TMA4115-Calculus 3 Lecture 2, Jan 17

Toke Meier Carlsen
Norwegian University of Science and Technology Spring 2013

Course web page

Information about the course can be found at http://wiki.math.ntnu.no/tma4115/2013v.

Review of yesterday's lecture

Yesterday we introduced complex numbers and studied

- the real part, the imaginary part, the absolute value (or modulus), and the argument of a complex number,
- addition and multiplication of complex numbers,
- and complex conjugation.

NTNU
Norwegian University of
Science and Technology

Today's lecture

Today we will study

- polar representation of complex numbers,
- de Moivre's Theorem,
- how complex numbers can be used to derive trigonometric identities,
- roots of complex numbers.

Complex numbers

- A complex number is a number which can be written as $a+i b$ where a and b are real numbers and i satisfies $i^{2}=-1$.
- A complex number $z=a+i b$ can be represented as the point (a, b) in the plane.

- If $z=a+i b$, then a is called the real part of z and is denoted by $\operatorname{Re}(z)$.
- b is called the imaginary part of z and is denoted by $\operatorname{Im}(z)$.

Complex numbers

- If $z=a+i b$, then the length $\sqrt{a^{2}+b^{2}}$ of the line from $(0,0)$ to (a, b) is called the modulus or the absolute value of z and is denoted by $|z|$.
- The angle between the line through (0,0) and (a, b) and the
 positive part of the real axis is called the argument of z and is denoted by $\arg (z)$.

NTNU
Norwegian University of
Science and Technology

Complex numbers

- $\arg (z)$ is not unique. If $\theta=\arg (z)$, then also
$\theta+2 \pi=\arg (z)$. If we want to be precise, then $\arg (z)$ is really the set of all angles θ which satisfies that if we rotate the positive part of the real axis by θ, then it lands on the line through $(0,0)$ and (a, b).
- The unique value of $\arg (z)$ in the interval $(-\pi, \pi]$ is called the principal argument of z and is denoted by $\operatorname{Arg}(z)$.
- Notice that $\arg (z)$ and $\operatorname{Arg}(z)$ are not defined if
$z=(0,0)$.

Addition of complex numbers

- If $z_{1}=a+b i$ and $z_{2}=c+d i$, then

$$
z_{1}+z_{2}=(a+c)+(b+d) i .
$$

- $\operatorname{Re}\left(z_{1}+z_{2}\right)=\operatorname{Re}\left(z_{1}\right)+\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}+z_{2}\right)=\operatorname{Im}\left(z_{1}\right)+\operatorname{Im}\left(z_{2}\right)$.
- $z_{1}+z_{2}=z_{2}+z_{1}$.
- $\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$.
- $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.

Multiplication of complex numbers

- If $z_{1}=a+b i$ and $z_{2}=c+d i$, then
$z_{1} z_{2}=(a+b i)(c+d i)=a c+a d i+b c i+b d i^{2}=$ $(a c-b d)+(a d+b c) i$.
- $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$ and $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.
- $z_{1} z_{2}=z_{2} z_{1}$.
- $\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right)$.
- $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$.

Complex conjugation

- When $z=a+b i$ is a complex number, then the number $a-b i$ is called the conjugate of z and is denoted by \bar{z}.
- $\operatorname{Re}(\bar{z})=\operatorname{Re}(z)$ and $\operatorname{Im}(\bar{z})=-\operatorname{Im}(z)$.
- We get \bar{z} by reflecting z in the real line.
- $|\bar{z}|=|z| \operatorname{and} \arg (\bar{z})=-\arg (z)$.

$$
\bullet \bar{z}
$$

D

Complex conjugation

- $z=\bar{z}$ if and only if $\operatorname{Im}(z)=0$.
- $z=-\bar{z}$ if and only if $\operatorname{Re}(z)=0$.
- $\overline{z+w}=\bar{z}+\bar{w}$.
- $\overline{z w}=\bar{z} \bar{w}$.
- $z \bar{z}=(a+b i)(a-b i)=a^{2}-a b i+a b i-b^{2} i^{2}=a^{2}+b^{2}=|z|^{2}$.

Division of complex numbers

- If z and w are complex numbers and $w \neq 0$, then
$\frac{z}{w}=\frac{z \bar{W}}{w \bar{w}}=\frac{z \bar{W}}{|w|^{2}}$.
- $\frac{a+b i}{c+d i}=\frac{(a+b i)(c-d i)}{c^{2}+d^{2}}=\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} i$.
- $\arg \left(\frac{z}{w}\right)=\arg (z)-\arg (w)$ and $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$.

Example

$$
\frac{1+i}{2-i}=\frac{(1+i)(2+i)}{(2-i)(2+i)}=\frac{2-1+3 i}{5}=\frac{1}{5}+\frac{3}{5} i
$$

Polar representation

- Every complex number z can be written on the form $r(\cos \theta+i \sin \theta)$ where r and θ are real numbers and $r \geq 0$. This is called the polar form of z.
- Notice that if
$z=r(\cos \theta+i \sin \theta)$, then $|z|=r$ and $\arg (z)=\theta$.

Multiplication and division using polar representations

Recall that

- $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$ and $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$, and that
- $\arg \left(\frac{z}{w}\right)=\arg (z)-\arg (w)$ and $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$.

It follows that if $z=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and
$z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$, then

- $z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)$ and
- $\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)$ (provided $\left.r_{2} \neq 0\right)$.

Exercise 46, page xviii

Express each of the complex numbers $z=3+i \sqrt{3}$ and $w=-1+i \sqrt{3}$ in polar form. Use these expressions to calculate $z w$ and z / w.

Solution

$|z|=\sqrt{3^{2}+(\sqrt{3})^{2}}=\sqrt{12}$,
$\operatorname{Arg}(z)=\arctan \left(\frac{\operatorname{lm}(z)}{\operatorname{Re}(z)}\right)=\arctan \left(\frac{\sqrt{3}}{3}\right)=\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$,
$|w|=\sqrt{\left(-1^{2}\right)+(\sqrt{3})^{2}}=\sqrt{4}=2$, and
$\operatorname{Arg}(w)=\arccos \left(\frac{\operatorname{Re}(w)}{|w|}\right)=\arccos \left(\frac{-1}{2}\right)=\frac{2 \pi}{3}$,
so $|z w|=|z||w|=(\sqrt{12}) 2=4 \sqrt{3}$,
$\arg (z w)=\operatorname{Arg}(z)+\operatorname{Arg}(w)=\frac{\pi}{6}+\frac{2 \pi}{3}=\frac{5 \pi}{6}$,
$|z / w|=|z| /|w|=\sqrt{12} / 2=\sqrt{3}$, and
$\arg (z / w)=\operatorname{Arg}(z)-\operatorname{Arg}(w)=\frac{\pi}{6}-\frac{2 \pi}{3}=\frac{-\pi}{2}$, from which it follows that $z w=4 \sqrt{3}(\cos (5 \pi / 6)+i \sin (5 \pi / 6))=$
$4 \sqrt{3}\left(\frac{-\sqrt{3}}{2}+\frac{1}{2} i\right)=-6+2 \sqrt{(3)} i$, and $z / w=$
$\sqrt{3}(\cos (-\pi / 2)+\sin (-\pi / 2))=-\sqrt{3} i$

Complex numbers and trigonometric identities

Polar representations of complex numbers can be used to derive trigonometric identities like

- $\cos \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)$
- $\sin \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)$

Proof

We have that
$\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)$
$=\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$=\cos \theta_{1} \cos \theta_{2}+i \cos \theta_{1} \sin \theta_{2}+i \sin \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}$
$=\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}+i\left(\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2}\right)$
from which it follows that
$\cos \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)$ and $\sin \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)$.

de Moivre's Theorem

- Recall that $\arg (z w)=\arg (z)+\arg (w)$ and $|z w|=|z||w|$.
- It follows that
$(r(\cos \theta+i \sin \theta))^{n}=r^{n}(\cos (n \theta)+i \sin (n \theta))$.
- We have in particular that

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta) .
$$

- This formula is know as de Moivre's formula.

Complex numbers and trigonometric identities

Polar representations of complex numbers can be used to derive trigonometric identities like

- $\cos \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)$
- $\sin \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)$
- $\cos (3 \theta)=\cos ^{3}(\theta)-3 \cos (\theta) \sin ^{2}(\theta)$
- $\sin (3 \theta)=3 \cos ^{2}(\theta) \sin (\theta)-\sin ^{3}(\theta)$

Proof

It follows from de Moivre's formula and the binomial formula that
$\cos (3 \theta)+i \sin (3 \theta)$

$$
\begin{aligned}
& =\cos ^{3}(\theta)+3 i \cos ^{2}(\theta) \sin (\theta)+3 i^{2} \cos (\theta) \sin ^{2}(\theta)+i^{3} \sin ^{3}(\theta) \\
& =\cos ^{3}(\theta)-3 \cos (\theta) \sin ^{2}(\theta)+i\left(3 \cos ^{2}(\theta) \sin (\theta)-\sin ^{3}(\theta)\right)
\end{aligned}
$$

from which it follows that $\cos (3 \theta)=\cos ^{3}(\theta)-3 \cos (\theta) \sin ^{2}(\theta)$ and $\sin (3 \theta)=3 \cos ^{2}(\theta) \sin (\theta)-\sin ^{3}(\theta)$.

Roots of complex numbers

- If z is a complex number and n is a positive integer, then an n'th root of z is a complex number w satisfying $w^{n}=z$.
- Every complex number different from 0 has n different n'th roots.

Example

Let us find the 3 cube roots (3rd roots) of $z=-2-2 i$. $|z|=\sqrt{(-2)^{2}+(-2)^{2}}=\sqrt{8}$ and $\operatorname{Arg}(z)=\frac{-3 \pi}{4}$, so it follows from de Movire's formula that

$$
\begin{aligned}
w^{3}=z \Longleftrightarrow & |w|^{3}=|z|=\sqrt{8} \text { and } \\
& 3 \arg (w)=\arg (z)=\frac{-3 \pi}{4}+2 \pi k, k \in \mathbb{Z} \\
\Longleftrightarrow & |w|=\sqrt[3]{\sqrt{8}}=8^{1 / 6}=\sqrt{2} \text { and } \\
& \arg w=\frac{-\pi}{4}+\frac{2 \pi k}{3}, k \in \mathbb{Z} .
\end{aligned}
$$

Example

So the 3 cube roots of $z=-2-2 i$ are

$$
\begin{aligned}
w_{0} & =\sqrt{2}(\cos (-\pi / 4)+i \sin (-\pi / 4)) \\
& =\sqrt{2}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right)=1-i \\
w_{1} & =\sqrt{2}(\cos (5 \pi / 12)+i \sin (5 \pi / 12)) \\
& =\sqrt{2}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}+i \frac{1+\sqrt{3}}{2 \sqrt{2}} i\right)=\frac{\sqrt{3}-1}{2}+i \frac{1+\sqrt{3}}{2}
\end{aligned}
$$

$$
w_{2}=\sqrt{2}(\cos (13 \pi / 12)+i \sin (13 \pi / 12))
$$

$$
=\sqrt{2}\left(-\frac{1+\sqrt{3}}{2 \sqrt{2}}+i \frac{\sqrt{3}-1}{2 \sqrt{2}} i\right)=-\frac{1+\sqrt{3}}{2}+i \frac{\sqrt{3}-1}{2}
$$

Roots of complex numbers

If z is a complex number different from 0 and n is a positive integer, then the n'th roots of z are

$$
w_{k}=|z|^{1 / n}\left(\cos \left(\frac{\arg (z)+2 \pi k}{n}\right)+i \sin \left(\frac{\arg (z)+2 \pi k}{n}\right)\right)
$$

where $k=0,1, \ldots, n-1$.

Roots of unity

- If n is a positive integer, then a n 'th root of 1 is called a n'th root of unity.
- The n n'th roots of unity are

$$
u_{n}=\cos \left(\frac{2 \pi k}{n}\right)+i \sin \left(\frac{2 \pi k}{n}\right)
$$

for $k=0,1, \ldots, n-1$.

0

The 6 6'th root of unity

$$
u_{2}=\frac{-1}{2}+i \frac{\sqrt{3}}{2}
$$

$$
\bullet u_{1}=\frac{1}{2}+i \frac{\sqrt{3}}{2}
$$

$$
\begin{array}{l|l}
& \\
\hline u_{3}=-1 & u_{0} \stackrel{\bullet}{=}
\end{array}
$$

$$
u_{4}=\frac{-1}{2}-i \frac{\sqrt{3}}{2}
$$

- $u_{5}=\frac{1}{2}-i \frac{\sqrt{3}}{2}$

NTNU
Norwegian University of Science and Technology

Roots of complex numbers

If z is a complex number different from $0, n$ is a positive integer and w is an n 'th root of z, then the other $n-1 n \prime$ th roots of z are $w u_{1}, w u_{2}, \ldots w u_{n-1}$ where $u_{1}, u_{2}, \ldots u_{n-1}$ are the $n-1$ n'th roots of unity different from 1 .

Problem 1 from the exam from August 2012

Write all of the solutions of $z^{3}=1$ in the form $z=x+i y$. Write the solutions of $z^{3}=\frac{-3+i}{\sqrt{2}(2+i)}$ in the form $z=x+i y$ and draw the solutions in the complex plane.

Solution

The solutions of $z^{3}=1$ are the 3 cube roots of unity

$$
\begin{aligned}
u_{0} & =\cos (0)+i \sin (0)=1 \\
u_{1} & =\cos (2 \pi / 3)+i \sin (2 \pi / 3)=-\frac{1}{2}+i \frac{\sqrt{3}}{2} \\
u_{2} & =\cos (4 \pi / 3)+i \sin (4 \pi / 3)=-\frac{1}{2}-i \frac{\sqrt{3}}{2} \\
\frac{-3+i}{\sqrt{2}(2+i)} & =\frac{(-3+i)(2-i)}{\sqrt{2}(2+i)(2-i)}=\frac{-6+3 i+2 i-1}{(\sqrt{2}) 5} \\
& =\frac{-5+5 i}{\sqrt{2} 5}=\frac{-1}{\sqrt{2}}+i \frac{1}{\sqrt{2}} \text { Q } \begin{array}{l}
\text { NTNU } \\
\text { Sciegian Universitiv of and fechnology }
\end{array}
\end{aligned}
$$

Solution

So $\left|\frac{-3+i}{\sqrt{2}(2+i)}\right|=\left|\frac{-1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right|=\sqrt{(-1 / \sqrt{2})^{2}+(1 / \sqrt{2})^{2}}=1$ and $\operatorname{Arg}\left(\frac{-3+i}{\sqrt{2}(2+i)}\right)=\operatorname{Arg}\left(\frac{-1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=\frac{3 \pi}{4}$. It follows that the solutions of $z^{3}=\frac{-3+i}{\sqrt{2}(2+i)}$ are

$$
\begin{aligned}
z_{0} & =\cos (\pi / 4)+i \sin (\pi / 4)=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}} \\
z_{1} & =z_{0} u_{1}=\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \\
& =\frac{-1-\sqrt{3}}{2 \sqrt{2}}+i \frac{\sqrt{3}-1}{2 \sqrt{2}}
\end{aligned}
$$

Solution

and

$$
\begin{aligned}
z_{2} & =z_{0} u_{2}=\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right) . \\
& =\frac{-1+\sqrt{3}}{2 \sqrt{2}}+i \frac{-\sqrt{3}-1}{2 \sqrt{2}} .
\end{aligned}
$$

Problem 1 from the exam from June 2009

Find all complex numbers $z=x+i y$ which satisfy the equality $|z+1-i \sqrt{3}|=|z-1+i \sqrt{3}|$. Draw the solutions in á diagram.

Solution

Let $w=1-i \sqrt{3}$. Then
$|z+1-i \sqrt{3}|=|z-(-w)|$ is the distance between z and $-w$, and $|z-w|=|z-1+i \sqrt{3}|$ is the distance between z and w. So $|z+1-i \sqrt{3}|=|z-1+i \sqrt{3}|$ if and only
 if z has the same to $-w$ as it has to w.
The set of complex numbers z which
satisfy the equality
$|z+1-i \sqrt{3}|=|z-1+i \sqrt{3}|$ is therefore
the set of points that lie on the line L which goes through 0 and which is perpendicular to the line between w and $-w$.

Solution

If we rotate the point w by 90 degrees, then we get a point that lies on the line L. Since rotating w by 90 degrees is the same as multiplying w by i, it follows that $w i=\sqrt{3}+i$ lies on the line L.
So the points that lie on the line L are the points of the form $t(\sqrt{3}+i)$ where t is a real number. Thus, $|z+1-i \sqrt{3}|=|z-1+i \sqrt{3}|$ if and
only if $z=t(\sqrt{3}+i)$ for some real number Thus, $|z+1-i \sqrt{3}|=|z-1+i \sqrt{3}|$ if and
only if $z=t(\sqrt{3}+i)$ for some real number t.

Next week's lectures

Wednesday we shall

- use complex numbers to solve polynomial equations,
- look at the fundamental theorem of algebra,
- introduce the complex exponential function,
- and study extensions of trigonometric functions to the complex numbers.
Thursday we shall
- study second-order differential equations,
- introduce the Wronskian,
- completely solve second-order homogeneous linear differential equations with constant coefficients.

