1 7

.
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= x1

 1
3
−1

+ x2

−3
5
7

 =

 x1 − 3x2

3x1 + 5x2

−x1 + 7x2



It follows that T (x) = Ax for all x ∈ R2 where

A =

 1 −3
3 5
−1 7

.
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Example (cont.)

3 Is there more than one x whose image under T is 5
1
−9

?

The question is equivalent to the question: Does the

equation Ax =

 5
1
−9

 have more than one solution?

To answer that question we reduce the augmented
matrix of the equation to an echelon form.
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Example (cont.)

 1 −3 5
3 5 1
−1 7 −9



→

1 −3 5
0 14 −14
0 4 −4

 →
1 −3 5

0 1 −1
0 0 0


We see that there is no free variable, so there is only one x

such that T (x) =

 5
1
−9

.
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Example (cont.)

4 Let c =

3
2
5

. Let us determine if c is in the range of T .

c is in the range of T if and only if the equation Ax = c is
consistent.
In order to determine whether the equation Ax = c is
consistent or not, we reduce the augmented matrix [A c]
to an echelon form.
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Example (cont.)

 1 −3 3
3 5 2
−1 7 5



→

1 −3 3
0 14 −7
0 4 8

 →
1 −3 3

0 2 −1
0 1 2


→

1 −3 3
0 1 2
0 2 −1

 →
1 −3 3

0 1 2
0 0 −5


We see that the system is inconsistent, so c is not in the
range of T .
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The matrix of a linear
transformation

Theorem 10
Let T : Rn → Rm be a linear transformation.

Then there
exists a unique matrix A such that T (x) = Ax for all x in Rn.
In fact, if we for each j = 1, . . .n let ej be the j th column of the
identity matrix In, then A is the m× n matrix [T (e1) . . . T (en)]
whose j th column is the vector T (ej).

The matrix A is called the standard matrix of T .
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Proof

Let A = [T (e1) . . . T (en)]. We must show that T (x) = Ax for
all x in Rn.

Let x =


x1

x2
...

xn

 be a vector in Rn.
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Proof (cont.)

Then

T (x) = T




x1

x2
...

xn


 = T

x1


1
0
...
0

+ x2


0
1
...
0

+ · · ·+ xn


0
0
...
1




= T (x1e1 + x2e2 + · · ·+ xnen)

= x1T (e1) + x2T (e2) + · · ·+ xnT (en)

= A


x1

x2
...

xn

 = Ax.
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Example

Let T : R3 → R3 be a linear transformation such that
T (x1, x2, x3) = (x1 − 3x2 − x3, x2 + 4x3,2x1 + 9x2 + 5x3).
Let us find the standard matrix of T .
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Solution

T (e1) = T (1,0,0) = (1,0,2) =

1
0
2

,

T (e2) = T (0,1,0) = (−3,1,9) =

−3
1
9

,

T (e3) = T (0,0,1) = (−1,4,5) =

−1
4
5

, so the standard

matrix of T is

1 −3 −1
0 1 4
2 9 5

.
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Example

Let T : R2 → R2 be the function given by T (x) = y where y is
the vector we obtain from rotating x by an angle of θ around
zero.
Let us show that T is a linear transformation and find its
standard matrix.
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Solution

Let x =

[
x1

x2

]
be a vector in R2, and let y =

[
y1

y2

]
= T (x).

Let r = |x1 + ix2| =
√

x2
1 + x2

2 and φ = Arg(x1 + ix2). Then
x1 = r cosφ and x2 = r sinφ, so y1 = r cos(φ+ θ) =
r cosφ cos θ − r sinφ sin θ = x1 cos θ − x2 sin θ and y2 =
r sin(φ+ θ) = r sinφ cos θ + r cosφ sin θ = x2 cos θ + x1 sin θ.

So if we let A =

[
cos θ − sin θ
sin θ cos θ

]
, then T (x) = Ax for every x

in R2.
It follows that T is linear, and that A is the standard matrix of
T .
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One-to-one transformations

Definition of one-to-one transformations
A transformation T : Rn → Rm is said to be one-to-one (or
injective) if each b in Rm is the image of at most one x in Rn.

Notice that each b in Rm does not have to be in the image of
T in order for T to be one-to-one.
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One-to-one transformations

Theorem 11
A linear transformation T : Rn → Rm is one-to-one if and only
the equation T (x) = 0 has only the trivial solution.
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Proof

We have that T (0) = 0 since T is linear.
If T is one-to-one, then there is at most one x such that
T (x) = 0. So the equation T (x) = 0 has only the trivial
solution.
If T is not one-to-one, then there are two different vectors u
and v in Rn such that T (u) = T (v). We then have that
T (u− v) = T (u)− T (v) = 0, so x = u− v is a nontrivial
solution to the equation T (x) = 0.
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T (u− v) = T (u)− T (v) = 0, so x = u− v is a nontrivial
solution to the equation T (x) = 0.
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Example

Let T be the linear transformation whose standard matrix is

A =

 1 −2 −4 7
0 2 6 −3
−1 2 4 5


Let us determine if T is one-to-one.
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Solution

T is one-to-one if and only if the equation Ax = 0 only has
the trivial solution. So we reduce A to an echelon form and
check if A has a pivot position in every column. 1 −2 −4 7

0 2 6 −3
−1 2 4 5

 →
1 −2 −4 7

0 2 6 −3
0 0 0 12


Since A does not have a pivot position in every column, the
equation Ax = 0 has a free position and therefore a nontrivial
solution, so T is not one-to-one.
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How to determine if a linear
transformation is one-to-one

The following procedure outlines how to determine if a linear
transformation T : Rn → Rm is one-to-one:

1 Find the standard matrix A of T .
2 Reduce A to an echelon form.
3 If A has a pivot position in every column, then the

equation Ax = 0 has no free variable, so the equation
Ax = 0 only has the trivial solution, and T is one-to-one.
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Onto transformations

Definition of onto transformations
A transformation T : Rn → Rm is said to be onto (or
surjective) if each b in Rm is the image of at least one x in Rn.

Notice that a transformation T is onto if and only if the image
of T is all of Rm.
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Example

Let T be the linear transformation whose standard matrix is
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−1 2 4 5
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Solution

T is onto if and only if the equation Ax = b is consistent for
all b in R3. We know that the equation Ax = b is consistent
for all b in R3 if and only if A has a pivot position in every row.
So we reduce A to an echelon form and check if A has a
pivot position in every row. 1 −2 −4 7

0 2 6 −3
−1 2 4 5

 →
1 −2 −4 7

0 2 6 −3
0 0 0 12


We see that A has a pivot position in every row, so T is onto.
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How to determine if a linear
transformation is onto

The following procedure outlines how to determine if a linear
transformation T : Rn → Rm is onto:

1 Find the standard matrix A of T .
2 Reduce A to an echelon form.
3 If A has a pivot position in every row, then the equation

Ax = b is consistent for all b in Rm and T is onto.
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Onto and one-to-one linear
transformations

Theorem 12
Let T : Rn → Rm be a linear transformation and let A be the
standard matrix for T .

Then:

1 T maps Rn onto Rm if and only if the columns of A span
Rm.

2 T is one-to-one if and only if the columns of A are
linearly independent.
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Proof

T is onto

⇐⇒ the equation Ax = b has a solution
for every b ∈ Rm

⇐⇒ the columns of A span Rm.

T is one-to-one

⇐⇒ the equation Ax = 0 has a
nontrivial solution

⇐⇒ the columns of A are
linearly independent.
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Example

Let T : R2 → R3 be a linear transformation such that
T (x1, x2) = (x1 + 2x2,2x1 + x2,0). Let us determine if T is
onto and if it is one-to-one.

www.ntnu.no TMA4115 - Calculus 3, Lecture 11, Feb 20, page 42



Example

Let T : R2 → R3 be a linear transformation such that
T (x1, x2) = (x1 + 2x2,2x1 + x2,0). Let us determine if T is
onto and if it is one-to-one.

www.ntnu.no TMA4115 - Calculus 3, Lecture 11, Feb 20, page 42



Solution

Every linear combination of

1
2
0

 and

2
1
0

 has a zero as its

third entry, so the columns of A does not span R3.

It follows
that T is not onto.

Since

1
2
0

 is not multiple of

2
1
0

, and

2
1
0

 is not a multiple of1
2
0

, the columns of A are linearly independent. It follows

that T is one-to-one.
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Tomorrow’s lecture

Tomorrow we shall
look at applications of linear models,
look at the use of Maple and WolframAlpha.

Section 1.10 in “Linear Algebras and Its Applications” (pages
80-90).
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