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Yesterday’s lecture

Yesterday we introduce and study determinants.
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Today’s lecture

Today we shall
look at Cramer’s rule,
give a formula for the inverse of an invertible matrix,
look at the relationship between areas, volumes and
determinants.
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The inverse of an invertible 2× 2
matrix

Theorem 4

Let A =

[
a b
c d

]
. If det(A) 6= 0, then A is invertible and

A−1 =
1

det(A)

[
d −b
−c a

]
.
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Cofactor expansions

When A = [aij ], the (i , j)-cofactor of A is the number
Cij = (−1)i+j det(Aij).

Theorem 1
Let A = [aij ] be an n × n matrix. Then

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

and
det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj

for any i and any j between 1 and n.
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The determinant of a triangular
matrix

A triangular matrix is a square matrix A = [aij ] for which
aij = 0 when i > j .

Theorem 2
If A is a triangular matrix, then det(A) is the product of the
entries on the main diagonal of A.
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Properties of determinants

Theorem 3
Let A be a square matrix.

1 If a multiple of one row of A is added to another row to
produce a matrix B, then det(B) = det(A).

2 If two rows of A are interchanged to produce B, then
det(B) = −det(A).

3 If one row of A is multiplied by k to produce B, then
det(B) = k det(A).
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Properties of determinants

Theorem 4
A square matrix A is invertible if and only if det(A) 6= 0.
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Column operations

Theorem 5
If A is a square matrix, then det(AT ) = det(A).
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Multiplicative property

Theorem 6
If A and B are n × n matrices, then det(AB) = det(A)det(B).
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Cramer’s rule

For any n × n matrix A and any b in Rn, let Ai(b) be the
matrix obtained from A by replacing column i by the vector b.

Theorem 7
Let A be an invertible n × n matrix. For any b in Rn, the
unique solution x of the equation Ax = b has entries given by

xi =
det(Ai(b))

det(A)
for i = 1,2, . . . ,n.
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Example

Let us find the values of the parameter s for which the system

2sx1 + x2 = 1
3sx1 + 6sx2 = 2

has a unique solution, and then find this solution.
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An inverse formula

When A is an n × n matrix, then adj(A) is the n × n matrix
whose (i , j)-entry is Cji = (−1)i+j det(Aji).

Theorem 8
Let A be an invertible n × n matrix. Then

A−1 =
1

det(A)
adj(A).
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Determinants as area or volume

Theorem 9
If A is a 2× 2 matrix, then the area of the parallelogram
determined by the columns of A is |det(A)|.
If A is a 3× 3 matrix, then the area of the parallelepiped
determined by the columns of A is |det(A)|.
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Example

Let us find the area of the parallelogram whose vertices are
(−2,0), (−3,3), (2,−5) and (1,−2).
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Areas and linear transformations

If T is a transformation and S is a set in the domain of T ,
then we let T (S) denote the set of images of points in S.

Theorem 10
Let T : R2 → R2 be the linear transformation determined by a
2× 2 matrix A. If S is a region in R2 with finite area, then
area of T (S) = |det(A)|(area of S).
Let T : R3 → R3 be the linear transformation determined by a
3× 3 matrix A. If S is a region in R2 with finite volume, then
volume of T (S) = |det(A)|(volume of S).
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Example

Let a and b be positive numbers. Let us find the area of the
region E bounded by the ellipse whose equation is

x2
1

a2 +
x2

2

b2 = 1.
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Problem 5 from the exam from
August 2011

Let A =

1 2 a
3 7 b
2 9 c

.

1 Decide for which values of a, b and c, the matrix A is
invertible.

2 Find values of a, b and c for which A−1 is an integer
matrix.
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Problem 4 from August 2007

1 A square 3× 3 matrix A is given by

A =

a 1 0
0 a 1
1 0 a


For which real numbers a is the matrix A invertible?

2 Find A−1 when a = 1.
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Plan for next week
Wednesday we shall introduce and study

abstract vector spaces and subspaces,
null spaces, column spaces and general linear
transformations.

Sections 4.1–4.2 in “Linear Algebras and Its Applications”
(pages 189–208).

Thursday we shall introduce and study
linear independence and bases in general vector
spaces,
coordinate systems in vector spaces relative to bases.

Section 4.3–4.4 in “Linear Algebras and Its Applications”
(pages 208–225).
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