TMA4115-Calculus 3
 Lecture 5, Jan 30

Toke Meier Carlsen
Norwegian University of Science and Technology Spring 2013

Review of the previous lecture

Last time we

- studied second-order linear differential equations,
- introduced the Wronskian,
- completely solved second-order homogeneous linear differential equations with constant coefficients.

Today's lecture

Today we shall

- study harmonic motions,
- study solutions of second-order linear inhomogeneous differential equations,
- look at the method of undetermined coefficients.

Second-order homogeneous linear differential equations

Suppose that y_{1} and y_{2} are linearly independent solutions to the differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{1}
\end{equation*}
$$

on the interval (α, β). Then

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

is the general solution of (1).

Fundamental set of solutions

- Two linearly independent solutions to a second-order homogeneous linear differential equation is said to form a fundamental set of solutions.
- The previous result then says that if y_{1}, y_{2} form a fundamental set of solutions to a second-order homogeneous linear differential equation, then any solution to that differential equation can be written as a linear combination of y_{1} and y_{2}.
- If y_{1} and y_{2} are solution to a second-order homogeneous linear differential equation, then we can check if they form a fundamental set of solutions either
(1) by showing that neither is a constant multiple of the other,
(2) or by showing that the Wronskian of y_{1} and y_{2} is not zero at any point.

Homogeneous equations with constant coefficients

Consider the second-order homogeneous linear differential equation

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

with constant coefficients.

- The characteristic polynomial of the equation is the polynomial $\lambda^{2}+p \lambda+q$.
- The roots

$$
\lambda=\frac{-p \pm \sqrt{p^{2}-4 q}}{2}
$$

of $\lambda^{2}+p \lambda+q$ are called the characteristic roots of the equation.

Homogeneous equations with constant coefficients

- If $p^{2}-4 q>0$, then the characteristic polynomial
$\lambda^{2}+p \lambda+q$ has two distinct real roots λ_{1} and λ_{2}, and the
general solution of $y^{\prime \prime}+p y^{\prime}+q y=0$ is

$$
y(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} .
$$

- If $p^{2}-4 q<0$, then the characteristic polynomial
$\lambda^{2}+p \lambda+q$ has two distinct complex roots $\lambda_{1}=a+i b$ and $\lambda_{2}=a-i b$, and the general solution of $y^{\prime \prime}+p y^{\prime}+q y=0$ is

$$
y(t)=c_{1} e^{a t} \cos (b t)+c_{2} e^{a t} \sin (b t) .
$$

Homogeneous equations with constant coefficients

- If $p^{2}-4 q=0$, then the characteristic polynomial $\lambda^{2}+p \lambda+q$ just have one root λ, and the general solution of $y^{\prime \prime}+p y^{\prime}+q y=0$ is

$$
y(t)=c_{1} e^{\lambda t}+c_{2} t e^{\lambda t}
$$

Harmonic motion

The motion described by a solution to the equation

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0
$$

where $c \geq 0$ and $\omega_{0}>0$, is called a harmonic motion.

0

Simple harmonic motion

If $c=0$ we say that the system is undamped. In that case, the equation becomes

$$
y^{\prime \prime}+\omega_{0}^{2} y=0
$$

where $\omega_{0}>0$.
The general solution to this equation is

$$
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)
$$

The motion described by this solution is called a simple harmonic motion. The number ω_{0} is called the natural frequency. The number $T=2 \pi / \omega_{0}$ is called the period.

NTNU
Norwegian University of
Science and Technology

Amplitude and phase angle

It is frequently convenient to put the solution
$y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)$ into another form that is more convenient and more revealing of the nature of the solution. Let $A=\left|c_{1}+c_{2} i\right|=\sqrt{c_{1}^{2}+c_{2}^{2}}$ and $\phi=\operatorname{Arg}\left(c_{1}+c_{2} i\right)$. Then

$$
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)=A \cos \left(\omega_{0} t-\phi\right) .
$$

The number A is called the amplitude, and the number ϕ is called the phase.

Simple harmonic motion

The underdamped case

If $0<\boldsymbol{c}<\omega_{0}$, then the general solution to

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0
$$

is

$$
y(t)=e^{-c t}\left(c_{1} \cos (\omega t)+c_{2} \sin (\omega t)\right)
$$

where $\omega=\sqrt{\omega_{0}^{2}-c^{2}}$.

The underdamped case

The overdamped case

If $\boldsymbol{c}>\omega_{0}$, then the general solution to

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0
$$

is

$$
y(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}
$$

where $\lambda_{1}=-c-\sqrt{c^{2}-\omega_{0}^{2}}$ and $\lambda_{2}=-c+\sqrt{c^{2}-\omega_{0}^{2}}$.

The overdamped case

Norwegian University of Science and Technology

The critically damped case

If $\boldsymbol{C}=\omega_{0}$, then the general solution to

$$
y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0
$$

is

$$
y(t)=c_{1} e^{-c t}+c_{2} t e^{-c t}
$$

The critically damped case

Inhomogeneous equations

We now turn to the solution of inhomogeneous second-order linear differential equations

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=f \tag{2}
\end{equation*}
$$

where $p=p(t), q=q(t)$ and $f=f(t)$ are functions of the independent variable.
If y_{p} is a particular solution to (2), and y_{1} and y_{2} form a fundamental set of solutions to the homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=0$, then the general solution to (2) is

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}
$$

where c_{1} and c_{2} are constants.

The method of undetermined coefficients

Consider the inhomogeneous second-order linear differential equation

$$
y^{\prime \prime}+p y^{\prime}+q y=f
$$

If the function f has a form that is replicated under differentiation, then look for a solution with the same general form as f.

0

Exponential forcing terms

If $f(t)=e^{a t}$, then $f^{\prime}(t)=a e^{a t}$, so we will look for a solution of the form $y(t)=b e^{a t}$.

Trigonometric forcing terms

If

$$
f(t)=A \cos (\omega t)+B \sin (\omega t),
$$

then

$$
f^{\prime}(t)=-\omega A \sin (\omega t)+\omega B \cos (\omega t),
$$

so we will look for a solution of the form

$$
y(t)=a \cos (\omega t)+b \sin (\omega t) .
$$

The complex method

There is another way to find a particular solution in situations where

$$
f(t)=A \cos (\omega t)+B \sin (\omega t) .
$$

If $z(t)$ is a solution of the equation

$$
y^{\prime \prime}+p y^{\prime}+q y=e^{\omega i t}
$$

then a suitable linear combination of $\operatorname{Re}(z(t))$ and $\operatorname{Im}(z(t))$ will be a solution to

$$
y^{\prime \prime}+p y^{\prime}+q y=A \cos (\omega t)+B \sin (\omega t)
$$

Polynomial forcing terms

If

$$
f(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\ldots a_{1} t+a_{0}
$$

then

$$
f^{\prime}(t)=n a_{n} t^{n-1}+(n-1) a_{n-1} t^{n-2}+\ldots a_{1},
$$

so we will look for a solution of the form

$$
y(t)=b_{n} t^{n}+b_{n-1} t^{n-1}+\ldots b_{1} t+b_{0}
$$

Exceptional cases

The method of undetermined coefficients looks straightforward. There are, however, some exceptional cases to look out for. If the forcing term f, and hence the proposed solution, is a solution to the homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=0$, then the proposed solution wouldn't work. Instead we have to multiply the proposed solution by t.

Combination forcing terms

If y_{f} is a solution the differential equation $y^{\prime \prime}+p y^{\prime}+q y=f$, y_{g} is a solution the differential equation $y^{\prime \prime}+p y^{\prime}+q y=g$, and c_{1} and c_{2} are constants, then

$$
y(t)=c_{1} y_{f}(t)+c_{2} y_{g}(t)
$$

is a solution to the differential equation

$$
y^{\prime \prime}+p y^{\prime}+q y=c_{1} f+c_{2} g .
$$

Plan for tomorrow

Tomorrow we shall

- look at variation of parameters,
- study forced harmonic motions.

Section 4.6 and 4.7 in "Second-Order Equations" (pages pages Ixxii-lxxxvi).

