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Review of the previous lecture

Last time we
studied second-order linear differential equations,
introduced the Wronskian,
completely solved second-order homogeneous linear
differential equations with constant coefficients.
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Today’s lecture

Today we shall
study harmonic motions,
study solutions of second-order linear inhomogeneous
differential equations,
look at the method of undetermined coefficients.
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Second-order homogeneous linear
differential equations

Suppose that y1 and y2 are linearly independent solutions to
the differential equation

y ′′ + p(t)y ′ + q(t)y = 0 (1)

on the interval (α, β). Then

y(t) = c1y1(t) + c2y2(t)

is the general solution of (1).
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Fundamental set of solutions
Two linearly independent solutions to a second-order
homogeneous linear differential equation is said to form
a fundamental set of solutions.
The previous result then says that if y1, y2 form a
fundamental set of solutions to a second-order
homogeneous linear differential equation, then any
solution to that differential equation can be written as a
linear combination of y1 and y2.
If y1 and y2 are solution to a second-order homogeneous
linear differential equation, then we can check if they
form a fundamental set of solutions either

1 by showing that neither is a constant multiple of the other,
2 or by showing that the Wronskian of y1 and y2 is not zero

at any point.
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Homogeneous equations with
constant coefficients

Consider the second-order homogeneous linear differential
equation

y ′′ + py ′ + qy = 0
with constant coefficients.

The characteristic polynomial of the equation is the
polynomial λ2 + pλ+ q.
The roots

λ =
−p ±

√
p2 − 4q

2
of λ2 + pλ+ q are called the
characteristic roots of the equation.
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Homogeneous equations with
constant coefficients

If p2 − 4q > 0, then the characteristic polynomial
λ2 + pλ+ q has two distinct real roots λ1 and λ2, and the
general solution of y ′′ + py ′ + qy = 0 is

y(t) = c1eλ1t + c2eλ2t .

If p2 − 4q < 0, then the characteristic polynomial
λ2 + pλ+ q has two distinct complex roots λ1 = a + ib
and λ2 = a− ib, and the general solution of
y ′′ + py ′ + qy = 0 is

y(t) = c1eat cos(bt) + c2eat sin(bt).
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Homogeneous equations with
constant coefficients

If p2 − 4q = 0, then the characteristic polynomial
λ2 + pλ+ q just have one root λ, and the general
solution of y ′′ + py ′ + qy = 0 is

y(t) = c1eλt + c2teλt .
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Harmonic motion

The motion described by a solution to the equation

y ′′ + 2cy ′ + ω2
0y = 0

where c ≥ 0 and ω0 > 0, is called a harmonic motion.
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Simple harmonic motion

If c = 0 we say that the system is undamped. In that case,
the equation becomes

y ′′ + ω2
0y = 0

where ω0 > 0.
The general solution to this equation is

y(t) = c1 cos(ω0t) + c2 sin(ω0t).

The motion described by this solution is called a simple
harmonic motion. The number ω0 is called the natural
frequency. The number T = 2π/ω0 is called the period.
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Amplitude and phase angle

It is frequently convenient to put the solution
y(t) = c1 cos(ω0t) + c2 sin(ω0t) into another form that is more
convenient and more revealing of the nature of the solution.
Let A = |c1 + c2i | =

√
c2

1 + c2
2 and φ = Arg(c1 + c2i). Then

y(t) = c1 cos(ω0t) + c2 sin(ω0t) = A cos(ω0t − φ).

The number A is called the amplitude, and the number φ is
called the phase.
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Simple harmonic motion

t

y

y(t) = A cos(ω0t − φ)

φ/ω0

T = 2π/ω0

A
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The underdamped case

If 0 < c < ω0, then the general solution to

y ′′ + 2cy ′ + ω2
0y = 0

is
y(t) = e−ct(c1 cos(ωt) + c2 sin(ωt))

where ω =
√
ω2

0 − c2.
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The underdamped case

t

y

y(t) = e−ct(c1 cos(ωt) + c2 sin(ωt))
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The overdamped case

If c > ω0, then the general solution to

y ′′ + 2cy ′ + ω2
0y = 0

is
y(t) = c1eλ1t + c2eλ2t

where λ1 = −c −
√

c2 − ω2
0 and λ2 = −c +

√
c2 − ω2

0.
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The overdamped case

t

y

y(t) = c1eλ1t + c2eλ2t
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The critically damped case

If c = ω0, then the general solution to

y ′′ + 2cy ′ + ω2
0y = 0

is
y(t) = c1e−ct + c2te−ct .
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The critically damped case

t

y

y(t) = c1e−ct + c2te−ct
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Inhomogeneous equations

We now turn to the solution of inhomogeneous second-order
linear differential equations

y ′′ + py ′ + qy = f (2)

where p = p(t), q = q(t) and f = f (t) are functions of the
independent variable.
If yp is a particular solution to (2), and y1 and y2 form a
fundamental set of solutions to the homogeneous equation
y ′′ + py ′ + qy = 0, then the general solution to (2) is

y = yp + c1y1 + c2y2

where c1 and c2 are constants.
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The method of undetermined
coefficients

Consider the inhomogeneous second-order linear differential
equation

y ′′ + py ′ + qy = f .

If the function f has a form that is replicated under
differentiation, then look for a solution with the same general
form as f .
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Exponential forcing terms

If f (t) = eat , then f ′(t) = aeat , so we will look for a solution of
the form y(t) = beat .
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Trigonometric forcing terms

If
f (t) = A cos(ωt) + B sin(ωt),

then
f ′(t) = −ωA sin(ωt) + ωB cos(ωt),

so we will look for a solution of the form

y(t) = a cos(ωt) + b sin(ωt).
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The complex method

There is another way to find a particular solution in situations
where

f (t) = A cos(ωt) + B sin(ωt).

If z(t) is a solution of the equation

y ′′ + py ′ + qy = eωit ,

then a suitable linear combination of Re(z(t)) and Im(z(t))
will be a solution to

y ′′ + py ′ + qy = A cos(ωt) + B sin(ωt).
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Polynomial forcing terms

If
f (t) = antn + an−1tn−1 + . . . a1t + a0,

then
f ′(t) = nantn−1 + (n − 1)an−1tn−2 + . . . a1,

so we will look for a solution of the form

y(t) = bntn + bn−1tn−1 + . . . b1t + b0.
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Exceptional cases

The method of undetermined coefficients looks
straightforward. There are, however, some exceptional cases
to look out for. If the forcing term f , and hence the proposed
solution, is a solution to the homogeneous equation
y ′′ + py ′ + qy = 0, then the proposed solution wouldn’t work.
Instead we have to multiply the proposed solution by t .
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Combination forcing terms

If yf is a solution the differential equation y ′′ + py ′ + qy = f ,
yg is a solution the differential equation y ′′ + py ′ + qy = g,
and c1 and c2 are constants, then

y(t) = c1yf (t) + c2yg(t)

is a solution to the differential equation

y ′′ + py ′ + qy = c1f + c2g.
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Plan for tomorrow

Tomorrow we shall
look at variation of parameters,
study forced harmonic motions.

Section 4.6 and 4.7 in “Second-Order Equations” (pages
pages lxxii–lxxxvi).
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