

TMA4115 - Calculus 3 Lecture 5, Jan 30

Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013

Review of the previous lecture

Last time we

- studied second-order linear differential equations,
- introduced the Wronskian,
- completely solved second-order homogeneous linear differential equations with constant coefficients.

Today's lecture

Today we shall

- study harmonic motions,
- study solutions of second-order linear inhomogeneous differential equations,
- look at the method of undetermined coefficients.

Second-order homogeneous linear differential equations

Suppose that y_1 and y_2 are linearly independent solutions to the differential equation

$$y'' + p(t)y' + q(t)y = 0$$

on the interval (α, β). Then

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

is the general solution of (1).

Fundamental set of solutions

- Two linearly independent solutions to a second-order homogeneous linear differential equation is said to form a fundamental set of solutions.
- The previous result then says that if y_1 , y_2 form a fundamental set of solutions to a second-order homogeneous linear differential equation, then any solution to that differential equation can be written as a linear combination of y_1 and y_2 .
- If y_1 and y_2 are solution to a second-order homogeneous linear differential equation, then we can check if they form a fundamental set of solutions either

by showing that neither is a constant multiple of the other,

2 or by showing that the Wronskian of y_1 and y_2 is not zero at any point. orwegian University of

Science and Technology

Homogeneous equations with constant coefficients

Consider the second-order homogeneous linear differential equation

$$y'' + py' + qy = 0$$

with constant coefficients.

- The *characteristic polynomial* of the equation is the polynomial $\lambda^2 + p\lambda + q$.
- The roots

$$\lambda = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

of $\lambda^2 + p\lambda + q$ are called the

characteristic roots of the equation.

Norwegian University of

Science and Technology

Homogeneous equations with constant coefficients

 If p² - 4q > 0, then the characteristic polynomial λ² + pλ + q has two distinct real roots λ₁ and λ₂, and the general solution of y" + py' + qy = 0 is

$$\mathbf{y}(t) = \mathbf{c}_1 \mathbf{e}^{\lambda_1 t} + \mathbf{c}_2 \mathbf{e}^{\lambda_2 t}.$$

 If p² - 4q < 0, then the characteristic polynomial λ² + pλ + q has two distinct complex roots λ₁ = a + ib and λ₂ = a - ib, and the general solution of y" + py' + qy = 0 is

$$y(t) = c_1 e^{at} \cos(bt) + c_2 e^{at} \sin(bt).$$

NTNU Norwegian University of Science and Technology

Homogeneous equations with constant coefficients

 If p² - 4q = 0, then the characteristic polynomial λ² + pλ + q just have one root λ, and the general solution of y" + py' + qy = 0 is

$$y(t)=c_1e^{\lambda t}+c_2te^{\lambda t}.$$

Harmonic motion

The motion described by a solution to the equation

$$y'' + 2cy' + \omega_0^2 y = 0$$

where $c \ge 0$ and $\omega_0 > 0$, is called a *harmonic motion*.

Simple harmonic motion

If c = 0 we say that the system is *undamped*. In that case, the equation becomes

$$\mathbf{y}'' + \omega_0^2 \mathbf{y} = \mathbf{0}$$

where $\omega_0 > 0$.

The general solution to this equation is

$$\mathbf{y}(t) = \mathbf{c}_1 \cos(\omega_0 t) + \mathbf{c}_2 \sin(\omega_0 t).$$

The motion described by this solution is called a *simple* harmonic motion. The number ω_0 is called the *natural* frequency. The number $T = 2\pi/\omega_0$ is called the *period*.

NTNU Norwegian University of Science and Technology

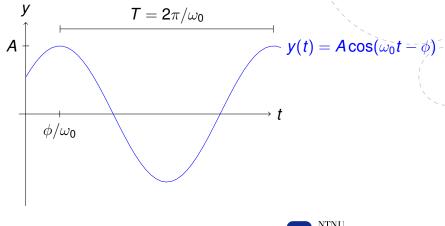
Amplitude and phase angle

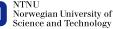
It is frequently convenient to put the solution $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t)$ into another form that is more convenient and more revealing of the nature of the solution. Let $A = |c_1 + c_2 i| = \sqrt{c_1^2 + c_2^2}$ and $\phi = \operatorname{Arg}(c_1 + c_2 i)$. Then

$$y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) = A \cos(\omega_0 t - \phi).$$

The number A is called the *amplitude*, and the number ϕ is called the *phase*.

Simple harmonic motion





The underdamped case

If $0 < c < \omega_0$, then the general solution to

$$y'' + 2cy' + \omega_0^2 y = 0$$

is

$$y(t)=e^{-ct}(c_1\cos(\omega t)+c_2\sin(\omega t))$$
 where $\omega=\sqrt{\omega_0^2-c^2}.$

The underdamped case



www.ntnu.no

The overdamped case

If $\boldsymbol{c} > \omega_0$, then the general solution to

$$y'' + 2cy' + \omega_0^2 y = 0$$

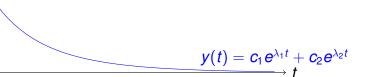
is

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

where $\lambda_1 = -c - \sqrt{c^2 - \omega_0^2}$ and $\lambda_2 = -c + \sqrt{c^2 - \omega_0^2}$.



The overdamped case



TMA4115 - Calculus 3, Lecture 5, Jan 30, page 16

У

The critically damped case

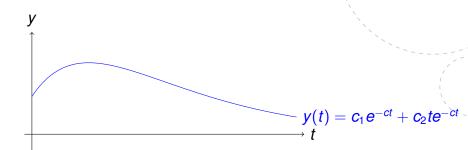
If $c = \omega_0$, then the general solution to

$$y'' + 2cy' + \omega_0^2 y = 0$$

is

$$y(t) = c_1 e^{-ct} + c_2 t e^{-ct}$$

The critically damped case



Inhomogeneous equations

We now turn to the solution of inhomogeneous second-order linear differential equations

$$y'' + py' + qy = f$$

where p = p(t), q = q(t) and f = f(t) are functions of the independent variable.

If y_p is a particular solution to (2), and y_1 and y_2 form a fundamental set of solutions to the homogeneous equation y'' + py' + qy = 0, then the general solution to (2) is

$$y = y_p + c_1 y_1 + c_2 y_2$$

where c_1 and c_2 are constants.

NTNU Norwegian University of Science and Technology

The method of undetermined coefficients

Consider the inhomogeneous second-order linear differential equation

$$y'' + py' + qy = f.$$

If the function f has a form that is replicated under differentiation, then look for a solution with the same general form as f.

Exponential forcing terms

If $f(t) = e^{at}$, then $f'(t) = ae^{at}$, so we will look for a solution of the form $y(t) = be^{at}$.

Trigonometric forcing terms

lf

$$f(t) = A\cos(\omega t) + B\sin(\omega t),$$

then

$$f'(t) = -\omega A \sin(\omega t) + \omega B \cos(\omega t),$$

so we will look for a solution of the form

$$y(t) = a\cos(\omega t) + b\sin(\omega t).$$

The complex method

There is another way to find a particular solution in situations where

$$f(t) = A\cos(\omega t) + B\sin(\omega t).$$

If z(t) is a solution of the equation

$$\mathbf{y}'' + \mathbf{p}\mathbf{y}' + \mathbf{q}\mathbf{y} = \mathbf{e}^{\omega i t},$$

then a suitable linear combination of Re(z(t)) and Im(z(t)) will be a solution to

$$y'' + py' + qy = A\cos(\omega t) + B\sin(\omega t).$$

Polynomial forcing terms

lf

$$f(t) = a_n t^n + a_{n-1} t^{n-1} + \ldots a_1 t + a_0$$

then

$$f'(t) = na_nt^{n-1} + (n-1)a_{n-1}t^{n-2} + \dots a_1,$$

so we will look for a solution of the form

$$y(t) = b_n t^n + b_{n-1} t^{n-1} + \ldots b_1 t + b_0.$$

Exceptional cases

The method of undetermined coefficients looks straightforward. There are, however, some exceptional cases to look out for. If the forcing term *f*, and hence the proposed solution, is a solution to the homogeneous equation y'' + py' + qy = 0, then the proposed solution wouldn't work. Instead we have to multiply the proposed solution by *t*.

Combination forcing terms

If y_f is a solution the differential equation y'' + py' + qy = f, y_g is a solution the differential equation y'' + py' + qy = g, and c_1 and c_2 are constants, then

$$y(t) = c_1 y_f(t) + c_2 y_g(t)$$

is a solution to the differential equation

$$y'' + py' + qy = c_1 f + c_2 g.$$

Plan for tomorrow

Tomorrow we shall

- look at variation of parameters,
- study forced harmonic motions.

Section 4.6 and 4.7 in "Second-Order Equations" (pages pages lxxii–lxxxvi).

