TMA4115-Calculus 3 Lecture 16, March 7

Toke Meier Carlsen
Norwegian University of Science and Technology Spring 2013

Yesterday's lecture

Yesterday we introduce and study determinants.

0

Today's lecture

Today we shall

- look at Cramer's rule,
- give a formula for the inverse of an invertible matrix,
- look at the relationship between areas, volumes and determinants.

The inverse of an invertible 2×2 matrix

Theorem 4

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $\operatorname{det}(A) \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

0

Cofactor expansions

When $A=\left[a_{i j}\right]$, the (i, j)-cofactor of A is the number $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$.

Theorem 1

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. Then

$$
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

and

$$
\operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
$$

for any i and any j between 1 and n.

The determinant of a triangular matrix

A triangular matrix is a square matrix $A=\left[a_{i j}\right]$ for which $a_{i j}=0$ when $i>j$.

Theorem 2

If A is a triangular matrix, then $\operatorname{det}(A)$ is the product of the entries on the main diagonal of A.

Properties of determinants

Theorem 3

Let A be a square matrix.
(1) If a multiple of one row of A is added to another row to produce a matrix B, then $\operatorname{det}(B)=\operatorname{det}(A)$.
(2) If two rows of A are interchanged to produce B, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
(3) If one row of A is multiplied by k to produce B, then $\operatorname{det}(B)=k \operatorname{det}(A)$.

Properties of determinants

Theorem 4

A square matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

0

Column operations

Theorem 5

If A is a square matrix, then $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Multiplicative property

Theorem 6

If A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Cramer's rule

For any $n \times n$ matrix A and any \mathbf{b} in \mathbb{R}^{n}, let $A_{i}(\mathbf{b})$ be the matrix obtained from A by replacing column i by the vector \mathbf{b}.

Theorem 7

Let A be an invertible $n \times n$ matrix. For any \mathbf{b} in \mathbb{R}^{n}, the unique solution \mathbf{x} of the equation $A \mathbf{x}=\mathbf{b}$ has entries given by

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}(\mathbf{b})\right)}{\operatorname{det}(A)} \text { for } i=1,2, \ldots, n .
$$

Example

Let us find the values of the parameter s for which the system

$$
\begin{array}{r}
2 s x_{1}+x_{2}=1 \\
3 s x_{1}+6 s x_{2}=2
\end{array}
$$

has a unique solution, and then find this solution.

An inverse formula

When A is an $n \times n$ matrix, then $\operatorname{adj}(A)$ is the $n \times n$ matrix whose (i, j)-entry is $C_{j i}=(-1)^{i+j} \operatorname{det}\left(A_{j i}\right)$.

Theorem 8

Let A be an invertible $n \times n$ matrix. Then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A) .
$$

Determinants as area or volume

Theorem 9

If A is a 2×2 matrix, then the area of the parallelogram determined by the columns of A is $|\operatorname{det}(A)|$.
If A is a 3×3 matrix, then the area of the parallelepiped determined by the columns of A is $|\operatorname{det}(A)|$.

Example

Let us find the area of the parallelogram whose vertices are $(-2,0),(-3,3),(2,-5)$ and $(1,-2)$.

Areas and linear transformations

If T is a transformation and S is a set in the domain of T, then we let $T(S)$ denote the set of images of points in S.

Theorem 10

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation determined by a 2×2 matrix A. If S is a region in \mathbb{R}^{2} with finite area, then area of $T(S)=|\operatorname{det}(A)|($ area of $S)$.
Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation determined by a 3×3 matrix A. If S is a region in \mathbb{R}^{2} with finite volume, then volume of $T(S)=|\operatorname{det}(A)|($ volume of $S)$.

Example

Let a and b be positive numbers. Let us find the area of the region E bounded by the ellipse whose equation is

$$
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1
$$

Problem 5 from the exam from August 2011

Let \(A=\left[\begin{array}{lll}1 \& 2 \& a
3 \& 7 \& b
2 \& 9 \& c\end{array}\right]\).

(1) Decide for which values of a, b and c, the matrix A is invertible.
(2) Find values of a, b and c for which A^{-1} is an integer matrix.

Problem 4 from August 2007

(1) A square 3×3 matrix A is given by

$$
A=\left[\begin{array}{lll}
a & 1 & 0 \\
0 & a & 1 \\
1 & 0 & a
\end{array}\right]
$$

For which real numbers a is the matrix A invertible?
(2) Find A^{-1} when $a=1$.

Plan for next week

Wednesday we shall introduce and study

- abstract vector spaces and subspaces,
- null spaces, column spaces and general linear transformations.
Sections 4.1-4.2 in "Linear Algebras and Its Applications" (pages 189-208).

Thursday we shall introduce and study

- linear independence and bases in general vector spaces,
- coordinate systems in vector spaces relative to bases.

Section 4.3-4.4 in "Linear Algebras and Its Applications" (pages 208-225).

NTNU
Norwegian University of
Science and Technology

