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Review of last week’s lecture
Last week we introduce and studied

the dimension of a vector space,
the rank of a matrix,
Markov chains.
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Today’s lecture
Today we shall introduce and study

eigenvectors, eigenvalues and eigenspaces of square
matrices,
the characteristic polynomial of a square matrix.
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Eigenvectors and eigenvalues of
square matrices

Let A be an n × n matrix.
An eigenvector of A is a nonzero vector x such that
Ax = λx for some scalar λ.
An eigenvalue of A is a scalar λ such that the equation
Ax = λx has a nontrivial solution.
If λ is an eigenvalue and x is an eigenvector such that
Ax = λx, then x is called an eigenvector (of A)
corresponding to λ and λ is called the eigenvalue (of A)
corresponding to x.
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Example
Consider the matrix A =

[
3 −2
2 −2

]
.

A
[
2
1

]
=

[
3 −2
2 −2

] [
2
1

]
=

[
4
2

]
= 2

[
2
1

]
,

so 2 is an eigenvalue of A, and
[
2
1

]
is an eigenvector of A

corresponding to the eigenvalue 2.

A
[
1
2

]
=

[
3 −2
2 −2

] [
1
2

]
=

[
−1
−2

]
= −1

[
1
2

]
,

so −1 is an eigenvalue of A, and
[
1
2

]
is an eigenvector of A

corresponding to the eigenvalue −1.
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Eigenspaces
Let A be an n × n matrix and let λ be an eigenvalue of A.

A vector x ∈ Rn is an eigenvector of A corresponding to
λ if and only if x is a nontrivial solution of the equation
(A− λIn)x = 0.
The set of of all solution of the equation (A− λIn)x = 0
(i.e., Nul(A− λIn)) is called the eigenspace (of A)
corresponding to λ.
Notice that an eigenspace of A is a subspace of Rn.
Notice also that 0 belongs to any eigenspace, even
though it is not an eigenvector.
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Example
Consider again the matrix A =

[
3 −2
2 −2

]
. We have seen that

2 and −1 are eigenvalues of A. Let us find the corresponding
eigenspaces.
The equation Ax = 2x is equivalent to the equation
(A− 2I2)x = 0. To solve the latter equation, we reduce the
matrix (A− 2I2) its reduced echelon form.[

1 −2
2 −4

]
→
[
1 −2
0 0

]
.

We see that the general solution to the equation

(A− 2I2)x = 0 is x =

[
x1

x2

]
=

[
2x2

x2

]
= x2

[
2
1

]
where x2 is a

free parameter.
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Example (cont.)
It follows that the eigenspace of A corresponding to the

eigenvalue 2 is Span
{[

2
1

]}
.

Similar, the equation Ax = −1x is equivalent to the equation
(A + I2)x = 0. To solve the latter equation, we reduce the
matrix (A + I2) its reduced echelon form.[

4 −2
2 −1

]
→
[
1 −1/2
2 −1

]
→
[
1 −1/2
0 0

]
.

We see that the general solution to the equation (A+ I2)x = 0

is x =

[
x1

x2

]
=

[
1
2x2

x2

]
= x2

[
1/2
1

]
where x2 is a free parameter.
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Example (cont.)
It follows that the eigenspace of A corresponding to the

eigenvalue −1 is Span
{[

1/2
1

]}
.
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Example
Let A =

[
−1 0
0 1

]
. Then the linear

transformation x→ Ax sends a
vector x to the vector which
corresponds to the point we get by
reflecting the point corresponding to
x in the x2-axis.
It follows that −1 is an eigenvalue of
A and that the corresponding
eigenspace is the x1-axis, and that
1 is an eigenvalue of A and that the
corresponding eigenspace is the
x2-axis.

x Ax
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Linearly independent eigenvectors

Theorem 2
If v1, . . . ,vr are eigenvectors that correspond to distinct
eigenvalues λ1, . . . , λr of an n × n matrix A, then the set
{v1, . . . ,vr} is linearly independent.
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Proof of Theorem 2
Assume, for contradiction, that {v1, . . . ,vr} is linearly
dependent. Then there is a 1 ≤ p < r and such that
{v1,v2, . . . ,vp} is linearly independent and
vp+1 = c1v1 + c2v2 + · · ·+ cpvp for some scalars c1, c2, . . . , cp.
Then

λp+1vp+1 = Avp+1 = A(c1v1+· · ·+cpvp) = c1λ1v1+· · ·+cpλpvp

and

λp+1vp+1 = λp+1(c1v1+ · · ·+cpvp) = c1λp+1v1+ · · ·+cpλp+1vp

so
0 = c1(λ1 − λp+1)v1 + · · ·+ cp(λp − λp+1)vp.
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Proof of Theorem 2
Since {v1,v2, . . . ,vp} is linearly independent and
λk − λp+1 6= 0 for each k = 1, . . . ,p, it follows that
c1 = c2 = · · · = cp = 0. But then
vp+1 = c1v1 + c2v2 + · · ·+ cpvp = 0 which contradicts the fact
that vp+1 is an eigenvector. So it most be the case that
{v1, . . . ,vr} is linearly independent.
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Finding a basis of an eigenspace
Let A be an n× n matrix and let λ be an eigenvalue of A. The
eigenspace of A corresponding to λ is Nul(A− λIn). So we
can find a basis for the eigenspace of A corresponding to λ
by:

1 row reducing A− λIn to its reduced echelon form,
2 write the solutions to the equation (A− λIn)x = 0 (which

is equivalent to the equation Ax− 0) as a linear
combinations of vectors using the free variables as
parameters.

3 Then these vectors form a basis of the eigenspace of A
corresponding to λ.
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Example

Let A =

4 −1 6
2 1 6
2 −1 8

.

Let us determine if 2 is an eigenvalue of A, and let us find a
basis for the corresponding eigenspace if it is.
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Solution
2 is an eigenvalue of A if and only if the equation
(A− 2I3)x = 0 has a nontrivial solution in which case the
solution set of the equation is the eigenspace of A
corresponding to 2. We find the solution set of the equation
(A− 2I3)x = 0 by reducing A− 2I3 to its reduced echelon
form.

A− 2I3 =

2 −1 6
2 −1 6
2 −1 6

→
2 −1 6

0 0 0
0 0 0

→
1 −1/2 3

0 0 0
0 0 0

 .
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Solution (cont.)
We see that the general solution to the equation
(A− 2I3)x = 0 is

x =

x1

x2

x3

 =

1
2x2 − 3x3

x2

x3

 = x2

1/2
1
0

+ x3

−3
0
1

 where x2

and x3 are free parameters.
It follows that 2 is an eigenvalue of A, and that
1/2

1
0

 ,
−3

0
1

 is a basis for eigenspace of A

corresponding to the eigenvalue 2.
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Finding the eigenvalues of a matrix
Let A be an n × n matrix.

A scalar λ is an eigenvalue of A if and only if
det(A− λIn) = 0.
The equation det(A− λIn) = 0 is called the characteristic
equation of A.
If we regard λ as an independent variable, then
det(A− λIn) is a polynomial of degree n in λ.
det(A− λIn) is called the characteristic polynomial of A.
The eigenvalues of A are the zeros of the characteristic
polynomial det(A− λIn) of A.
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Example
Let us find the eigenvalues of the matrix A =

[
3 0
4 −2

]
.

The characteristic polynomial of A is

det(A−λI2) =
∣∣∣∣3− λ 0

4 −2− λ

∣∣∣∣ = (3−λ)(−2−λ) = λ2−λ−6.

The solutions of the characteristic equation λ2 − λ− 6 = 0
are 3 and −2. So the eigenvalues of A are 3 and −2.
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Example
In a certain region, 5% of a city’s population moves to the
surrounding suburbs each year, and 3% of the suburban
population moves into the city. In 2000, there were 600,000
residents in the city and 400,000 in the suburbs.
Let us try to find a formula for the number of the people in the
city and the number of people in the suburbs for each year.
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Solution (cont.)
Let x =

[
the population in the city in year 2000 + i

the population in the suburbs in year 2000 + i

]
and A =

[
0.95 0.03
0.05 0.97

]
. Then xi+1 = Axi for all i . It follows that

xi = Aix0 for all i .
The characteristic polynomial of A is

det(A− λI2) =
∣∣∣∣0.95− λ 0.03

0.05 0.97− λ

∣∣∣∣
= (0.95− λ)(0.97− λ)− 0.0015

= λ2 − 1.92λ+ 0.92.

The solutions of the characteristic equation
λ2 − 1.92λ+ 0.92 = 0 are 1 and 0.92.
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Solution (cont.)
It follows that the eigenvalues of A are 1 and 0.92.

The matrix A− I2 =

[
−0.05 0.03
0.05 −0.03

]
is row equivalent to the

matrix
[
−5 3
0 0

]
. It follows that

[
3
5

]
is an eigenvector of A

corresponding to the eigenvalue 1.

The matrix A− 0.92I2 =

[
0.03 0.03
0.05 50.05

]
is row equivalent to

the matrix
[
1 −1
0 0

]
. It follows that

[
1
−1

]
is an eigenvector of

A corresponding to the eigenvalue 0.92.
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Solution (cont.)
B =

{[
3
5

]
,

[
1
−1

]}
is a basis for R2, so there exists scalars c1

and c2 such that x0 = c1

[
3
5

]
+ c2

[
1
−1

]
.[

c1

c2

]
is the coordinate vector of x0 with respect to B, so

[
c1

c2

]
=

[
3 1
5 −1

]−1

x0 =
1
−8

[
−1 −1
−5 3

] [
600,000
400,000

]
=

[
125,000
225,000

]
,

and x0 = 125,000
[
3
5

]
+ 225,000

[
1
−1

]
.
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Solution (cont.)
It follows that

xi = Aix0 = Ai

(
125,000

[
3
5

]
+ 225,000

[
1
−1

])
=

125,000
[
3
5

]
+ 225,000 · (0.92)i

[
1
−1

]
for all i .

Since (0.92)i → 0 as i →∞, it follows that

xi → 125,000
[
3
5

]
=

[
375,000
625,000

]
as i →∞.
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Markov chains
A probability vector is a vector with nonnegative entries
that add up to 1.
A stochastic matrix is a square matrix whose columns
are probability vectors.
A Markov chain is a sequence x0,x1,x2, . . . of probability
vectors together with a stochastic matrix P such that
x1 = Px0, x2 = Px1, x3 = Px2, . . . .
A steady-state vector (or an equilibrium vector) for a
stochastic matrix P is a probability vector q such that
Pq = q.
So a steady-state vector for a stochastic matrix P is a
probability vector which is an eigenvector of P
corresponding to the eigenvalue 1.
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Problem 7 from the exam from
August 2010

Let A =

 2 0 2
1 −2 −1
−1 6 5

.

1 Solve the equation Ax = 0.
2 Find the eigenvalues and eigenvectors of A.
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Solution
To solve the equation Ax = 0, we reduce A to its reduced
echelon form. 2 0 2

1 −2 −1
−1 6 5

→
 1 0 1

1 −2 −1
−1 6 5

→
1 0 1

0 −2 −2
0 6 6

→
1 0 1

0 1 1
0 6 6

→
1 0 1

0 1 1
0 0 0


We see that the general solution to the equation Ax = 0 is

x =

x1

x2

x3

 =

−x3

−x3

x3

 = x3

−1
−1
1

 where x3 is a free parameters.
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Solution (cont.)
The characteristic polynomial of A is

det(A− λI3) =

∣∣∣∣∣∣
2− λ 0 2

1 −2− λ −1
−1 6 5− λ

∣∣∣∣∣∣
= (2− λ)

∣∣∣∣−2− λ −1
6 5− λ

∣∣∣∣+ 2
∣∣∣∣ 1 −2− λ
−1 6

∣∣∣∣
= (2− λ)

(
(−2− λ)(5− λ) + 6

)
+ 2
(
6 + (−2− λ)

)
= −λ3 + 5λ2 − 4λ = −λ(λ2 − 5λ+ 4).

The zeros of λ2 − 5λ+ 4 are 1 and 4, so the eigenvalues of A
are 0,1 and 4.
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Solution (cont.)
It follows from the first part that the eigenvectors of A
corresponding to the eigenvalue of 0 are the vectorst

−1
−1
1

 : t 6= 0

.
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Solution (cont.)
To find the eigenvectors of A corresponding to the eigenvalue
4, we solve the equation (A− 4I3)x = 0. To solve the
equation (A− 4I3)x = 0, we reduce A− 4I3 to its reduced
echelon form.

A−4I3 =

−2 0 2
1 −6 −1
−1 6 1

→
 1 0 −1

1 −6 −1
−1 6 1

→
1 0 −1

0 −6 0
0 6 0

→
1 0 −1

0 −6 0
0 0 0

→
1 0 −1

0 1 0
0 0 0
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Solution (cont.)
We see that the solution to the equation (A− 4I3)x = 0 is

x =

x1

x2

x3

 =

x3

0
x3

 = x3

1
0
1

 where x3 is a free parameters. It

follows that the eigenvectors of A corresponding to the

eigenvalue of 4 are the vectors

t

1
0
1

 : t 6= 0

.
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Solution (cont.)
To find the eigenvectors of A corresponding to the eigenvalue
1, we solve the equation (A− I3)x = 0. To solve the equation
(A− I3)x = 0, we reduce A− I3 to its reduced echelon form.

A−I3 =

 1 0 2
1 −3 −1
−1 6 4

→
1 0 2

0 −3 −3
0 6 6

→
1 0 2

0 −3 −3
0 0 0

→
1 0 2

0 1 1
0 0 0
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Solution (cont.)
We see that the solution to the equation (A− I3)x = 0 is

x =

x1

x2

x3

 =

−2x3

−x3

x3

 = x3

−2
−1
1

 where x3 is a free

parameters. It follows that the eigenvectors of A
corresponding to the eigenvalue of 1 are the vectorst

−2
−1
1

 : t 6= 0

.
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Problem 6 from August 2012
For which numbers a does R2 have a basis of eigenvectors

of the matrix
[
0 a
1 0

]
?
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Solution
Let A =

[
0 a
1 0

]
. The characteristic polynomial of A is

det(A− λI2) =
∣∣∣∣−λ a

1 −λ

∣∣∣∣ = λ2 − a.

If a > 0, then A has two distinct eigenvalues ±
√

a. If v1 is an
eigenvector corresponding to

√
a, and v2 is an eigenvector

corresponding to −
√

a, then {v1,v2} is linearly independent,
and therefore a basis of R2.
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Solution (cont.)
If a = 0, then A has one eigenvalue 0. The corresponding

eigenspace is Nul(A) = Span
{[

0
1

]}
which is

one-dimensional. It follows that all eigenvectors of A are
linearly dependent, and thus that R2 does not have a basis of
eigenvectors of A is this case.
If a < 0, then A does not have any real eigenvalues, and
therefore R2 does not have a basis of eigenvectors of A is
this case (A has complex eigenvalues, but the corresponding
eigenvectors will not belong to R2 and therefore no
eigenvectors of A will form a basis for R2)..
So R2 have a basis of eigenvectors of A if and only if a > 0.
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Tomorrow’s lecture
Tomorrow we shall look at

diagonal matrices,
how to diagonalizable a matrix.

Section 5.3 in “Linear Algebras and Its Applications” (pages
281—288).
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