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Review of last week’s lecture
Last week we looked at

the determinate of a square matrix,
Cramer’s rule,
a formula for the inverse of an invertible matrix,
the relationship between areas, volumes and
determinants.
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Today’s lecture
Today we shall introduce and study

abstract vector spaces and subspaces,
null spaces and column spaces of matrices,
linear transformations between abstract vector spaces,
kernels and ranges of linear transformations,
linear independence and linear dependence in abstract
vector spaces.
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Vector spaces

Definition
A vector space is a nonempty set V of objects, called
vectors, on which are defined two operations, called addition
and multiplication by scalars (real numbers), subject to the
ten axioms listed on the next slide.
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1 The sum of u and v, denoted by u + v, is in V .
2 u + v = v + u.
3 (u + v) + w = u + (v + w).
4 There is a zero vector 0 in V such that u + 0 = u.
5 For each u in V , there is a vector −u in V such that

u + (−u) = 0.
6 The scalar multiple of u by c, denoted by cu, is in V .
7 c(u + v) = cu + cv.
8 (c + d)u = cu + du.
9 c(du) = (cd)u.

10 1u = u.
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Examples of vector spaces
1 Let n be a positive integer. Then Rn is a vector space.
2 The set of arrows in a fixed plane (or space), starting at

one fixed point is a vector space.

v
u

u + v

−2u

3 Let m and n be positive integers. Then the set Mm×n of
all m × n matrices is a vector space.
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Examples of vector spaces
3 Let S be the set of all doubly infinite sequences of

numbers: {yk}k∈Z. If {zk}k∈Z is another element of S,
then the sum {yk}k∈Z + {zk}k∈Z is sequence
{yk + zk}k∈Z, and if c is a scalar, then c{yk}k∈Z is the
sequence {cyk}k∈Z. Then S is a vector space.

4 Let I be an interval and let V be the space of all
real-valued functions defined on I. If f ,g are in V and c
is a scalar, then f + g is the function defined by
(f + g)(x) = f (x) + g(x) for x in I, and cf is the function
defined by (cf )(x) = cf (x) for x in I. Then V is a vector
space.
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Subspaces

Definition
A subspace of a vector space V is a subset H of V that has 3
properties:

1 The zero vector of V is in H.
2 If u and v are in H, then u + v is in H.
3 If u is in H and c is a scalar, then cu is in H.

Every subspace is a vector space. Conversely, every vector
space is a subspace (of itself and possibly of other larger
spaces).
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Examples of subspaces
Let V be the space of all real-valued functions defined on R.

1 Let P be the set of all polynomials with real coefficients.
Then P is a subspace of V .

2 For each n ≥ 0, let Pn be the set of polynomials with real
coefficients of degree at most n. Then Pn is a subspace
of P (and of V ).

3 Let C(R) be the set of all real-valued continuous
functions defined on R. Then C(R) is a subspace of V .
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The zero subspace
Let V be a vector space, and let 0 be the zero vector of V .
The set consisting of only 0 is a subspace of V . This
subspace is called the zero subspace and is written as {0}.
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Subspaces spanned by sets
Let V be a vector space.

1 If v1,v2, . . . ,vn are vectors in V and c1, c2, . . . , cn are
scalars, then the vector c1v1 + c2v2 + · · ·+ cnvn is called
a linear combination of v1,v2, . . . ,vn.

2 We let Span{v1,v2, . . . ,vn} denote the set of all possible
linear combinations of v1,v2, . . . ,vn.

3 Span{v1,v2, . . . ,vn} is a subspace of V .
4 Span{v1,v2, . . . ,vn} is called the subspace spanned (or

generated) by v1,v2, . . . ,vn.
5 Given any subspace H of V , a spanning (or generating)

set for H is a set {v1,v2, . . . ,vn} in H such that
H = Span{v1,v2, . . . ,vn}.
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The null space of a matrix
Let A be an m × n matrix.

1 The null space of A, written as Nul(A), is the set of all
solution of the homogeneous equation Ax = 0.

2 Nul(A) = {x : x is in Rn and Ax = 0}.
3 Nul(A) is a subspace of Rn.
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The column space of a matrix
Let A be an m × n matrix.

1 The column space of A, written as Col(A), is the set of
all linear combinations of the columns of A.

2 If A = [a1 a2 . . . an], then Col(A) = Span{a1,a2, . . . ,an}.
3 Col(A) = {b : b = Ax for some x in Rn}.
4 Col(A) is a subspace of Rm.
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Linear transformations
Definition
A linear transformation T from a vector space V into a vector
space W is a rule that assigns to each vector x in V a unique
vector T (x) in W such that

1 T (u + v) = T (u) + T (v) for all u,v in V ,
2 T (cv) = cT (v) for all u in V all scalars c.
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Example
Let V be the set of all real-valued functions f defined on
an interval [a,b] with the property that they are
differentiable and their derivatives are continuous
functions on [a,b].
Let W = C[a,b] be the set of real-valued continuous
functions on [a,b].
Then V and W are vector spaces.
Let D : V →W be the transformation that maps f in V to
its derivative f ′.
Then D(f + g) = (f + g)′ = f ′ + g′ = D(f ) + D(g) and
D(cf ) = (cf )′ = cf ′ = cD(f ), so D is a linear
transformation.
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The kernel and range of a linear
transformation

Let V and W be vector spaces and let T be a linear
transformation from V to W .

1 The kernel (or null space) of T is the set
{u : u is in V and T (v) = 0} of all u in V for which
T (u) = 0.

2 The range of T is the set {w : w = T (v) for some v in V}
of all vectors in W of the form T (v) for some v in V .

3 The kernel of T is a subspace of V .
4 The range of T is a subspace of W .
5 If V = Rn, W = Rm, and A is the standard matrix of T ,

then the kernel of T is the null space of A, and the range
of T is the column space of A.
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Linear independence
Let V be a vector space, and let {v1,v2, . . . ,vn} be an
indexed set of vectors in V .
{v1,v2, . . . ,vn} is said to be linearly independent if the
vector equation c1v1 + c2v2 + · · ·+ cnvn = 0 has only the
trivial solution.
{v1,v2, . . . ,vn} is said to be linearly dependent if there
exist scalars c1, c2, . . . , cn not all equal to zero such that
c1v1 + c2v2 + · · ·+ cnvn = 0.
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Linear independence in Rn

Recall that if v1,v2, . . . ,vp are vectors in Rn, then the
indexed set {v1,v2, . . . ,vp} is linearly independent if and
only if the matrix [v1 v2 . . . vp] has a pivot position in
every column.
There is no similar method to determine if a indexed set
of vectors in an arbitrary vector space is linearly
independent.
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Linear dependence

Theorem 4
An indexed set {v1,v2, . . . ,vn} of two or more vectors in a
vector set V is linearly dependent if and only if v1 = 0 or
some vj , with j > 1, is a linear combination of the preceding
vectors v1,v2, . . . ,vj−1.
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Tomorrow’s lecture
Tomorrow we shall introduce and study

bases of vector spaces,
coordinate systems in vector spaces relative to bases.

Section 4.3–4.4 in “Linear Algebras and Its Applications”
(pages 208–225).
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