TMA4115-Calculus 3
 Lecture 15, March 6

Toke Meier Carlsen
Norwegian University of Science and Technology Spring 2013

Review of last week's lecture

Last week we looked at

- how to add and multiply matrices,
- invertible matrices and their inverses,
- the invertible matrix theorem.

0

Today's lecture

Today we shall introduce and study determinants.

The inverse of an invertible 2×2 matrix

Recall the following result from last week:

Theorem 4

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

If $a d-b c=0$, then A is not invertible.
The number $a d-b c$ is called the determinant of A.

Determinant

- The determinant is a value associated with a square matrix.
- A square matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.
- The determinant can be used to give an explicit formula for the inverse of an invertible matrix.
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
- The absolute value of the determinant gives the scale factor by which area or volume is multiplied under the associated linear transformation.

NTNU
Norwegian University of
Science and Technology

The definition of the determinant

For any square matrix A, let $A_{i j}$ denote the submatrix formed by deleting the ith row and the jth column of A.

Definition

The determinant of a 1×1 matrix $A=[a]$ is $\operatorname{det}(A)=a$. For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det}\left(A_{1 j}\right)
$$

Example

Let us compute the determinant of $A=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} \operatorname{det}\left(A_{11}\right)-a_{12} \operatorname{det}\left(A_{12}\right)+a_{13} \operatorname{det}\left(A_{13}\right) \\
& =1 \cdot\left|\begin{array}{cc}
4 & -1 \\
-2 & 0
\end{array}\right|-5 \cdot\left|\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right|+0 \cdot\left|\begin{array}{cc}
2 & 4 \\
0 & -2
\end{array}\right| \\
& =-2 .
\end{aligned}
$$

Norwegian University of Science and Technology

Cofactor expansions

When $A=\left[a_{i j}\right]$, the (i, j)-cofactor of A is the number $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$.

Theorem 1

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. Then

$$
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

and

$$
\operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
$$

for any i and any j between 1 and n.

Proof of Theorem 1

We will prove the theorem by induction over n.
The theorem is obviously true for $n=1$.
Assume that $k>1$ and that the theorem is true for $n=k=1$, Let A be a $k \times k$ matrix, let h be an integer between 1 and k, and let i be an integer between 2 and k. Then $A_{1 n}$ is a $(k-1) \times(k-1)$ matrix, so

$$
\operatorname{det} A_{1 h}=\sum_{j=1}^{h-1}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{1 h}\right)_{i j}+\sum_{j=h+1}^{k}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{1 h}\right)_{i j}
$$

by the induction assumption.

Proof of Theorem 1 (cont.)

We furthermore have that if j is an integer between 1 and k different from h, then $\left(A_{1 h}\right)_{i j}=\left(A_{i j}\right)_{1 h}$. Thus

$$
\begin{aligned}
& \sum_{j=1}^{k} a_{i j} C_{i j}= \sum_{j=1}^{k}(-1)^{i+j} a_{i j} \operatorname{det} A_{i j} \\
&= \sum_{j=1}^{k}(-1)^{i+j} a_{i j}\left(\sum_{h=1}^{j-1}(-1)^{1+h} a_{1 h} \operatorname{det}\left(A_{i j}\right)_{1 h}\right. \\
&\left.+\sum_{h=j+1}^{k}(-1)^{1+h} a_{1 h} \operatorname{det}\left(A_{i j}\right)_{1 h}\right) \\
& \text { Q QTNU } \begin{array}{l}
\text { Norvegian Universitil of } \\
\text { Science and Teehnology }
\end{array}
\end{aligned}
$$

Proof of Theorem 1 (cont.)

$$
\begin{aligned}
&=\sum_{j=1}^{k}(-1)^{i+j} a_{i j}\left(\sum_{h=1}^{j-1}(-1)^{1+h} a_{1 h} \operatorname{det}\left(A_{1 h}\right)_{i j}\right. \\
&\left.+\sum_{h=j+1}^{k}(-1)^{1+h} a_{1 h} \operatorname{det}\left(A_{1 h}\right)_{i j}\right) \\
&=\sum_{h=1}^{k}(-1)^{1+h} a_{1 h}\left(\sum_{j=1}^{h-1}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{1 h}\right)_{i j}\right. \\
&\left.+\sum_{j=h+1}^{k}(-1)^{i+j} a_{+j} \operatorname{det}\left(A_{1 h}\right)_{i j}\right)
\end{aligned}
$$

Proof of Theorem 1 (cont.)

$$
\begin{aligned}
& =\sum_{j=1}^{k}(-1)^{i+j} a_{i j} \operatorname{det} A_{1 h} \\
& =\operatorname{det} A .
\end{aligned}
$$

Similarly, if j is an integer between 1 and k, then

$$
\begin{aligned}
& \sum_{i=1}^{k} a_{i j} C_{i j}=\sum_{i=1}^{k}(-1)^{i+j} a_{i j} \operatorname{det} A_{i j} \\
& =\sum_{i=1}^{j-1}(-1)^{i+j} a_{i j} \operatorname{det} A_{i j}+a_{j j} \operatorname{det} A_{j j}+ \\
& \sum_{i=j+1}^{k}(-1)^{i+j} a_{i j} \operatorname{det} A_{i j} \quad \mathbf{Q}
\end{aligned}
$$

Proof of Theorem 1 (cont.)

$$
\begin{aligned}
&=\sum_{i=1}^{j-1}(-1)^{i+j} a_{i j}\left(\sum_{h=1}^{j-1}(-1)^{j+h} a_{j i} \operatorname{det}\left(A_{i j}\right)_{j h}\right. \\
&\left.+\sum_{h=j+1}^{k}(-1)^{i+h} a_{j h} \operatorname{det}\left(A_{i j}\right)_{j h}\right)
\end{aligned}
$$

$+a_{j j} \operatorname{det} A_{j j}$

$$
+\sum_{i=j+1}^{k}(-1)^{i+j} a_{i j}\left(\sum_{h=1}^{j-1}(-1)^{j+h} a_{j h} \operatorname{det}\left(A_{i j}\right)_{j h}\right.
$$

$$
\begin{array}{r}
\left.+\sum_{h=j+1}^{k}(-1)^{j+h} a_{j h} \operatorname{det}\left(A_{i j}\right)_{j h}\right) \\
\text { (} \left.\begin{array}{l}
\text { NTTU } \\
\text { Soreveian University of } \\
\text { Science and Technology }
\end{array}\right)
\end{array}
$$

Proof of Theorem 1 (cont.)

$$
\begin{aligned}
&=\sum_{i=1}^{j-1}(-1)^{i+j} a_{i j}\left(\sum_{h=1}^{j-1}(-1)^{j+h} a_{j j} \operatorname{det}\left(A_{j h}\right) i_{j}\right. \\
&\left.+\sum_{h=j+1}^{k}(-1)^{i+h} a_{j h} \operatorname{det}\left(A_{j h}\right)_{i j}\right)
\end{aligned}
$$

$+a_{j j} \operatorname{det} A_{j j}$

$$
+\sum_{i=j+1}^{k}(-1)^{i+j} a_{i j}\left(\sum_{h=1}^{j-1}(-1)^{j+h} a_{j h} \operatorname{det}\left(A_{j h}\right)_{i j}\right.
$$

$$
\begin{array}{r}
\left.+\sum_{h=j+1}^{k}(-1)^{j+h} a_{j h} \operatorname{det}\left(A_{j h}\right)_{i j}\right) \\
\text { (} \left.\begin{array}{l}
\text { NTTU } \\
\text { Soreveian University of } \\
\text { Science and Technology }
\end{array}\right)
\end{array}
$$

Proof of Theorem 1 (cont.)

$$
\begin{aligned}
&=\sum_{h=1}^{j-1}(-1)^{j+h} a_{j h}\left(\sum_{i=1}^{j-1}(-1)^{i+j} a_{j j} \operatorname{det}\left(A_{j h}\right)_{i j}\right. \\
&\left.\left.+\sum_{i=j+1}^{k}(-1)^{i+j} a_{j j} \operatorname{det}\left(A_{j h}\right)\right)_{i j}\right)
\end{aligned}
$$

$+a_{j j} \operatorname{det} A_{j j}$
$+\sum_{h=j+1}^{k}(-1)^{j+h} a_{h j}\left(\sum_{i=1}^{j-1}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{j h}\right)_{i j}\right.$

$$
\left.+\sum_{i=j+1}^{k}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{j h}\right)_{i j}\right)
$$

Proof of Theorem 1 (cont.)

$$
\begin{aligned}
& =\sum_{h=1}^{j-1}(-1)^{j+h} a_{j h} \operatorname{det} A_{j h}+a_{j j} \operatorname{det} A_{j j}+\sum_{h=j+1}^{k}(-1)^{j+h} a_{h j} \operatorname{det} A_{j h} \\
& =\sum_{h=1}^{k}(-1)^{j+h} a_{j h} \operatorname{det} A_{j h}=\operatorname{det} A .
\end{aligned}
$$

Thus it follows by induction that the theorem is true for all n.

Example

Let us compute the determinant of $A=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$ by using a cofactor expansion across the third column.

$$
\begin{aligned}
\operatorname{det}(A) & =(-1)^{2+3}(-1)\left|\begin{array}{cc}
1 & 5 \\
0 & -2
\end{array}\right| \\
& =\left|\begin{array}{cc}
1 & 5 \\
0 & -2
\end{array}\right| \\
& =-2
\end{aligned}
$$

Example

Let us compute the determinant of $A=\left[\begin{array}{cccc}1 & 5 & 3 & -2 \\ 0 & 2 & 5 & -1 \\ 0 & 0 & -4 & 5 \\ 0 & 0 & 0 & -3\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}(A) & =1 \cdot\left|\begin{array}{ccc}
2 & 5 & -1 \\
0 & -4 & 5 \\
0 & 0 & -3
\end{array}\right|=1 \cdot 2 \cdot\left|\begin{array}{cc}
-4 & 5 \\
0 & -3
\end{array}\right| \\
& =1 \cdot 2 \cdot(-4) \operatorname{det}([-3])=1 \cdot 2 \cdot(-4) \cdot(-3) \\
& =24 .
\end{aligned}
$$

The determinant of a triangular matrix

A triangular matrix is a square matrix $A=\left[a_{i j}\right]$ for which $a_{i j}=0$ when $i>j$.

Theorem 2

If A is a triangular matrix, then $\operatorname{det}(A)$ is the product of the entries on the main diagonal of A.

Proof of Theorem 2

We will prove the theorem by induction over the number n of rows (and columns) of A.
If $n=1$, then $\operatorname{det} A=a_{11}$, so the theorem is true in this case.
Suppose $n>1$ and that the theorem is true for
$(n-1) \times(n-1)$ matrices. Then

$$
\operatorname{det} A=\left|\begin{array}{cc}
a_{11} & 0 \\
0 & A_{11}
\end{array}\right|=a_{11} \operatorname{det} A_{11}=a_{11} a_{22} \ldots a_{n n} .
$$

So it follows by induction that the theorem is true for all matrices A.

Properties of determinants

Theorem 3

Let A be a square matrix.
(1) If a multiple of one row of A is added to another row to produce a matrix B, then $\operatorname{det}(B)=\operatorname{det}(A)$.
(2) If two rows of A are interchanged to produce B, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
(3) If one row of A is multiplied by k to produce B, then $\operatorname{det}(B)=k \operatorname{det}(A)$.

Proof of Theorem 3

Let A be an $n \times n$ matrix and let E be an elementary $n \times n$ matrix. We will show that

$$
\operatorname{det} E= \begin{cases}1 & \text { if } E \text { is a row replacement matrix, } \\ -1 & \text { if } E \text { is a row interchange matrix } \\ k & \text { if } E \text { is a scale a row by } k \text { matrix }\end{cases}
$$

and that $\operatorname{det}(E A)=\operatorname{det} E \operatorname{det} A$.
We will prove this by induction over n.
If $n=1$, then $E=[k]$ for some number k, and then $\operatorname{det}(E)=k$ and $\operatorname{det}(E A)=\operatorname{det}(k A)=k \operatorname{det} A$. So the statement is true for $n=1$.

Proof of Theorem 3 (cont.)

Suppose $n=2$. If $E=\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\operatorname{det} E=1$ and

$$
\begin{aligned}
\operatorname{det}(E A) & =\operatorname{det}\left[\begin{array}{cc}
a+k c & b+k d \\
c & d
\end{array}\right]=(a+k c) d-c(b+k d) \\
& =a d+k c d-c d-c k d=a d-c d=\operatorname{det}(A)
\end{aligned}
$$

One can in a similarly way prove that if $E=\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$, then $\operatorname{det} E=1$ and $\operatorname{det}(E A)=\operatorname{det} A$, that if $E=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then $\operatorname{det} E=-1$ and $\operatorname{det}(E A)=-\operatorname{det} A$,

Proof of Theorem 3 (cont.)

and that if $E=\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right]$ or $E=\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right]$, then $\operatorname{det} E=k$ and $\operatorname{det}(E A)=k \operatorname{det} A$, so the statement is true for $n=2$. Suppose that $k>2$ and that the statement holds for $n=k-1$. Let E be an elementary $k \times k$ matrix. Choose i such that the i th row of E is equal to the i th row of I_{k}. Then $E_{i i}$ is an elementary $(k-1) \times(k-1)$ matrix of the same kind as E, and $\operatorname{det} E=(-1)^{i+i} \operatorname{det} E_{i i}=\operatorname{det} E_{i j}$.

Proof of Theorem 3 (cont.)

If A is a $k \times k$, then

$$
\begin{aligned}
\operatorname{det}(E A) & =\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}(E A)_{i j}=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(E_{i i} A_{i j}\right) \\
& \left.=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} E_{i j} \operatorname{det} A_{i j}\right) \\
& =\operatorname{det} E \sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} A_{i j}=\operatorname{det} E \operatorname{det} A
\end{aligned}
$$

It follows by induction over n that the statement, and thus the theorem, holds for all n.

Properties of determinants

- Suppose an $n \times n$ matrix A has been reduced to an echelon form U by row replacements and row interchanges.
- If there are r interchanges, then $\operatorname{det}(A)=(-1)^{r} \operatorname{det}(U)$.
- Since U is in echelon form, it is triangular, so $\operatorname{det}(U)$ is the product of the diagonal entries $u_{11}, u_{22}, \ldots, u_{n n}$.
- If A is invertible, the entries $u_{11}, u_{22}, \ldots, u_{n n}$ are all pivots. Otherwise, at least one $u_{i i}$ is zero.
- Thus,

$$
\operatorname{det}(A)= \begin{cases}(-1)^{r} u_{11} u_{22} \ldots u_{n n} & \text { when } A \text { is invertible } \\ 0 & \text { when } A \text { is not invertible }\end{cases}
$$

Properties of determinants (cont.)

Thus we have proved:
Theorem 4
A square matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

0

Column operations

Theorem 5

If A is a square matrix, then $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Proof of Theorem 5

We will prove the theorem by induction over n where n is the number of rows of A.
If $n=1$, then $A^{T}=A$ from which it follows that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
Let k be a positive integer and assume that the theorem is true for all $k \times k$ matrices. Let $n=k+1$ and let A be an $n \times n$ matrix.

Proof of Theorem 5 (cont.)

Then

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{i=1}^{n}(-1)^{1+i} a_{i 1} \operatorname{det}\left(A_{i 1}\right)=\sum_{i=1}^{n}(-1)^{1+i} a_{i 1} \operatorname{det}\left(\left(A_{i 1}\right)^{T}\right) \\
& =\sum_{i=1}^{n}(-1)^{1+i} a_{i 1} \operatorname{det}\left(\left(A^{T}\right)_{1 i}\right) \\
& =\sum_{i=1}^{n}(-1)^{1+i}\left(a^{T}\right)_{1 i} \operatorname{det}\left(\left(A^{T}\right)_{1 i}\right)=\operatorname{det}\left(A^{T}\right) .
\end{aligned}
$$

It follows by induction that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ for all square matrices.

Example

Let us compute the determinant of $A=\left[\begin{array}{ccc}10 & 1 & -7 \\ 3 & 2 & -3 \\ -5 & 0 & 5\end{array}\right]$.
It follows from Theorem 5 and Theorem 3 that if we add the third column to the first row, then that does not change the determinant. So

$$
\operatorname{det}(A)=\left|\begin{array}{ccc}
10 & 1 & -7 \\
3 & 2 & -3 \\
-5 & 0 & 5
\end{array}\right|=\left|\begin{array}{ccc}
3 & 1 & -7 \\
0 & 2 & -3 \\
0 & 0 & 5
\end{array}\right|=2 \cdot 3 \cdot 5=30
$$

Multiplicative property

Theorem 6

If A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
It follows from the theorem that if A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(B A)$, even if $A B \neq B A$.

Proof of Theorem 6

If A is not invertible, then neither is $A B$, so $\operatorname{det}(A) \operatorname{det}(B)=0=\operatorname{det}(A B)$ in that case.
If A is invertible, then A is row equivalent to I_{n}, so there are elementary matrices $E_{1}, E_{2}, \ldots, E_{p-1}, E_{p}$ such that $A=E_{p} E_{p-1} \ldots E_{2} E_{1} I_{n}=E_{p} E_{p-1} \ldots E_{2} E_{1}$, and then $\operatorname{det}(A B)=\operatorname{det}\left(E_{p} E_{p-1} \ldots E_{2} E_{1} B\right)$
$=\operatorname{det}\left(E_{p}\right) \operatorname{det}\left(E_{p-1} \ldots E_{2} E_{1} B\right)$
$=\cdots=\operatorname{det}\left(E_{p}\right) \operatorname{det}\left(E_{p-1}\right) \ldots \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right) \operatorname{det}(B)$
$=\operatorname{det}\left(E_{p} E_{p-1} \ldots E_{2} E_{1}\right) \operatorname{det}(B)$
$=\operatorname{det}(A) \operatorname{det}(B)$.

Warnings

Let A and B be $n \times n$ matrices and let k be a scalar.

- In general, $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$.
- In general, $\operatorname{det}(k A) \neq k \operatorname{det}(A)$.

In fact, $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$.

Problem 4 from June 2005

Find the determinant of the matrix $A=\left[\begin{array}{cccc}-2 & 0 & 0 & 8 \\ 1 & -2 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -2\end{array}\right]$

Solution

$$
\begin{aligned}
\operatorname{det} A & =\left|\begin{array}{cccc}
-2 & 0 & 0 & 8 \\
1 & -2 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & -2
\end{array}\right|=\left|\begin{array}{cccc}
-2 & 2 & 0 & 0 \\
1 & -2 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & -2
\end{array}\right| \\
& =\left|\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & -2
\end{array}\right|=-\left|\begin{array}{ccc}
-2 & 0 & 0 \\
1 & -2 & 0 \\
0 & 1 & -2
\end{array}\right| \\
& =2\left|\begin{array}{cc}
-2 & 0 \\
1 & -2
\end{array}\right|=8 .
\end{aligned}
$$

Problem 6 from August 2010

For which values of the parameter a are the vectors
$\mathbf{v}_{1}=(1,-3, a), \mathbf{v}_{2}=(0,1, a)$ and $\mathbf{v}_{3}=(a, 2,0)$ linearly dependent?

Solution

$\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent if and only if the matrix $A=\left[\begin{array}{ccc}1 & 0 & a \\ -3 & 1 & 2 \\ a & a & 0\end{array}\right]$ is not invertible.

$$
\begin{aligned}
\operatorname{det} A & =\left|\begin{array}{ccc}
1 & 0 & a \\
-3 & 1 & 2 \\
a & a & 0
\end{array}\right|=\left|\begin{array}{ll}
1 & 2 \\
a & 0
\end{array}\right|+a\left|\begin{array}{cc}
-3 & 1 \\
a & a
\end{array}\right|=-2 a-4 a^{2} \\
& =-2 a(1+2 a) .
\end{aligned}
$$

So $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent if and only if $a=0$ or $a=-1 / 2$.

Problem 6 from June 2012

Let A be a 4×4 matrix. Let $B=\left[\begin{array}{llll}2 & 1 & 4 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$. Assume that $\operatorname{det}(A B)=4$. What is $\operatorname{det}(A) ?$

Show that the equation $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ has only the solution

$$
x_{1}=x_{2}=x_{3}=x_{4}=0 .
$$

Solution

$$
\begin{aligned}
\operatorname{det} B & =\left|\begin{array}{llll}
2 & 1 & 4 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=\left|\begin{array}{lll}
2 & 1 & 4 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right|=\left|\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right|+\left|\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right| \\
& =-3+1=-2 .
\end{aligned}
$$

It follows that $\operatorname{det} A=\frac{\operatorname{det}(A B)}{\operatorname{det} B}=\frac{4}{-2}=-2$.

Solution (cont.)

Since $\operatorname{det} A \neq 0, A$ is invertible, so the equation
$A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ has only the solution $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=A^{-1}\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Tomorrow's lecture

Tomorrow we shall

- look at Cramer's rule,
- give a formula for the inverse of an invertible matrix,
- look at the relationship between areas, volumes and determinants.
Section 3.3 in "Linear Algebras and Its Applications" (pages 177-187).

