TMA4115-Calculus 3
 Lecture 21, April 3

Toke Meier Carlsen
Norwegian University of Science and Technology Spring 2013

Review of last week's lecture

Last week we introduce and studied

- the dimension of a vector space,
- the rank of a matrix,
- Markov chains.

Today's lecture

Today we shall introduce and study

- eigenvectors, eigenvalues and eigenspaces of square matrices,
- the characteristic polynomial of a square matrix.

Norwegian University of
Science and Technology

Eigenvectors and eigenvalues of square matrices

Let A be an $n \times n$ matrix.

- An eigenvector of A is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ.
- An eigenvalue of A is a scalar λ such that the equation $A \mathbf{x}=\lambda \mathbf{x}$ has a nontrivial solution.
- If λ is an eigenvalue and \mathbf{x} is an eigenvector such that $A \mathbf{x}=\lambda \mathbf{x}$, then \mathbf{x} is called an eigenvector (of A) corresponding to λ and λ is called the eigenvalue (of A) corresponding to \boldsymbol{x}.

Example

Consider the matrix $A=\left[\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right]$.

$$
A\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]=2\left[\begin{array}{l}
2 \\
1
\end{array}\right],
$$

so 2 is an eigenvalue of A, and $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is an eigenvector of A corresponding to the eigenvalue 2 .

$$
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]=-1\left[\begin{array}{l}
1 \\
2
\end{array}\right],
$$

so -1 is an eigenvalue of A, and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector of A corresponding to the eigenvalue -1 .

NTNU
Norwegian University of Science and Technology

Eigenspaces

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A.

- A vector $\mathbf{x} \in \mathbb{R}^{n}$ is an eigenvector of A corresponding to λ if and only if x is a nontrivial solution of the equation $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}$.
- The set of of all solution of the equation $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}$ (i.e., $\operatorname{Nul}\left(A-\lambda I_{n}\right)$) is called the eigenspace (of A) corresponding to λ.
- Notice that an eigenspace of A is a subspace of \mathbb{R}^{n}.
- Notice also that $\mathbf{0}$ belongs to any eigenspace, even though it is not an eigenvector.

Example

Consider again the matrix $A=\left[\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right]$. We have seen that 2 and -1 are eigenvalues of A. Let us find the corresponding eigenspaces.
The equation $A \mathbf{x}=2 \mathbf{x}$ is equivalent to the equation $\left(A-2 I_{2}\right) \mathbf{x}=\mathbf{0}$. To solve the latter equation, we reduce the matrix ($A-2 I_{2}$) its reduced echelon form.

$$
\left[\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

We see that the general solution to the equation
$\left(A-2 I_{2}\right) \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}2 x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}2 \\ 1\end{array}\right]$ where x_{2} is a free parameter.

Example (cont.)

It follows that the eigenspace of A corresponding to the eigenvalue 2 is Span $\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$.
Similar, the equation $A \mathbf{x}=-1 \mathbf{x}$ is equivalent to the equation $\left(A+I_{2}\right) \mathbf{x}=\mathbf{0}$. To solve the latter equation, we reduce the matrix $\left(A+I_{2}\right)$ its reduced echelon form.

$$
\left[\begin{array}{ll}
4 & -2 \\
2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 / 2 \\
2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 / 2 \\
0 & 0
\end{array}\right] .
$$

We see that the general solution to the equation $\left(A+I_{2}\right) \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}1 / 2 \\ 1\end{array}\right]$ where x_{2} is a free parameter.

Example (cont.)

It follows that the eigenspace of A corresponding to the eigenvalue -1 is $\operatorname{Span}\left\{\left[\begin{array}{c}1 / 2 \\ 1\end{array}\right]\right\}$.

Example

Let $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$. Then the linear transformation $\mathbf{x} \rightarrow A \mathbf{x}$ sends a vector \mathbf{x} to the vector which corresponds to the point we get by reflecting the point corresponding to \mathbf{x} in the x_{2}-axis.
It follows that -1 is an eigenvalue of A and that the corresponding eigenspace is the x_{1}-axis, and that
 1 is an eigenvalue of A and that the corresponding eigenspace is the x_{2}-axis.

Linearly independent eigenvectors

Theorem 2

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.

Proof of Theorem 2

Assume, for contradiction, that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is linearly dependent. Then there is a $1 \leq p<r$ and such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is linearly independent and $\mathbf{v}_{p+1}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}$ for some scalars $c_{1}, c_{2}, \ldots, c_{\bar{p}}$. Then
$\lambda_{p+1} \mathbf{v}_{p+1}=A \mathbf{v}_{p+1}=A\left(c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}\right)=c_{1} \lambda_{1} \mathbf{v}_{1}+\cdots+c_{p} \lambda_{p} \mathbf{v}_{p}$ and
$\lambda_{p+1} \mathbf{v}_{p+1}=\lambda_{p+1}\left(c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}\right)=c_{1} \lambda_{p+1} \mathbf{v}_{1}+\cdots+c_{p} \lambda_{p+1} \mathbf{v}_{p}$ so

$$
\mathbf{0}=c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \mathbf{v}_{1}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) \mathbf{v}_{p}
$$

Proof of Theorem 2

Since $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is linearly independent and $\lambda_{k}-\lambda_{p+1} \neq 0$ for each $k=1, \ldots, p$, it follows that $c_{1}=c_{2}=\cdots=c_{p}=0$. But then
$\mathbf{v}_{p+1}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}$ which contradicts the fact that \mathbf{v}_{p+1} is an eigenvector. So it most be the case that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.

Finding a basis of an eigenspace

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The eigenspace of A corresponding to λ is $\operatorname{Nul}\left(A-\lambda I_{n}\right)$. So we can find a basis for the eigenspace of A corresponding to λ by:
(1) row reducing $A-\lambda I_{n}$ to its reduced echelon form,
(2) write the solutions to the equation $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}$ (which is equivalent to the equation $A \mathbf{x}-\mathbf{0}$) as a linear combinations of vectors using the free variables as parameters.
(3) Then these vectors form a basis of the eigenspace of A corresponding to λ.

Example

Let $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$.
Let us determine if 2 is an eigenvalue of A, and let us find a basis for the corresponding eigenspace if it is.

Solution

2 is an eigenvalue of A if and only if the equation $\left(A-2 I_{3}\right) \mathbf{x}=0$ has a nontrivial solution in which case the solution set of the equation is the eigenspace of A corresponding to 2 . We find the solution set of the equation $\left(A-2 I_{3}\right) \mathbf{x}=0$ by reducing $A-2 I_{3}$ to its reduced echelon form.

$$
A-2 I_{3}=\left[\begin{array}{lll}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & -1 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 / 2 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Solution (cont.)

We see that the general solution to the equation
$\left(A-2 I_{3}\right) \mathbf{x}=0$ is
$\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} x_{2}-3 x_{3} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{c}1 / 2 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]$ where x_{2}
and x_{3} are free parameters.
It follows that 2 is an eigenvalue of A, and that
$\left\{\left[\begin{array}{c}1 / 2 \\ 1 \\ 0\end{array}\right]\right.$
is a basis for eigenspace of A
corresponding to the eigenvalue 2.

Finding the eigenvalues of a matrix

Let A be an $n \times n$ matrix.

- A scalar λ is an eigenvalue of A if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.
- The equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ is called the characteristic equation of A.
- If we regard λ as an independent variable, then $\operatorname{det}\left(A-\lambda I_{n}\right)$ is a polynomial of degree n in λ.
- $\operatorname{det}\left(A-\lambda I_{n}\right)$ is called the characteristic polynomial of A.
- The eigenvalues of A are the zeros of the characteristic polynomial $\operatorname{det}\left(A-\lambda I_{n}\right)$ of A.

Example

Let us find the eigenvalues of the matrix $A=\left[\begin{array}{cc}3 & 0 \\ 4 & -2\end{array}\right]$.
The characteristic polynomial of A is
$\operatorname{det}\left(A-\lambda I_{2}\right)=\left|\begin{array}{cc}3-\lambda & 0 \\ 4 & -2-\lambda\end{array}\right|=(3-\lambda)(-2-\lambda)=\lambda^{2}-\lambda-6$.
The solutions of the characteristic equation $\lambda^{2}-\lambda-6=0$ are 3 and -2 . So the eigenvalues of A are 3 and -2 .

Example

In a certain region, 5\% of a city's population moves to the surrounding suburbs each year, and 3% of the suburban population moves into the city. In 2000, there were 600,000 residents in the city and 400,000 in the suburbs.
Let us try to find a formula for the number of the people in the city and the number of people in the suburbs for each year.

Solution (cont.)

Let $\mathbf{x}=\left[\begin{array}{c}\text { the population in the city in year } 2000+i \\ \text { the population in the suburbs in year } 2000+i\end{array}\right]$
and $A=\left[\begin{array}{ll}0.95 & 0.03 \\ 0.05 & 0.97\end{array}\right]$. Then $\mathbf{x}_{i+1}=A \mathbf{x}_{i}$ for all i. It follows that
$\mathbf{x}_{i}=A^{i} \mathbf{x}_{0}$ for all i.
The characteristic polynomial of A is

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{2}\right) & =\left|\begin{array}{cc}
0.95-\lambda & 0.03 \\
0.05 & 0.97-\lambda
\end{array}\right| \\
& =(0.95-\lambda)(0.97-\lambda)-0.0015 \\
& =\lambda^{2}-1.92 \lambda+0.92 .
\end{aligned}
$$

The solutions of the characteristic equation $\lambda^{2}-1.92 \lambda+0.92=0$ are 1 and 0.92 .

NTNU
Norwegian University of
Science and Technology
Science and Technology

Solution (cont.)

It follows that the eigenvalues of A are 1 and 0.92 .
The matrix $A-I_{2}=\left[\begin{array}{cc}-0.05 & 0.03 \\ 0.05 & -0.03\end{array}\right]$ is row equivalent to the matrix $\left[\begin{array}{cc}-5 & 3 \\ 0 & 0\end{array}\right]$. It follows that $\left[\begin{array}{l}3 \\ 5\end{array}\right]$ is an eigenvector of A corresponding to the eigenvalue 1 .
The matrix $A-0.92 I_{2}=\left[\begin{array}{cc}0.03 & 0.03 \\ 0.05 & 50.05\end{array}\right]$ is row equivalent to the matrix $\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$. It follows that $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is an eigenvector of A corresponding to the eigenvalue 0.92 .

Solution (cont.)

$\mathcal{B}=\left\{\left[\begin{array}{l}3 \\ 5\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$ is a basis for \mathbb{R}^{2}, so there exists scalars c_{1}
and c_{2} such that $\mathbf{x}_{0}=c_{1}\left[\begin{array}{l}3 \\ 5\end{array}\right]+c_{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
$\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ is the coordinate vector of \mathbf{x}_{0} with respect to \mathcal{B}, so
$\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right]^{-1} \mathbf{x}_{0}=\frac{1}{-8}\left[\begin{array}{cc}-1 & -1 \\ -5 & 3\end{array}\right]\left[\begin{array}{l}600,000 \\ 400,000\end{array}\right]=\left[\begin{array}{c}125,000 \\ 225,000\end{array}\right]$
and $\mathbf{x}_{0}=125,000\left[\begin{array}{l}3 \\ 5\end{array}\right]+225,000\left[\begin{array}{c}1 \\ -1\end{array}\right]$.

Solution (cont.)

It follows that
$\mathbf{x}_{i}=A^{i} \mathbf{x}_{0}=A^{i}\left(125,000\left[\begin{array}{l}3 \\ 5\end{array}\right]+225,000\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)=$
$125,000\left[\begin{array}{l}3 \\ 5\end{array}\right]+225,000 \cdot(0.92)^{i}\left[\begin{array}{c}1 \\ -1\end{array}\right]$ for all i.
Since (0.92) ${ }^{i} \rightarrow 0$ as $i \rightarrow \infty$, it follows that
$\mathbf{x}_{i} \rightarrow 125,000\left[\begin{array}{l}3 \\ 5\end{array}\right]=\left[\begin{array}{l}375,000 \\ 625,000\end{array}\right]$ as $i \rightarrow \infty$.

Markov chains

- A probability vector is a vector with nonnegative entries that add up to 1.
- A stochastic matrix is a square matrix whose columns are probability vectors.
- A Markov chain is a sequence $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ of probability vectors together with a stochastic matrix P such that $\mathbf{x}_{1}=P \mathbf{x}_{0}, \mathbf{x}_{2}=P \mathbf{x}_{1}, \mathbf{x}_{3}=P \mathbf{x}_{2}, \ldots$
- A steady-state vector (or an equilibrium vector) for a stochastic matrix P is a probability vector \mathbf{q} such that $P \mathbf{q}=\mathbf{q}$.
- So a steady-state vector for a stochastic matrix P is a probability vector which is an eigenvector of P corresponding to the eigenvalue 1.

Problem 7 from the exam from August 2010

Let $A=\left[\begin{array}{ccc}2 & 0 & 2 \\ 1 & -2 & -1 \\ -1 & 6 & 5\end{array}\right]$.
(1) Solve the equation $A \mathbf{x}=\mathbf{0}$.
(2) Find the eigenvalues and eigenvectors of A.

Solution

To solve the equation $A \mathbf{x}=\mathbf{0}$, we reduce A to its reduced echelon form.

$$
\begin{aligned}
{\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -2 & -1 \\
-1 & 6 & 5
\end{array}\right] } & \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & -2 & -1 \\
-1 & 6 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & -2 & -2 \\
0 & 6 & 6
\end{array}\right] \rightarrow \\
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 6 & 6
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

We see that the general solution to the equation $A \mathbf{x}=\mathbf{0}$ is
$\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-x_{3} \\ -x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$ where x_{3} is a free parameters.

NTNU
Norwegian University of
Science and Technology

Solution (cont.)

The characteristic polynomial of A is

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{3}\right) & =\left|\begin{array}{ccc}
2-\lambda & 0 & 2 \\
1 & -2-\lambda & -1 \\
-1 & 6 & 5-\lambda
\end{array}\right| \\
& =(2-\lambda)\left|\begin{array}{cc}
-2-\lambda & -1 \\
6 & 5-\lambda
\end{array}\right|+2\left|\begin{array}{cc}
1 & -2-\lambda \\
-1 & 6
\end{array}\right| \\
& =(2-\lambda)((-2-\lambda)(5-\lambda)+6)+2(6+(-2-\lambda)) \\
& =-\lambda^{3}+5 \lambda^{2}-4 \lambda=-\lambda\left(\lambda^{2}-5 \lambda+4\right) .
\end{aligned}
$$

The zeros of $\lambda^{2}-5 \lambda+4$ are 1 and 4 , so the eigenvalues of A are 0,1 and 4 .

Solution (cont.)

It follows from the first part that the eigenvectors of A corresponding to the eigenvalue of 0 are the vectors $\left\{t\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]: t \neq 0\right\}$.

Solution (cont.)

To find the eigenvectors of A corresponding to the eigenvalue 4 , we solve the equation $\left(A-4 I_{3}\right) \mathbf{x}=\mathbf{0}$. To solve the equation $\left(A-4 I_{3}\right) \mathbf{x}=\mathbf{0}$, we reduce $A-4 I_{3}$ to its reduced echelon form.

$$
\begin{array}{r}
A-4 I_{3}=\left[\begin{array}{ccc}
-2 & 0 & 2 \\
1 & -6 & -1 \\
-1 & 6 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & -6 & -1 \\
-1 & 6 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & -6 & 0 \\
0 & 6 & 0
\end{array}\right] \\
{\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & -6 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
\mathbf{Q}
\end{array}
$$

Solution (cont.)

We see that the solution to the equation $\left(A-4 I_{3}\right) \mathbf{x}=\mathbf{0}$ is
$\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{3} \\ 0 \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ where x_{3} is a free parameters. It
follows that the eigenvectors of A corresponding to the
eigenvalue of 4 are the vectors $\left\{t\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]: t \neq 0\right\}$.

Solution (cont.)

To find the eigenvectors of A corresponding to the eigenvalue 1, we solve the equation $\left(A-I_{3}\right) \mathbf{x}=\mathbf{0}$. To solve the equation $\left(A-I_{3}\right) \mathbf{x}=\mathbf{0}$, we reduce $A-I_{3}$ to its reduced echelon form.

$$
\begin{aligned}
A-I_{3}=\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & -3 & -1 \\
-1 & 6 & 4
\end{array}\right] & \rightarrow\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -3 & -3 \\
0 & 6 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -3 & -3 \\
0 & 0 & 0
\end{array}\right] \rightarrow \\
& {\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

0
Norwegian University of
Science and Technology

Solution (cont.)

We see that the solution to the equation $\left(A-I_{3}\right) \mathbf{x}=\mathbf{0}$ is
$\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-2 x_{3} \\ -x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right]$ where x_{3} is a free
parameters. It follows that the eigenvectors of A corresponding to the eigenvalue of 1 are the vectors

$$
\left\{t\left[\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right]: t \neq 0\right\}
$$

Problem 6 from August 2012

For which numbers a does \mathbb{R}^{2} have a basis of eigenvectors of the matrix $\left[\begin{array}{ll}0 & a \\ 1 & 0\end{array}\right]$?

Solution

Let $A=\left[\begin{array}{ll}0 & a \\ 1 & 0\end{array}\right]$. The characteristic polynomial of A is
$\operatorname{det}\left(A-\lambda I_{2}\right)=\left|\begin{array}{cc}-\lambda & a \\ 1 & -\lambda\end{array}\right|=\lambda^{2}-\boldsymbol{a}$.
If $a>0$, then A has two distinct eigenvalues $\pm \sqrt{a}$. If \mathbf{v}_{1} is an eigenvector corresponding to \sqrt{a}, and \mathbf{v}_{2} is an eigenvector corresponding to $-\sqrt{a}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent, and therefore a basis of \mathbb{R}^{2}.

Solution (cont.)

If $a=0$, then A has one eigenvalue 0 . The corresponding eigenspace is $\operatorname{Nul}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ which is
one-dimensional. It follows that all eigenvectors of A are linearly dependent, and thus that \mathbb{R}^{2} does not have a basis of eigenvectors of A is this case.
If $a<0$, then A does not have any real eigenvalues, and therefore \mathbb{R}^{2} does not have a basis of eigenvectors of A is this case (A has complex eigenvalues, but the corresponding eigenvectors will not belong to \mathbb{R}^{2} and therefore no eigenvectors of A will form a basis for \mathbb{R}^{2})..
So \mathbb{R}^{2} have a basis of eigenvectors of A if and only if $a>0$.

Tomorrow's lecture

Tomorrow we shall look at

- diagonal matrices,
- how to diagonalizable a matrix.

Section 5.3 in "Linear Algebras and Its Applications" (pages 281-288).

