TMA4115-Calculus 3 Lecture 16, March 7

Toke Meier Carlsen
Norwegian University of Science and Technology Spring 2013

Yesterday's lecture

Yesterday we introduce and study determinants.

0

Today's lecture

Today we shall

- look at Cramer's rule,
- give a formula for the inverse of an invertible matrix,
- look at the relationship between areas, volumes and determinants.

The inverse of an invertible 2×2 matrix

Theorem 4

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $\operatorname{det}(A) \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

0

Cofactor expansions

When $A=\left[a_{i j}\right]$, the (i, j)-cofactor of A is the number $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$.

Theorem 1

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. Then

$$
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

and

$$
\operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
$$

for any i and any j between 1 and n.

The determinant of a triangular matrix

A triangular matrix is a square matrix $A=\left[a_{i j}\right]$ for which $a_{i j}=0$ when $i>j$.

Theorem 2

If A is a triangular matrix, then $\operatorname{det}(A)$ is the product of the entries on the main diagonal of A.

Properties of determinants

Theorem 3

Let A be a square matrix.
(1) If a multiple of one row of A is added to another row to produce a matrix B, then $\operatorname{det}(B)=\operatorname{det}(A)$.
(2) If two rows of A are interchanged to produce B, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
(3) If one row of A is multiplied by k to produce B, then $\operatorname{det}(B)=k \operatorname{det}(A)$.

Properties of determinants

Theorem 4

A square matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

0

Column operations

Theorem 5

If A is a square matrix, then $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Multiplicative property

Theorem 6

If A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Cramer's rule

For any $n \times n$ matrix A and any \mathbf{b} in \mathbb{R}^{n}, let $A_{i}(\mathbf{b})$ be the matrix obtained from A by replacing column i by the vector \mathbf{b}.

Theorem 7

Let A be an invertible $n \times n$ matrix. For any \mathbf{b} in \mathbb{R}^{n}, the unique solution \mathbf{x} of the equation $A \mathbf{x}=\mathbf{b}$ has entries given by

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}(\mathbf{b})\right)}{\operatorname{det}(A)} \text { for } i=1,2, \ldots, n .
$$

Proof of Theorem 7

Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ be the columns of A, and let $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ be the columns of I_{n}. If $A \mathbf{x}=\mathbf{b}$, then

$$
\begin{aligned}
A\left(I_{n}\right)_{i}(\mathbf{x}) & =A\left[\mathbf{e}_{1} \ldots \mathbf{e}_{i-1} \mathbf{x} \mathbf{e}_{i+1} \ldots \mathbf{e}_{n}\right] \\
& =\left[A \mathbf{e}_{1} \ldots A \mathbf{e}_{i-1} A \mathbf{x} A \mathbf{e}_{i+1} \ldots A \mathbf{e}_{n}\right] \\
& =\left[\mathbf{a}_{1} \ldots \mathbf{a}_{i-1} \mathbf{b} \mathbf{a}_{i+1} \ldots \mathbf{a}_{n}\right]=A_{i}(\mathbf{b}),
\end{aligned}
$$

so $\operatorname{det}\left(A_{i}(\mathbf{b})\right)=\operatorname{det}\left(A\left(I_{n}\right)_{i}(\mathbf{x})\right)=\operatorname{det}(A) \operatorname{det}\left(\left(I_{n}\right)_{i}(\mathbf{x})\right)$.
By using cofactor expansion along row i, we see that
$\operatorname{det}\left(\left(I_{n}\right)_{i}(\mathbf{x})\right)=(-1)^{i+i} x_{i} \operatorname{det}\left(I_{n-1}\right)=x_{i}$, so
$\operatorname{det}\left(A_{i}(\mathbf{b})\right)=x_{i} \operatorname{det}(A)$. Since A is invertible, $\operatorname{det}(A) \neq 0$, so
$x_{i}=\frac{\operatorname{det}\left(\mathcal{A}_{i}(\mathrm{~b})\right)}{\operatorname{det}(A)}$.

Example

Let us use Cramer's rule to solve the linear system

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & =4 \\
-x_{1}+2 x_{3} & =2 \\
3 x_{1}+x_{2}+3 x_{3} & =-2
\end{aligned}
$$

0

Solution

Let $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ -1 & 0 & 2 \\ 3 & 1 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}4 \\ 2 \\ -2\end{array}\right]$. Then the system is
equivalent to the matrix equation $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\mathbf{b}$.

$$
\operatorname{det}(A)=\left|\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 0 & 2 \\
3 & 1 & 3
\end{array}\right|=-(-1)\left|\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right|-2\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right|=2+2=4
$$

so A is invertible. We can therefore use Cramer's rule to find the unique solution of the system.

Solution (cont.)

$$
\begin{aligned}
\operatorname{det}\left(A_{1}(\mathbf{b})\right) & =\left|\begin{array}{ccc}
4 & 1 & 1 \\
2 & 0 & 2 \\
-2 & 1 & 3
\end{array}\right|=-2\left|\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right|-2\left|\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right| \\
& =-4-12=-16
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det}\left(A_{2}(\mathbf{b})\right) & =\left|\begin{array}{ccc}
2 & 4 & 1 \\
-1 & 2 & 2 \\
3 & -2 & 3
\end{array}\right| \\
& =-(-1)\left|\begin{array}{cc}
4 & 1 \\
-2 & 3
\end{array}\right|+2\left|\begin{array}{cc}
2 & 1 \\
3 & 3
\end{array}\right|-2\left|\begin{array}{cc}
2 & 4 \\
3 & -2
\end{array}\right| \\
& =14+6+32=52 \quad \text { QTNU } \begin{array}{c}
\text { NTorvegian University of } \\
\text { Science and Technology }
\end{array}
\end{aligned}
$$

Solution (cont.)

$$
\begin{aligned}
\operatorname{det}\left(A_{3}(\mathbf{b})\right) & =\left|\begin{array}{ccc}
2 & 1 & 4 \\
-1 & 0 & 2 \\
3 & 1 & -2
\end{array}\right|=-(-1)\left|\begin{array}{cc}
1 & 4 \\
1 & -2
\end{array}\right|-2\left|\begin{array}{cc}
2 & 1 \\
3 & 1
\end{array}\right| \\
& =-6+2=-4
\end{aligned}
$$

So $x_{1}=\frac{-16}{4}=-4, x_{2}=\frac{52}{4}=13, x_{3}=\frac{-4}{4}=-1$ is the unique solution to the system.

Example

Let us find the values of the parameter s for which the system

$$
\begin{array}{r}
2 s x_{1}+x_{2}=1 \\
3 s x_{1}+6 s x_{2}=2
\end{array}
$$

has a unique solution, and then find this solution.

Solution

Let $A=\left[\begin{array}{cc}2 s & 1 \\ 3 s & 6 s\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
$\operatorname{det}(A)=12 s^{2}-3 s=3 s(4 s-1) \neq 0$ if and only if $s \neq 0$ and $s \neq 1 / 4$, so the system has a unique solution unless $s=0$ or $s=1 / 4$.

$$
\begin{gathered}
\operatorname{det}\left(A_{1}(\mathbf{b})\right)=\left|\begin{array}{cc}
1 & 1 \\
2 & 6 s
\end{array}\right|=6 s-2 \\
\operatorname{det}\left(A_{2}(\mathbf{b})\right)=\left|\begin{array}{ll}
2 s & 1 \\
3 s & 2
\end{array}\right|=4 s-3 s=s
\end{gathered}
$$

So $x_{1} \frac{6 s-2}{12 s^{2}-3 s}, x_{2}=\frac{s}{12 s^{2}-3 s}$ is the unique solution to the system when $s \neq 0$ and $s \neq 1 / 4$.

An inverse formula

When A is an $n \times n$ matrix, then $\operatorname{adj}(A)$ is the $n \times n$ matrix whose (i, j)-entry is $C_{j i}=(-1)^{i+j} \operatorname{det}\left(A_{j i}\right)$.

Theorem 8

Let A be an invertible $n \times n$ matrix. Then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

Proof of Theorem 8

Let A be an invertible $n \times n$ matrix. Then
$A\left(A^{-1} \mathbf{e}_{j}\right)=\left(A A^{-1}\right) \mathbf{e}_{j}=I_{n} \mathbf{e}_{j}=\mathbf{e}_{j}$, so the j th column of A^{-1} is the unique solution to the equation $A \mathbf{x}=\mathbf{e}_{j}$.
It follows that the (i, j)-entry is $\frac{\operatorname{det}\left(A_{i}\left(\mathcal{e}_{\mathrm{e}}\right)\right)}{\operatorname{det}(A)}$. By using cofactor expansion along the j th column, we see that $\operatorname{det}\left(A_{i}\left(\mathbf{e}_{j}\right)\right)=(-1)^{i+j} \operatorname{det}\left(A_{j i}\right)=C_{j i}$, so $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$.

Example

Let us find the inverse of the matrix $A=\left[\begin{array}{lll}3 & 6 & 7 \\ 0 & 2 & 1 \\ 2 & 3 & 4\end{array}\right]$

Solution

$$
\operatorname{det}(A)=\left|\begin{array}{lll}
3 & 6 & 7 \\
0 & 2 & 1 \\
2 & 3 & 4
\end{array}\right|=2\left|\begin{array}{ll}
3 & 7 \\
2 & 4
\end{array}\right|-\left|\begin{array}{ll}
3 & 6 \\
2 & 3
\end{array}\right|=-4+3=-1
$$

so A is invertible.

Solution (cont.)

$$
\begin{aligned}
& C_{11}=\left|\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right|=5 \quad C_{21}=-\left|\begin{array}{ll}
6 & 7 \\
3 & 4
\end{array}\right|=-3 \quad C_{31}=\left|\begin{array}{ll}
6 & 7 \\
2 & 1
\end{array}\right|=-8 \\
& C_{12}=-\left|\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right|=2 \quad C_{22}=\left|\begin{array}{ll}
3 & 7 \\
2 & 4
\end{array}\right|=-2 \quad C_{32}=-\left|\begin{array}{ll}
3 & 7 \\
0 & 1
\end{array}\right|=-3 \\
& C_{13}=\left|\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right|=-4 \quad C_{23}=-\left|\begin{array}{ll}
3 & 6 \\
2 & 3
\end{array}\right|=3 \quad C_{33}=\left|\begin{array}{ll}
3 & 6 \\
0 & 2
\end{array}\right|=6
\end{aligned}
$$

Solution (cont.)

So $\operatorname{adj}(A)=\left[\begin{array}{lll}C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33}\end{array}\right]=\left[\begin{array}{ccc}5 & -3 & -8 \\ 2 & -2 & -3 \\ -4 & 3 & 6\end{array}\right]$ and
$\operatorname{det}(A)=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\left[\begin{array}{ccc}-5 & 3 & 8 \\ -2 & 2 & 3 \\ 4 & -3 & -6\end{array}\right]$.

Determinants as area or volume

Theorem 9

If A is a 2×2 matrix, then the area of the parallelogram determined by the columns of A is $|\operatorname{det}(A)|$.
If A is a 3×3 matrix, then the area of the parallelepiped determined by the columns of A is $|\operatorname{det}(A)|$.

Example

Let us find the area of the parallelogram whose vertices are $(-2,0),(-3,3),(2,-5)$ and $(1,-2)$.

Solution

By translating by $(2,0)$ we see that the area of the parallelogram is the same as the area of the parallelogram whose vertices are $(0,0),(-1,3),(4,-5)$ and $(3,-2)$. Thus the area of the parallelogram is
$\left|\operatorname{det}\left[\begin{array}{cc}-1 & 4 \\ 3 & -5\end{array}\right]\right|=|-7|=7$.

Areas and linear transformations

If T is a transformation and S is a set in the domain of T, then we let $T(S)$ denote the set of images of points in S.

Theorem 10

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation determined by a 2×2 matrix A. If S is a region in \mathbb{R}^{2} with finite area, then area of $T(S)=|\operatorname{det}(A)|($ area of $S)$.
Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation determined by a 3×3 matrix A. If S is a region in \mathbb{R}^{2} with finite volume, then volume of $T(S)=|\operatorname{det}(A)|($ volume of $S)$.

Solution

Observe that a point $\left(x_{1}, x_{2}\right)$ is in E if and only if $\frac{x_{1}^{2}}{a_{2}}+\frac{x_{2}^{2}}{b^{2}} \leq 1$. Let D be the unit disk, i.e., the set of points $\left(x_{1}, x_{2}\right)$ which satisfy that $x_{1}^{2}+x_{2}^{2} \leq 1$. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $\left(x_{1}, x_{2}\right) \mapsto\left(a x_{1}, b x_{2}\right)$. Then $T(D)=E$ because if $y_{1}=a x_{1}$ and $y_{2}=b x_{2}$, then $\frac{y_{1}^{2}}{2^{2}}+\frac{y_{2}^{2}}{b^{2}}=x_{1}^{2}+x_{2}^{2}$. So
area of $E=$ area of $D \cdot\left|\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right|=\pi a b$.

Problem 5 from the exam from August 2011

Let \(A=\left[\begin{array}{lll}1 \& 2 \& a
3 \& 7 \& b
2 \& 9 \& c\end{array}\right]\).

(1) Decide for which values of a, b and c, the matrix A is invertible.
(2) Find values of a, b and c for which A^{-1} is an integer matrix.

Solution

$\operatorname{det}(A)=\left|\begin{array}{lll}1 & 2 & a \\ 3 & 7 & b \\ 2 & 9 & c\end{array}\right|=a\left|\begin{array}{ll}3 & 7 \\ 2 & 9\end{array}\right|-b\left|\begin{array}{ll}1 & 2 \\ 2 & 9\end{array}\right|+c\left|\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right|=13 a-5 b+c$
So A is invertible if and only if $13 a-5 b+c \neq 0$.
If $13 a-5 b+c \neq 0$, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{13 a-5 b+c}\left[\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right] .
$$

If a, b and c are integers, then each cofactor $C_{j i}$ is an integer (because the determinant of an integer matrix is an integer), so A^{-1} is an integer matrix if a, b and c are integers and $13 a-5 b+c= \pm 1$. This is, for instance, the case if $a=b=0$ and $c=1$.

Problem 4 from August 2007

(1) A square 3×3 matrix A is given by

$$
A=\left[\begin{array}{lll}
a & 1 & 0 \\
0 & a & 1 \\
1 & 0 & a
\end{array}\right]
$$

For which real numbers a is the matrix A invertible?
(2) Find A^{-1} when $a=1$.

Solution

$$
\operatorname{det} A=\left|\begin{array}{lll}
a & 1 & 0 \\
0 & a & 1 \\
1 & 0 & a
\end{array}\right|=a\left|\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right|-\left|\begin{array}{ll}
0 & 1 \\
1 & a
\end{array}\right|=a^{3}+1
$$

So A is invertible if and only if $a \neq-1$.
If $a=1$, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{2}\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right] .
$$

Plan for next week

Wednesday we shall introduce and study

- abstract vector spaces and subspaces,
- null spaces, column spaces and general linear transformations.
Sections 4.1-4.2 in "Linear Algebras and Its Applications" (pages 189-208).

Thursday we shall introduce and study

- linear independence and bases in general vector spaces,
- coordinate systems in vector spaces relative to bases.

Section 4.3-4.4 in "Linear Algebras and Its Applications" (pages 208-225).

NTNU
Norwegian University of
Science and Technology

