TMA4115 Matematikk 3

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet Trondheim

Spring 2010

Lecture 25: The Best of All Possible Worlds

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet Trondheim

16th April 2010

Key Points

- Orthogonality + Diagonalisation = Symmetry
- Comes from Calculus
- Leads to Topology

Recap

- Basis of eigenvectors reveals structure
- Eigenvectors "natural" directions
- Partial information of eigenvalues classifies behaviour of system

Orthogonal Eigenvectors

ODE + Matrices + Orthogonality

Orthogonal Eigenvectors!

Question

When does A have a basis of orthogonal eigenvectors?

Spectral Theorem

Answer

A has a basis of orthogonal eigenvectors

$$A^{\mathsf{T}} = A$$
.

Definition

$$A^{\top} = A$$
 \iff
 $A \text{ is}$
 $symmetric$

Quick Check in 2D:

$$\left\{\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} -b \\ a \end{bmatrix}\right\}, \quad a^2 + b^2 = 1$$

$$\mathbf{A} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \lambda \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}, \mathbf{A} \begin{bmatrix} -\mathbf{b} \\ \mathbf{a} \end{bmatrix} = \mu \begin{bmatrix} -\mathbf{b} \\ \mathbf{a} \end{bmatrix}$$

$$A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = aA \begin{bmatrix} a \\ b \end{bmatrix} - bA \begin{bmatrix} -b \\ a \end{bmatrix} = \begin{bmatrix} \lambda a^2 + \mu b^2 \\ (\lambda - \mu)ab \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = bA \begin{bmatrix} a \\ b \end{bmatrix} + aA \begin{bmatrix} -b \\ a \end{bmatrix} = \begin{bmatrix} (\lambda - \mu)ab \\ \mu a^2 + \lambda b^2 \end{bmatrix}$$

Quick Check in 2D:

$$\mathbf{A} = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$

$$c(\lambda) = \lambda^2 - (a+d)\lambda + (ad-b^2)$$

$$\frac{(a+d) \pm \sqrt{a^2 + 2ad + d^2 - 4ad + 4b^2}}{2}$$

Conclusion: Always at least one real eigenvalue

Quick Check in 2D:

Suppose

$$\begin{bmatrix} a & b \\ b & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ bx + dy \end{bmatrix}$$

$$-ayx + bx^{2} - by^{2} + dxy = \begin{bmatrix} x \\ y \end{bmatrix} \bullet \alpha \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix} \bullet \beta \begin{bmatrix} -y \\ x \end{bmatrix} = \alpha$$

Conclusion:

$$\begin{bmatrix} a & b \\ b & d \end{bmatrix} \begin{bmatrix} -y \\ x \end{bmatrix} = 0 \begin{bmatrix} x \\ y \end{bmatrix} + \beta \begin{bmatrix} -y \\ x \end{bmatrix}$$

Symmetric Matrices from Functions

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y)$$

Partial derivatives

$$\frac{\partial f}{\partial x}(x,y) := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

Gradient

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{x}} \\ \frac{\partial f}{\partial \mathbf{y}} \end{bmatrix}$$

Points in the direction of greatest change in *f*

Interesting In Parts

View from Far Away

Remark

The interesting parts of a function are where it changes direction.

Reminder

$$g: \mathbb{R} \to \mathbb{R}$$

- ► Critical Point: $g'(t_0) = 0$
- $g''(t_0) > 0 \Longrightarrow \min \max$
- ► $g''(t_0) < 0 \Longrightarrow$ maximum
- $g''(t_0) = 0 \Longrightarrow$ need more information

In Close-Up

$$g'(t_0) = 0 \Longrightarrow$$

$$g(t_0 + h) \simeq g(t_0) + h^2 g''(t)$$

If *g* is "good", put a quadratic at each critical point and join up via straight lines.

Joined-Up Functions

Higher Dimensions

First Approximation

$$f(x+h,y+k) \simeq f(x,y) + h \frac{\partial f}{\partial x}(x,y) + k \frac{\partial f}{\partial y}(x,y)$$

Second Approximation

From:
$$\frac{\partial f}{\partial x}(x+h,y+k) \simeq \frac{\partial f}{\partial x} + h \frac{\partial^2 f}{\partial x^2} + k \frac{\partial^2 f}{\partial y \partial x}$$

Get: $f(x+h,y+k) \simeq f + h \frac{\partial f}{\partial x} + k \frac{\partial f}{\partial y}$
 $+ h^2 \frac{\partial^2 f}{\partial x^2} + h k \frac{\partial^2 f}{\partial y \partial x}$
 $+ k^2 \frac{\partial^2 f}{\partial y^2} + k h \frac{\partial^2 f}{\partial y \partial x}$

Critical Points

If
$$\nabla f(x,y) = \mathbf{0}$$

$$f \simeq f(x,y) + h^2 \frac{\partial^2 f}{\partial x^2} + 2hk \frac{\partial^2 f}{\partial x \partial y} + k^2 \frac{\partial^2 f}{\partial y^2}$$

Connection with matrices

$$h\frac{\partial f}{\partial x} + k\frac{\partial f}{\partial y} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} \bullet \begin{bmatrix} h \\ k \end{bmatrix}$$

$$h^2 \frac{\partial^2 f}{\partial x^2} + 2hk \frac{\partial^2 f}{\partial x \partial y} + k^2 \frac{\partial^2 f}{\partial y^2} = \begin{bmatrix} h \\ k \end{bmatrix} \bullet \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$$

Quadratic Forms

Near a "good" critical point, $f: \mathbb{R}^2 \to \mathbb{R}$ behaves like:

$$\begin{bmatrix} x \\ y \end{bmatrix} \bullet \begin{bmatrix} a & b \\ b & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = ax^2 + 2bxy + dy^2$$

Definition

$$ax^2 + 2bxy + dy^2$$

is a quadratic form

Orthogonal Diagonalisation

$$\mathbf{A} = \mathbf{A}^{\mathsf{T}}, \mathbf{A}\mathbf{u} = \mu\mathbf{u}, \mathbf{A}\mathbf{v} = \nu\mathbf{v}, \mathbf{u} \bullet \mathbf{v} = \mathbf{0}$$

$$(\alpha \mathbf{u}) \bullet \mathbf{A}(\alpha \mathbf{u}) = (\alpha \mathbf{u}) \bullet \mu(\alpha \mathbf{u}) = \mu \alpha^2$$

$$(\alpha \mathbf{u} + \beta \mathbf{v}) \bullet \mathbf{A}(\alpha \mathbf{u} + \beta \mathbf{v}) = \mu \alpha^2 + \nu \beta^2$$

Possibilities

► 3D:

Maximum

Minimum

Saddle Point

Reconstructing Surfaces

$$\mathbf{S} \subseteq \mathbb{R}^3 \xrightarrow{f} \mathbb{R}$$

- ▶ Look at points where $\nabla f = \mathbf{0}$
- ► Classify by number of negative eigenvalues of $\left| \frac{\partial^2 f}{\partial t} \right|$
- Stick together

Sphere

Torus

Deformed Sphere

Which is Which

$$S \subseteq \mathbb{R}^3 \stackrel{f}{\rightarrow} \mathbb{R}$$

- ▶ Look at points where $\nabla f = \mathbf{0}$
- ► Classify by number of negative eigenvalues of $\left| \frac{\partial^2 f}{\partial t} \right|$
- Count: #2 − #1 + #0
 - Sphere: 1 0 + 1 = 2
 - ► Torus: 1 2 + 1 = 0
 - ▶ Deformed Sphere: 2-1+1=2
 - ▶ Two-Holed Torus: 1 4 + 1 = -2

Classification

This number classifies (certain) surfaces completely!

And ...

That's what I do!

Summary

- Symmetric orthogonally diagonalisable
- Symmetric from differentiation
- Leads to ... Topology!