TMA4115-Calculus 3
 Lecture 23, April 10

Toke Meier Carlsen
Norwegian University of Science and Technology
Spring 2013

Review of last week's lecture

Last week we introduce and studied

- eigenvectors, eigenvalues and eigenspaces of square matrices,
- the characteristic polynomial of a square matrix,
- diagonal matrices,
- how to diagonalizable a matrix.

Today's lecture

Today we shall study

- real matrices with complex eigenvalues,
- systems of first order differential equations.

Eigenvalues and eigenvectors

Let A be an $n \times n$ matrix. Recall that:

- A scalar λ is an eigenvalue of A if and only if λ is a zero of the characteristic polynomial $\operatorname{det}\left(A-\lambda I_{n}\right)$ of A.
- If λ is an eigenvalue of A, then an eigenvector of A corresponding to λ is a nontrivial solution to the equation $A \mathbf{x}=\lambda \mathbf{x}$.

0

Complex eigenvalues and eigenvectors

- A real matrix A might have a complex eigenvalue λ in which case the corresponding eigenvectors are also complex.
- If λ is an eigenvalue of A with corresponding eigenvector \mathbf{v}, then $\bar{\lambda}$ is an eigenvalue of A with corresponding eigenvector $\overline{\mathbf{V}}$.

Example

Let $A=\left[\begin{array}{cc}4 & -2 \\ 1 & 6\end{array}\right]$. Then
$\operatorname{det}\left(A-\lambda I_{2}\right)=\left|\begin{array}{cc}4-\lambda & -2 \\ 1 & 6-\lambda\end{array}\right|=(4-\lambda)(6-\lambda)+2=\lambda^{2}-10 \lambda+26$
and since the zeros of $\lambda^{2}-10 \lambda+26$ are
$\lambda=\frac{10 \pm \sqrt{10^{2}-4 \cdot 26}}{2}=\frac{10 \pm \sqrt{-4}}{2}=\frac{10 \pm 2 i}{2}=5 \pm i$, it follows that the eigenvalues of A are $5 \pm i$.

Example (cont.)

$A-(5+i) I_{2}=\left[\begin{array}{cc}4-(5+i) & -2 \\ 1 & 6-(5+i)\end{array}\right]=\left[\begin{array}{cc}-1-i & -2 \\ 1 & 1-i\end{array}\right]$,
so $\mathbf{v}_{1}=\left[\begin{array}{c}1-i \\ -1\end{array}\right]$ is an eigenvalue of A corresponding to the eigenvalue $\lambda_{1}=5+i$.
It follows that $\mathbf{v}_{2}=\left[\begin{array}{c}1+i \\ -1\end{array}\right]$ is an eigenvalue of A corresponding to the eigenvalue $\lambda_{2}=5-i$.

Example

Let $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ where a and b are real numbers not both equal to 0 . Then
$\operatorname{det}\left(C-\lambda I_{2}\right)=\left|\begin{array}{cc}a-\lambda & -b \\ b & a-\lambda\end{array}\right|=(a-\lambda)^{2}+b^{2}=\lambda^{2}-2 a \lambda+a^{2}+b^{2}$,
and since the zeros of $\lambda^{2}-2 a \lambda+a^{2}+b^{2}$ are
$\lambda=\frac{2 a \pm \sqrt{4 a^{2}-\left(a^{2}+b^{2}\right)}}{2}=\frac{2 a \pm \sqrt{-b^{2}}}{2}=\frac{2 a \pm 2 b i}{2}=a \pm b i$, it follows
that the eigenvalues of C are $a \pm b i$.
Let $r=|a+b i|=\sqrt{a^{2}+b^{2}}$ and $\theta=\operatorname{Arg}(a+b i)$. Then $a=r \cos \theta$ and $b=r \sin \theta$, so
$\left[\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right]\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]=C$.

Example (cont.)

It follows that the linear transformation $\mathbf{x} \mapsto C \mathbf{x}$ may be viewed as the composition of a rotation by $\operatorname{Arg}(a+b i)$ followed by a scaling by $|a+b i|$.

Rotation and scaling in \mathbb{R}^{2}

Let $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ where a and b are real numbers which are not both zero, and let $r=|a+i b|=\sqrt{a^{2}+b^{2}}$ and $\theta=\operatorname{Arg}(a+i b)$.
Then $C=\left[\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right]\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ and the transformation $\mathbf{x} \mapsto C \mathbf{x}$ may be viewed as the composition of a rotation by $\operatorname{Arg}(a+b i)$ followed by a scaling by $|a+b i|$.

Example

Let us return to the example where $A=\left[\begin{array}{cc}4 & -2 \\ 1 & 6\end{array}\right]$. We have seen that the eigenvalues of A are $5 \pm i$, and that $\mathbf{v}_{1}=\left[\begin{array}{c}1-i \\ -1\end{array}\right]$ is an eigenvalue of A corresponding to the eigenvalue $\lambda_{1}=5+i$, and that $\mathbf{v}_{2}=\left[\begin{array}{c}1+i \\ -1\end{array}\right]$ is an eigenvalue of A corresponding to the eigenvalue $\lambda_{2}=5-i$.

$$
\begin{aligned}
& \text { Let } P=\left[\operatorname{Re}\left(\mathbf{v}_{1}\right) \operatorname{Im}\left(\mathbf{v}_{1}\right)\right]=\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right] \text { and } \\
& C=\left[\begin{array}{cc}
\operatorname{Re}\left(\lambda_{1}\right) & \operatorname{Im}\left(\lambda_{1}\right) \\
-\operatorname{Im}\left(\lambda_{1}\right) & \operatorname{Re}\left(\lambda_{1}\right)
\end{array}\right]=\left[\begin{array}{cc}
5 & 1 \\
-1 & 5
\end{array}\right] .
\end{aligned}
$$

Example (cont.)

Then P is invertible, and

$$
\begin{aligned}
& A P=\left[\begin{array}{cc}
4 & -2 \\
1 & 6
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
6 & -4 \\
-5 & -1
\end{array}\right] \text { and } \\
& {\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
5 & 1 \\
-1 & 5
\end{array}\right]=\left[\begin{array}{cc}
6 & -4 \\
-5 & -1
\end{array}\right], \text { so } A=P C P^{-1}}
\end{aligned}
$$

Real 2×2 matrices with complex eigenvalues

Theorem 9

Let A be a real 2×2 matrix with a complex eigenvalue $\lambda=a-b i(b \neq 0)$ and an associated eigenvector \mathbf{v} in \mathbb{C}^{2}. Then

$$
A=P C P^{-1}
$$

where $P=[\operatorname{Re}(\mathbf{v}) \operatorname{Im}(\mathbf{v})]$ and $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

0
Norwegian University of
Science and Technology

Problem 6 from the exam from December 2011

Let $A=\left[\begin{array}{cc}1 & -\sqrt{3} \\ \sqrt{3} & 1\end{array}\right]$.
(0) Show that $\mathbf{v}=\left[\begin{array}{l}1 \\ i\end{array}\right]$ is a (complex) eigenvector of A.
(2) Find the complex eigenvalues and complex eigenvectors of A.

Solution

$$
\begin{aligned}
A \mathbf{v} & =\left[\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
i
\end{array}\right]=\left[\begin{array}{c}
1-\sqrt{3} i \\
\sqrt{3}-i
\end{array}\right] \\
& =(1-\sqrt{3} i)\left[\begin{array}{l}
1 \\
i
\end{array}\right]=(1-\sqrt{3} i) \mathbf{v}
\end{aligned}
$$

(because $\left.(1-\sqrt{3} i) i=i-\sqrt{3} i^{2}=\sqrt{3}-i\right)$, so \mathbf{v} is an eigenvector of A with corresponding eigenvalue $(1-\sqrt{3} i)$. It follows that $\overline{\mathbf{v}}=\left[\begin{array}{c}1 \\ -i\end{array}\right]$ is an eigenvector of A with corresponding eigenvalue $(1+\sqrt{3} i)$.

Solution (cont.)

Since A is a 2×2 matrix, it cannot have more than 2 eigenvalues, and the multiplicity of $(1-\sqrt{3} i)$ and $(1+\sqrt{3} i)$ must be 1 .
It follows that the eigenvalues of A are $(1-\sqrt{3} i)$ and
$(1+\sqrt{3} i)$ and that the eigenvectors of A are
$\left\{t\left[\begin{array}{l}1 \\ i\end{array}\right]: t \in \mathbb{C}, t \neq 0\right\}$ and $\left\{t\left[\begin{array}{c}1 \\ -i\end{array}\right]: t \in \mathbb{C}, t \neq 0\right\}$.

Systems of first order differential equations

A system of first order differential equations with constant coefficients is a system of differential equations

$$
\begin{gathered}
x_{1}^{\prime}=a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
x_{2}^{\prime}=a_{21} x_{1}+\cdots+a_{2 n} x_{n} \\
\vdots \\
x_{n}^{\prime}=a_{n 1} x_{1}+\cdots+a_{n n} x_{n}
\end{gathered}
$$

where x_{1}, \ldots, x_{n} are differentiable functions of t with derivatives $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$, and the $a_{i j}$ are constants.

NTNU
Norwegian University of
Science and Technology

Example

$$
\begin{aligned}
& x_{1}^{\prime}(t)=5 x_{1}(t)-x_{2}(t) \\
& x_{2}^{\prime}(t)=-x_{1}(t)+5 x_{2}(t)
\end{aligned}
$$

is a system of first order differential equations with constant coefficients.

Systems of first order differential equations

If we let

$$
\mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right] \quad \mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right] \text { and } A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right]
$$

then we write the system as $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

Example

The system

$$
\begin{aligned}
& x_{1}^{\prime}(t)=5 x_{1}(t)-x_{2}(t) \\
& x_{2}^{\prime}(t)=-x_{1}(t)+5 x_{2}(t)
\end{aligned}
$$

can be written as $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ where $\mathbf{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$ and
$A=\left[\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right]$.

Systems of first order differential equations

- If $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are solutions to the system $\mathbf{x}^{\prime}(t)=\boldsymbol{A} \mathbf{x}(t)$, then any linear combination $c_{1} \mathbf{u}_{1}+\cdots+c_{k} \mathbf{u}_{k}$ of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ is also a solution to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
- The solution set of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is an n-dimensional vector space, so if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are n linearly independent solutions to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, then any solution to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.

0

Example

Let us find the general solution to the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ where $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 4\end{array}\right]$.

Solution

The equation $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is equivalent to the system

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-x_{1}(t) \\
& x_{2}^{\prime}(t)=4 x_{2}(t)
\end{aligned}
$$

The solution to that system is $x_{1}(t)=c_{1} e^{-t}$ and $x_{2}(t)=c_{2} e^{4 t}$, so the general solution to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is
$\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 0\end{array}\right] e^{-t}+c_{2}\left[\begin{array}{l}0 \\ 1\end{array}\right] e^{4 t}$.

Attractors, repellers and saddle points

Let $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ be a system of first order differential equations.

- The origin is called an attractor (or a sink) if every solution of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ converges to $\mathbf{0}$ as $t \rightarrow \infty$.
- The origin is called a repeller (or a source) if every solution of $\mathbf{x}^{\prime}(t)=\boldsymbol{A} \mathbf{x}(t)$ converges to $\mathbf{0}$ as $t \rightarrow-\infty$.
- The origin is called a saddle point if there is a solution \mathbf{x}_{1} of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ that converges to $\mathbf{0}$ as $t \rightarrow \infty$ and a solution \mathbf{x}_{2} of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ that converges to $\mathbf{0}$ as $t \rightarrow-\infty$.

Example

Let us return to the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ where $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 4\end{array}\right]$.
We have seen that the general solution of the system is
$\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 0\end{array}\right] e^{-t}+c_{2}\left[\begin{array}{l}0 \\ 1\end{array}\right] e^{4 t}$.
Since $\mathbf{x}_{1}(t)=\left[\begin{array}{l}1 \\ 0\end{array}\right] e^{-t} \rightarrow \mathbf{0}$ as $t \rightarrow \infty$, and $\mathbf{x}_{2}(t)=\left[\begin{array}{l}0 \\ 1\end{array}\right] e^{4 t} \rightarrow \mathbf{0}$ as $t \rightarrow-\infty$, the origin is a saddle point in this example.

Example

Let us find the general solution to the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ that satisfies $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, where $A=\left[\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right]$, and determine if the origin is an attractor, repeller, or a saddle point.

Solution

The eigenvalues of A are 4 and 6 .
$\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector corresponding to 4.
is an eigenvector corresponding to 6.
Let $\mathbf{x}_{1}(t)=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$ and $\mathbf{x}_{2}(t)=\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{6 t}$. Then
$A \mathbf{x}_{1}(t)=A\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}=4\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}=\mathbf{x}_{1}^{\prime}(t)$ and
$A \mathbf{x}_{2}(t)=A\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{6 t}=6\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{6 t}=\mathbf{x}_{2}^{\prime}(t)$, so \mathbf{x}_{1} and \mathbf{x}_{2} are solutions to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

Solution (cont.)

Suppose that $c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=\mathbf{0}$. By evaluating at $t=0$ we get $c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\mathbf{0}$. Since $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ are linearly independent, it follows that $c_{1}=c_{2}=0$. This shows that $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are linearly independent. It follows that $\left\{\mathbf{x}_{1}(t), \mathbf{x}_{2}(t)\right\}$ is a basis for the set of solutions of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, and thus that any solution of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is a linear combination of $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$.
Let $\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)$. Then
$\mathbf{x}(0)=c_{1} \mathbf{x}_{1}(0)+c_{2} \mathbf{x}_{2}(0)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}c_{1}+c_{2} \\ c_{1}-c_{2}\end{array}\right]$, so
$\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$ if and only if $c_{1}+c_{2}=2$ and $c_{1}-c_{\mathcal{L}}=4$.

Solution (cont.)

The solution to the system

$$
\begin{aligned}
& c_{1}+c_{2}=2 \\
& c_{1}-c_{2}=4
\end{aligned}
$$

is $c_{1}=3, c_{2}=-1$, so
$\mathbf{x}(t)=3 \mathbf{x}_{1}(t)-\mathbf{x}_{2}(t)=3\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}-\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{6 t}$ is a solution to
$\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ that satisfies $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$.

Solution (cont.)

Since the general solution of the system is
$\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{6 t}$ and
$c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{6 t} \rightarrow \mathbf{0}$ as $t \rightarrow-\infty$ for all c_{1} and c_{2}, we
see that the origin is a repeller.

Norwegian University of
Science and Technology

The general solution to a system of first order differential equations

If an $n \times n$ matrix A has n linear independent eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the general solution of the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

where c_{1}, \ldots, c_{n} are constants.

0

Tomorrow's lecture

Tomorrow we shall continue studying systems of first order differential equations. Section 5.7 in "Linear Algebras and Its Applications" (pages 295-301, and 311-319), and Section 4.2 in "Second-Order Equations" (pages xlv-xlix).

