TMA4115-Calculus 3
 Lecture 26, April 18

Toke Meier Carlsen
Norwegian University of Science and Technology
Spring 2013

Yesterday's lecture

Yesterday we introduced and studied

- the inner product,
- the length of a vector,
- orthogonality and orthogonal sets in \mathbb{R}^{n},
- the orthogonal complement of a subspace,
- orthogonal bases and orthonormal bases,
- orthogonal matrices.

Today's lecture

Today we shall introduce and study

- orthogonal projections,
- the Gram-Schmidt process,
- QR factorization.

Orthogonal complements

Let W be a subspace of \mathbb{R}^{n}. The set of all vectors \mathbf{z} that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp}.
W^{\perp} is a subspace of \mathbb{R}^{n}.

The orthogonal complements of $\operatorname{Row}(A)$ and $\operatorname{Col}(A)$

Theorem 3

Let A be an $m \times n$ matrix. Then
(1) $(\operatorname{Row}(A))^{\perp}=\operatorname{Nul}(A)$.
(2) $(\operatorname{Col}(A))^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.

Orthogonal sets and bases

- A set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if $\mathbf{v}_{i} \cdot \mathbf{v}_{j}=0$ whenever $i \neq j$.
- An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an orthogonal set.
- $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W if and only if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal set and $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=W$.

Theorem 5

Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n} and let \mathbf{y} be in W. Then the coordinates c_{1}, \ldots, c_{p} of \mathbf{y} relative to \mathcal{B} is given by $c_{j}=\frac{\mathbf{y} \cdot \mathbf{v}_{j}}{\mathbf{v}_{j} \cdot \mathbf{v}_{j}}$.

Orthonormal sets and bases

- An orthonormal set is an orthogonal set of unit vectors.
- $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthonormal set if and only if
$\mathbf{v}_{i} \cdot \mathbf{v}_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}$
- An orthonormal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an orthonormal set.
- $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthonormal basis for W if and only if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthonormal set and
$\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=W$.
- If $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be an orthonormal basis for a subspace W of \mathbb{R}^{n} and \mathbf{y} is in W, then the coordinates c_{1}, \ldots, c_{p} of \mathbf{y} relative to \mathcal{B} is given by $c_{j}=\mathbf{y} \cdot \mathbf{v}_{j}$.

Matrices with orthonormal columns

Theorem 6

An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I_{n}$.

Theorem 7

Let U be an $m \times n$ matrix with orthonormal columns and let \mathbf{x} and \mathbf{y} be in \mathbb{R}^{n}. Then
(1) $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$.
(2) $\|U \mathbf{x}\|=\|\mathbf{x}\|$.
(3) $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$.

0

Orthogonal matrices

A square matrix with orthonormal columns is called an orthogonal matrix.
A square matrix U is orthogonal if and only if U is invertible and $U^{-1}=U^{\top}$.

Orthogonal projections

- Let \mathbf{u} and \mathbf{y} be vectors in \mathbb{R}^{n} and assume that $\mathbf{u} \neq \mathbf{0}$.
- Let $L=\operatorname{Span}\{\mathbf{u}\}$.
- The vector $\operatorname{proj}_{L} \mathbf{y}=\frac{\mathrm{y} \cdot \mathbf{u}}{u \cdot u} \mathbf{u}$ is called the orthogonal projection of \mathbf{y} onto L (or onto \mathbf{u}).
- If $\mathbf{z}=\mathbf{y}-\operatorname{proj}_{\mathbf{L}} \mathbf{y}$, then \mathbf{z} is orthogonal to \mathbf{u} and $\mathbf{y}=\operatorname{proj}_{L} \mathbf{y}+\mathbf{z}$.
- The vector $\mathbf{z}=\mathbf{y}-\operatorname{proj}_{L} \mathbf{y}$ is called the component of \mathbf{y} orthogonal to L (or to \mathbf{u}).
- \|z\| is called the distance from \boldsymbol{y} to L.

Example

Let $\mathbf{y}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Let us compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

Solution

The line through \mathbf{u} and the origin is the line $L=\operatorname{Span}\{\mathbf{u}\}$.

$$
\operatorname{proj}_{L} \mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{7}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
7 / 2 \\
7 / 2
\end{array}\right]
$$

so the distance from \mathbf{y} to L is

$$
\begin{aligned}
&\left\|\mathbf{y}-\operatorname{proj}_{L} \mathbf{y}\right\|=\left\|\left[\begin{array}{c}
3 / 2 \\
-3 / 2
\end{array}\right]\right\| \\
&=\sqrt{(3 / 2)^{2}+(-3 / 2)^{2}}=\sqrt{9 / 2}=\frac{3}{\sqrt{2}} .
\end{aligned}
$$

The orthogonal decomposition theorem

Theorem 8

Let W be a subspace of \mathbb{R}^{n} and let \mathbf{y} be in \mathbb{R}^{n}.
(1) Then \mathbf{y} can be written uniquely in the form $\mathbf{y}=\mathbf{w}+\mathbf{z}$ where \mathbf{w} is in W and \mathbf{z} is in W^{\perp}.
(2) If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal basis for W, then $\mathbf{w}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{\rho} \cdot \mathbf{u}_{p}} \mathbf{u}_{p}$ and $\mathbf{z}=\mathbf{y}-\mathbf{w}$.

The vector $\mathbf{w}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p}$ is called the orthogonal projection of \boldsymbol{y} onto W and is denoted by $\operatorname{proj}_{W} \mathbf{y}$.

Proof of Theorem 8

Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for W and let $\mathbf{w}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{\rho} \cdot \mathbf{u}_{p}} \mathbf{u}_{p}$.
Then \mathbf{w} is in W. Let $\mathbf{z}=\mathbf{y}-\mathbf{w}$. Then
$\mathbf{z} \cdot \mathbf{u}_{k}=\mathbf{y} \cdot \mathbf{u}_{k}-\mathbf{y} \cdot \mathbf{u}_{k}=0$ for each k, so \mathbf{z} is in W^{\perp}.
Suppose $\mathbf{y}=\mathbf{w}^{\prime}+\mathbf{z}^{\prime}$ where \mathbf{w}^{\prime} is in W and \mathbf{z}^{\prime} is in W^{\perp}. Then $\mathbf{w}-\mathbf{w}^{\prime}=\mathbf{z}^{\prime}-\mathbf{z}$ is both in W and in W^{\perp}, so $\mathbf{w}-\mathbf{w}^{\prime}=\mathbf{z}^{\prime}-\mathbf{z}=\mathbf{0}$, from which it follows that $\mathbf{w}=\mathbf{w}^{\prime}$ and $\mathbf{z}=\mathbf{z}^{\prime}$.

The best approximation theorem

Theorem 9

Let W be a subspace of \mathbb{R}^{n}, let \mathbf{y} be in \mathbb{R}^{n}, and let $\mathbf{w}=\operatorname{proj}_{W} \mathbf{y}$.
Then \mathbf{w} is the closest point in W to \mathbf{y} in the sense that $\|\mathbf{y}-\mathbf{w}\|<\|\mathbf{y}-\mathbf{x}\|$ for all \mathbf{x} in W distinct from \mathbf{w}.

Proof of Theorem 9

Let \mathbf{x} be a vector in W distinct from \mathbf{w}. Then $\mathbf{w}-\mathbf{x}$ is in W and $\mathbf{y}-\mathbf{w}$ is in W^{\perp}, so $\mathbf{w}-\mathbf{x}$ and $\mathbf{y}-\mathbf{w}$ are orthogonal. It follows that

$$
\|\mathbf{y}-\mathbf{x}\|^{2}=\|(\mathbf{y}-\mathbf{w})+(\mathbf{w}-\mathbf{x})\|^{2}=\|\mathbf{y}-\mathbf{w}\|^{2}+\|\mathbf{w}-\mathbf{x}\|^{2} .
$$

Since $\mathbf{x} \neq \mathbf{w}$, it follows that $\|\mathbf{w}-\mathbf{x}\|>0$, and thus that $\|\mathbf{y}-\mathbf{w}\|<\|\mathbf{y}-\mathbf{x}\|$.

Example

Let $\mathbf{u}_{1}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right], \mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, and
$W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Let us find the closest point in W to \mathbf{y}.

Solution

The closest point in W to \mathbf{y} is $\operatorname{proj}_{W} \mathbf{y}$. We have that $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=0$, so $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for W. It follows that

$$
\begin{aligned}
\operatorname{proj}_{W} \mathbf{y} & =\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2} \\
& =\frac{9}{30}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+\frac{3}{6}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right] .
\end{aligned}
$$

Orthogonal projections onto orthonormal bases

Theorem 10
Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthonormal basis for a subspace W of \mathbb{R}^{n} and let \mathbf{y} be in \mathbb{R}^{n}.
(1) Then $\operatorname{proj}_{W} \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}$.
(2) If $U=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{p}\right]$, then $\operatorname{proj}_{W} \mathbf{y}=U U^{\top} \mathbf{y}$.

Proof of Theorem 10

Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthonormal basis for W. Then
$\mathbf{u}_{k} \cdot \mathbf{u}_{k}=1$ for each k, so
$\operatorname{proj}_{W} \mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}$ for each \mathbf{y} in \mathbb{R}^{n}.
Let $U=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{p}\right]$. Then

$$
\begin{aligned}
U U^{\top} \mathbf{y} & =\left[\mathbf{u}_{1} \ldots \mathbf{u}_{p}\right]\left[\mathbf{u}_{1} \ldots \mathbf{u}_{p}\right]^{T} \mathbf{y}=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{p}\right]\left[\begin{array}{c}
\mathbf{u}_{1} \cdot \mathbf{y} \\
\vdots \\
\mathbf{u}_{p} \cdot \mathbf{y}
\end{array}\right] \\
& =\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}=\operatorname{proj}_{w} \mathbf{y}
\end{aligned}
$$

for each \mathbf{y} in \mathbb{R}^{n}.

Example

Let $\mathbf{u}_{1}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right], \mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, and
$W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Let us use Theorem 10 to find the closest point in W to \mathbf{y}.

Solution

$$
\begin{aligned}
& \left\|\mathbf{u}_{1}\right\|^{2}=\mathbf{u}_{1} \cdot \mathbf{u}_{1}=30 \text { and }\left\|\mathbf{u}_{2}\right\|^{2}=\mathbf{u}_{2} \cdot \mathbf{u}_{2}=6 \text {, so } \\
& \left\{\left[\begin{array}{c}
2 / \sqrt{30} \\
5 / \sqrt{30} \\
-1 / \sqrt{30}
\end{array}\right],\left[\begin{array}{c}
-2 / \sqrt{6} \\
1 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right]\right\} \text { is an orthonormal basis for } W \text {. } \\
& \text { Let } U=\left[\begin{array}{cc}
2 / \sqrt{30} & -2 / \sqrt{6} \\
5 / \sqrt{30} & 1 / \sqrt{6} \\
-1 / \sqrt{30} & 1 / \sqrt{6}
\end{array}\right] .
\end{aligned}
$$

Solution

Then

$$
\begin{aligned}
U U^{T} & =\left[\begin{array}{ccc}
2 / \sqrt{30} & -2 / \sqrt{6} \\
5 / \sqrt{30} & 1 / \sqrt{6} \\
-1 / \sqrt{30} & 1 / \sqrt{6}
\end{array}\right]\left[\begin{array}{ccc}
2 / \sqrt{30} & 5 / \sqrt{30} & -1 / \sqrt{30} \\
-2 / \sqrt{6} & 1 / \sqrt{6} & 1 / \sqrt{6}
\end{array}\right] \\
& =\frac{1}{30}\left[\begin{array}{ccc}
24 & 0 & -12 \\
0 & 30 & 0 \\
-12 & 0 & 6
\end{array}\right]
\end{aligned}
$$

An algorithm for producing an orthogonal basis for a subspace of \mathbb{R}^{n}

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ be a basis for a subspace W of \mathbb{R}^{n}.
(1) Let $\mathbf{v}_{1}=\mathbf{x}_{1}$ and $W_{1}=\operatorname{Span}\left\{\mathbf{v}_{1}\right\}$.
(2) Let $\mathbf{v}_{2}=\mathbf{x}_{2}-\operatorname{proj}_{w_{1}} \mathbf{x}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot v_{1}}{\mathbf{v}_{1} \cdot v_{1}} \mathbf{v}_{1}$ and $W_{2}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
(3) If appropriate, scale \mathbf{v}_{2} to simplify later calculations.
(9) Let $\mathbf{v}_{3}=\mathbf{x}_{3}-\operatorname{proj}_{W_{2}} \mathbf{x}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$, let $W_{3}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, and scale \mathbf{v}_{3} to simplify later calculations (if appropriate).

An algorithm for producing an orthogonal basis for a subspace of \mathbb{R}^{n}

(5) Continue like this and produce vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ where, for $1<k \leq p, \mathbf{v}_{k}$ is an appropriate multiple of $\mathbf{x}_{k}-\operatorname{proj}_{\text {Span }\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}} \mathbf{x}_{k}=\mathbf{x}_{k}-\frac{\mathbf{x}_{k} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\cdots-\frac{\mathbf{x}_{k} \cdot \mathbf{v}_{k-1}}{\mathbf{v}_{k-1} \cdot \mathbf{v}_{k-1}} \mathbf{v}_{k-1}$.
(6) Then $\left\{\mathbf{v}_{1}, \ldots \mathbf{v}_{p}\right\}$ is an orthogonal basis for W.

The Gram-Schmidt process

Theorem 11

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ be a linearly independent subset of \mathbb{R}^{n}. Let

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1} \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}
\end{aligned}
$$

$$
\mathbf{v}_{p}=\mathbf{x}_{k}-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\cdots-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal set, and $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ for $1 \leq k \leq p$.

0

Proof of Theorem 11

Let $W_{k}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ for each $1 \leq k \leq p$. Then $\left\{\mathbf{v}_{1}\right\}$ is an orthogonal basis for W_{1}.
Suppose that $1 \leq k<p$ and that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal basis for W_{k}. Then $\mathbf{v}_{k+1}=\mathbf{x}_{k+1}-\operatorname{proj}_{W_{k}} \mathbf{x}_{k+1}$ is orthogonal to W_{k} and in W_{k+1}, so $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k+1}\right\}$ is an orthogonal set in W_{k+1}. Since $\operatorname{dim}\left(W_{k+1}\right)=k+1$, it follows that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k+1}\right\}$ is an orthogonal basis for W_{k+1}. It follows that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal basis for W_{k} for all $1 \leq k \leq p$.

Example

Let $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$, and
$W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$.
Let us find an orthogonal basis for W.

Solution

$\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is linearly independent and therefore a basis for W. Let $\mathbf{v}_{1}=\mathbf{x}_{1}$ and $W_{1}=\operatorname{Span}\left\{\mathbf{v}_{1}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}\right\}$. Let

$$
\mathbf{v}_{2}=\mathbf{x}_{2}-\operatorname{proj}_{w_{1}} \mathbf{x}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbf{v}_{2}^{\prime}=4 \mathbf{v}_{2}=\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right] \text {, and } \\
& W_{2}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}^{\prime}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\} .
\end{aligned}
$$

Solution

Let

$$
\begin{aligned}
\mathbf{v}_{3} & =\mathbf{x}_{3}-\operatorname{proj}_{w_{2}} \mathbf{x}_{3} \\
& =x_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}^{\prime}}{\mathbf{v}_{2}^{\prime} \cdot \mathbf{v}_{2}^{\prime}} \mathbf{v}_{2}^{\prime} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\frac{2}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{2}{12}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

Solution (cont.)

and $\mathbf{v}_{3}^{\prime}=3 \mathbf{v}_{3}=\left[\begin{array}{c}0 \\ -2 \\ 1 \\ 1\end{array}\right]$. Then
$\left\{\mathbf{v}_{1}, \mathbf{v}_{2}^{\prime}, \mathbf{v}_{3}^{\prime}\right\}=\left\{\left[\begin{array}{c}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-3 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ 1 \\ 1\end{array}\right]\right\}$ is an orthogonal basis for W.

The QR factorization

Theorem 12

If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as $A=Q R$, where

- Q is an $m \times n$ matrix whose columns form an orthonormal basis for $\operatorname{Col}(A)$,
- R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

0

Proof of Theorem 12

Let $A=\left[\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right]$ and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an orthogonal set such that $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ for each $1 \leq k \leq p$.
Then we have for each $1 \leq k \leq p$ that there exist scalars $r_{1 k}, r_{2 k}, \ldots, r_{k k}$ such that $\mathbf{x}_{k}=r_{1 k} \mathbf{v}_{1}+\ldots r_{k k} \mathbf{v}_{k}$.
We must have that $r_{k k} \neq 0$ because otherwise \mathbf{x}_{k} would be in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k_{1}}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k_{1}}\right\}$ which would contradict the assumption that $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is linearly independent.
We may assume that $r_{k k}>0$, because if $r_{k k}<0$, then we can replace \mathbf{v}_{k} by $-\mathbf{v}_{k}$ and $r_{k k}$ by $-r_{k k}$, and then $r_{k k}>0$.

Proof of Theorem 12 (cont.)

Let $Q=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{n}\right]$ and $R=\left[\begin{array}{cccc}r_{11} & r_{12} & \ldots & r_{1 n} \\ 0 & r_{22} & \ldots & r_{2 n} \\ \vdots & \vdots & \ldots & \vdots \\ 0 & 0 & \ldots & r_{n n}\end{array}\right]$.
Then $Q R=\left[\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right]=A$.

Example

Solution

$$
\begin{aligned}
& \text { Let } \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right], \mathbf{v}_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \\
& \mathbf{v}_{2}=\frac{1}{\sqrt{12}}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{v}_{3}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right] .
\end{aligned}
$$

Solution (cont.)

Then $A=\left[\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3}\right]$, and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthonormal set such that

$$
\begin{aligned}
& \mathbf{x}_{1}=2 \mathbf{v}_{1} \\
& \mathbf{x}_{2}=\frac{3}{2} \mathbf{v}_{1}+\frac{\sqrt{3}}{2} \mathbf{v}_{2} \\
& \mathbf{x}_{3}=\mathbf{v}_{1}+\frac{1}{\sqrt{3}} \mathbf{v}_{2}+\frac{\sqrt{2}}{\sqrt{3}} \mathbf{v}_{3}
\end{aligned}
$$

0

Solution (cont.)

So if we let $Q=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & \frac{-3}{\sqrt{12}} & 0 \\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{6}} \\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{6}}\end{array}\right]$ and
$R=\left[\begin{array}{ccc}2 & \frac{3}{2} & 1 \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{3}} \\ 0 & 0 & \frac{\sqrt{2}}{\sqrt{3}}\end{array}\right]$, then $Q R=A$ is a $Q R$ factorization of A.

Problem 6 from June 2010

Let A be the following matrix; find a basis for each of the spaces $\operatorname{Nul}(A), \operatorname{Col}(A),(\operatorname{Col}(A))^{\perp}$, and $\operatorname{Row}(A)$.

$$
A=\left[\begin{array}{cccccc}
1 & 2 & 0 & 1 & 2 & 1 \\
3 & 6 & 1 & 0 & 2 & -1 \\
4 & 8 & 2 & -2 & 0 & -4
\end{array}\right]
$$

Find the orthogonal projection of $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ on to $\operatorname{Col}(A)$.

Solution

We start by reducing A to its reduced echelon form.

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
1 & 2 & 0 & 1 & 2 & 1 \\
3 & 6 & 1 & 0 & 2 & -1 \\
4 & 8 & 2 & -2 & 0 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 0 & 1 & 2 & 1 \\
0 & 0 & 1 & -3 & -4 & -4 \\
0 & 0 & 2 & -6 & -8 & -8
\end{array}\right] \rightarrow} \\
{\left[\begin{array}{ccccccc}
1 & 2 & 0 & 1 & 2 & 1 \\
0 & 0 & 1 & -3 & -4 & -4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

Solution

We see that $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 4 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 4 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for
$\operatorname{Nul}(A)$, that $\left\{\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$ is a basis for $\operatorname{Col}(A)$,

Solution (cont.)

and that $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -3 \\ -4 \\ -4\end{array}\right]\right\}$ is a basis for $\operatorname{Row}(A)$.

Solution (cont.)

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text { is in }(\operatorname{Col}(A))^{\perp} \text { if and only if }} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]=x_{1}+3 x_{2}+4 x_{3}=0 \text { and }} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=x_{2}+2 x_{3}=0 .}
\end{aligned}
$$

We reduce the coefficient matrix of the system

$$
\begin{array}{r}
x_{1}+3 x_{2}+4 x_{3}=0 \\
x_{2}+2 x_{3}=0
\end{array}
$$

to its reduced echelon form.

Solution (cont.)

$$
\left[\begin{array}{lll}
1 & 3 & 4 \\
0 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 2
\end{array}\right]
$$

We see that $(\operatorname{Col}(A))^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]\right\}$, so $\left\{\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]\right\}$ is a basis for $(\operatorname{Col}(A))^{\perp}$.

Solution (cont.)

The orthogonal projection of $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ on to $(\operatorname{Col}(A))^{\perp}$ is

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]}
\end{aligned}\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]=\frac{1}{9}\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right] \text { so the orthogonal } .
$$

Problem 5 from June 2011

Let V be the column space of the matrix

$$
\left[\begin{array}{cccc}
1 & 3 & 0 & 1 \\
2 & 1 & 5 & -3 \\
-1 & -1 & -2 & 1
\end{array}\right]
$$

and let

$$
\mathbf{b}=\left[\begin{array}{l}
1 \\
7 \\
3
\end{array}\right] .
$$

Find the nearest point in V to \mathbf{b} (that is, the orthogonal projection of \mathbf{b} on to V).

Solution

We start by reducing the matrix to an echelon form.
$\left[\begin{array}{cccc}1 & 3 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ -1 & -1 & -2 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 3 & 0 & 1 \\ 0 & -5 & 5 & -5 \\ 0 & 2 & -2 & 2\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 3 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
We see that $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]\right\}$ is a basis for V. We then find
an orthogonal basis for V by using the Gram-Schmidt
process on $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]\right\}$.

Solution (cont.)

$$
\left[\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right]-\frac{\left[\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]}{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right]-\frac{6}{6}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]
$$

so $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]\right\}$ is an orthogonal basis for V.

Solution (cont.)

We then have that

$$
\begin{aligned}
& \begin{aligned}
\operatorname{proj}_{V} \mathbf{b} & =\frac{\left[\begin{array}{l}
1 \\
7 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]}{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+\frac{\left[\begin{array}{l}
1 \\
7 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]}{\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]}\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \\
& =\frac{12}{6}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+\frac{-5}{5}\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
5 \\
-2
\end{array}\right] .
\end{aligned} \\
& \text { Norwegian University of } \\
& \text { Science and Technology }
\end{aligned}
$$

Problem 5 from December 2010

Let $V \subseteq \mathbb{R}^{4}$ be the solution space of the linear system

$$
\begin{array}{r}
x+y-z+w=0 \\
x+2 y-2 z+w=0
\end{array}
$$

(1) Find an orthogonal basis for V.
(2) Find the orthogonal projection of $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ on to V.
(3) Find an orthogonal basis for \mathbb{R}^{4} in which the first two first basis vectors are the once we found in (1).

NTNU
Norwegian University of
Science and Technology

Solution

We start by reducing the coefficient matrix of the system to its reduced echelon form.

$$
\left[\begin{array}{llll}
1 & 1 & -1 & 1 \\
1 & 2 & -2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 1 & -1 & 1 \\
0 & 1 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

We see that $\left\{\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$ is a basis for V and that it is
orthogonal.

$$
\left\{\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]\right\} \text { is a basis for } V \text { and that it is }
$$

Solution (cont.)

The orthogonal projection of \mathbf{b} on to V is

Solution (cont.)

Let A be the coefficient matrix of the system. Then

$$
\begin{aligned}
& V^{\perp}=(\operatorname{Nul}(A))^{\perp}=\operatorname{Row}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]\right\} \text {, so } \\
& \left\{\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]\right\} \text { is an orthogonal basis for } \mathbb{R}^{4} .
\end{aligned}
$$

Plan for next week

Wednesday we shall look at

- least-squares problems,
- applications to linear models.

Sections 6.5-6.6 in "Linear Algebras and Its Applications" (pages 360-375).
Thursday we shall introduce and study

- symmetric matrices,
- quadratic forms.

Sections 7.1-7.2 in "Linear Algebras and Its Applications" (pages 393-407).

