

TMA4115 - Calculus 3 Lecture 17, March 13

Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013

Review of last week's lecture

Last week we looked at

- the determinate of a square matrix,
- Cramer's rule,
- a formula for the inverse of an invertible matrix,
- the relationship between areas, volumes and determinants.

Today's lecture

Today we shall introduce and study

- abstract vector spaces and subspaces,
- null spaces and column spaces of matrices,
- linear transformations between abstract vector spaces,
- kernels and ranges of linear transformations,
- *linear independence* and *linear dependence* in abstract vector spaces.

Vector spaces

Definition

A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms listed on the next slide.

1 The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in *V*.

2)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

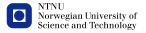
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$$

- There is a *zero* vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- So For each **u** in *V*, there is a vector $-\mathbf{u}$ in *V* such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 5 The scalar multiple of **u** by *c*, denoted by *c***u**, is in *V*.

$$olimits c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.$$

$$\mathbf{0} \ (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}.$$

 $c(d\mathbf{u}) = (cd)\mathbf{u}.$



Examples of vector spaces

v

-2u

- Let *n* be a positive integer. Then \mathbb{R}^n is a vector space.
- The set of arrows in a fixed plane (or space), starting at one fixed point is a vector space.

Solution Let *m* and *n* be positive integers. Then the set $M_{m \times n}$ of all $m \times n$ matrices is a vector space.

NTNU Norwegian University of Science and Technology

Examples of vector spaces

- Let S be the set of all doubly infinite sequences of numbers: {*y_k*}_{k∈Z}. If {*z_k*}_{k∈Z} is another element of S, then the sum {*y_k*}_{k∈Z} + {*z_k*}_{k∈Z} is sequence {*y_k* + *z_k*}_{k∈Z}, and if *c* is a scalar, then *c*{*y_k*}_{k∈Z} is the sequence {*cy_k*}_{k∈Z}. Then S is a vector space.
- Let *I* be an interval and let *V* be the space of all real-valued functions defined on I. If *f*, *g* are in *V* and *c* is a scalar, then f + g is the function defined by (f + g)(x) = f(x) + g(x) for *x* in *I*, and *cf* is the function defined by (cf)(x) = cf(x) for *x* in *I*. Then *V* is a vector space.

Subspaces

Definition

A subspace of a vector space V is a subset H of V that has 3 properties:

- The zero vector of V is in H.
- **2** If **u** and **v** are in *H*, then $\mathbf{u} + \mathbf{v}$ is in *H*.
- If \mathbf{u} is in H and c is a scalar, then $c\mathbf{u}$ is in H.

Every subspace is a vector space. Conversely, every vector space is a subspace (of itself and possibly of other larger spaces).

Examples of subspaces

Let *V* be the space of all real-valued functions defined on \mathbb{R} .

- Let \mathbb{P} be the set of all polynomials with real coefficients. Then \mathbb{P} is a subspace of *V*.
- Solution For each n ≥ 0, let P_n be the set of polynomials with real coefficients of degree at most n. Then P_n is a subspace of P (and of V).
- Solution Let $C(\mathbb{R})$ be the set of all real-valued continuous functions defined on \mathbb{R} . Then $C(\mathbb{R})$ is a subspace of V.

The zero subspace

Let *V* be a vector space, and let **0** be the zero vector of *V*. The set consisting of only **0** is a subspace of *V*. This subspace is called the *zero subspace* and is written as $\{0\}$.

Subspaces spanned by sets

Let V be a vector space.

- If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are vectors in V and c_1, c_2, \dots, c_n are scalars, then the vector $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n$ is called a *linear combination* of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.
- We let Span{v₁, v₂, ..., v_n} denote the set of all possible linear combinations of v₁, v₂, ..., v_n.
- Span{ $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } is a subspace of V.
- Span{v₁, v₂,..., v_n} is called the *subspace spanned* (or *generated*) by v₁, v₂,..., v_n.
- Given any subspace *H* of *V*, a *spanning* (or *generating*) set for *H* is a set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ in *H* such that $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$.

NTNU Norwegian University of Science and Technology

The null space of a matrix

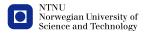
Let *A* be an $m \times n$ matrix.

- The *null space* of *A*, written as Nul(*A*), is the set of all solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.
- **2** Nul(A) = {**x** : **x** is in \mathbb{R}^n and A**x** = **0**}.
- 3 Nul(A) is a subspace of \mathbb{R}^n .

The column space of a matrix

Let *A* be an $m \times n$ matrix.

- The column space of A, written as Col(A), is the set of all linear combinations of the columns of A.
- 2 If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \dots \mathbf{a}_n]$, then $\operatorname{Col}(A) = \operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$.
- Col(A) = {**b** : **b** = A**x** for some **x** in \mathbb{R}^n }.
- Col(A) is a subspace of \mathbb{R}^m .



Linear transformations

Definition

A *linear transformation* T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W such that

)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for all \mathbf{u}, \mathbf{v} in V ,

2
$$T(c\mathbf{v}) = cT(\mathbf{v})$$
 for all **u** in *V* all scalars *c*.

Example

- Let V be the set of all real-valued functions f defined on an interval [a, b] with the property that they are differentiable and their derivatives are continuous functions on [a, b].
- Let W = C[a, b] be the set of real-valued continuous functions on [a, b].
- Then V and W are vector spaces.
- Let D : V → W be the transformation that maps f in V to its derivative f'.
- Then D(f + g) = (f + g)' = f' + g' = D(f) + D(g) and D(cf) = (cf)' = cf' = cD(f), so D is a linear transformation.

NTNU Norwegian University of Science and Technology

The kernel and range of a linear transformation

- Let V and W be vector spaces and let T be a linear transformation from V to W.
 - The *kernel* (or *null space*) of *T* is the set $\{\mathbf{u} : \mathbf{u} \text{ is in } V \text{ and } T(\mathbf{v}) = \mathbf{0}\}$ of all \mathbf{u} in *V* for which $T(\mathbf{u}) = \mathbf{0}$.
 - The range of T is the set $\{\mathbf{w} : \mathbf{w} = T(\mathbf{v}) \text{ for some } \mathbf{v} \text{ in } V\}$ of all vectors in W of the form $T(\mathbf{v})$ for some \mathbf{v} in V.
 - The kernel of T is a subspace of V.
 - The range of T is a subspace of W.
 - S If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and *A* is the standard matrix of *T*, then the kernel of *T* is the null space of *A*, and the range of *T* is the column space of *A*.

Science and Technology

Linear independence

Let *V* be a vector space, and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an indexed set of vectors in *V*.

- { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } is said to be *linearly independent* if the vector equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \mathbf{0}$ has only the trivial solution.
- { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } is said to be *linearly dependent* if there exist scalars c_1, c_2, \dots, c_n not all equal to zero such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \mathbf{0}$.

Linear independence in \mathbb{R}^n

- Recall that if v₁, v₂,..., v_p are vectors in Rⁿ, then the indexed set {v₁, v₂,..., v_p} is linearly independent if and only if the matrix [v₁ v₂... v_p] has a pivot position in every column.
- There is no similar method to determine if a indexed set of vectors in an arbitrary vector space is linearly independent.

Linear dependence

Theorem 4

An indexed set $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ of two or more vectors in a vector set *V* is linearly dependent if and only if $\mathbf{v}_1 = \mathbf{0}$ or some \mathbf{v}_j , with j > 1, is a linear combination of the preceding vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{j-1}$.

Tomorrow's lecture

Tomorrow we shall introduce and study

• bases of vector spaces,

• *coordinate systems* in vector spaces relative to bases. Section 4.3–4.4 in "Linear Algebras and Its Applications" (pages 208–225).

