TMA4115 Matematikk 3

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet
Trondheim
Spring 2010

Lecture 16: Who Lives Here?

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet
Trondheim
5th March 2010

Key Points

- Subspaces \longleftrightarrow "Rooms in the house"
- Describe subspaces using vectors
- "Linearly independent" \Longrightarrow minimal description
- Processes need two sets:

1. Set of valid inputs
2. Set of possible outputs

- For a matrix, these are \mathbb{R}^{k}
- Can add, subtract, and scale vectors just like in \mathbb{R}
- Use vectors and structure to unlock matrices

Some Special Vectors

Introducing...

The elementary vectors.

Special Property One

Lemma

Every vector is a unique sum of scales of elementary vectors.

Proof.

$$
\begin{aligned}
\mathbf{x} & =\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] \\
& =x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+3\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
\pi \\
\mathrm{e} \\
0 \\
2
\end{array}\right]=\pi\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\mathrm{e}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

Special Property Two

Lemma
A matrix is completely determined by what it does to the elementary vectors.

Proof.

$$
\begin{aligned}
A \mathbf{x} & =A\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}\right) \\
& =x_{1} A \mathbf{e}_{1}+x_{2} A \mathbf{e}_{2}+\cdots+x_{n} A \mathbf{e}_{n}
\end{aligned}
$$

Example

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left(x\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =x\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =x\left[\begin{array}{l}
1 \\
3
\end{array}\right]+y\left[\begin{array}{l}
2 \\
4
\end{array}\right]
\end{aligned}
$$

Unlocking Matrices

The First Key

$$
A \longleftrightarrow\left\{A \mathbf{e}_{1}, A \mathbf{e}_{2}, \ldots, A \mathbf{e}_{n}\right\}
$$

The First Lock
Actual outputs versus Potential outputs

- Potential outputs: \mathbb{R}^{m}
- Actual outputs: contained within \mathbb{R}^{m}

The Question
Describe the actual outputs within the potential outputs.

Describing Actuality

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]
$$

Potential Outputs

- Anything in \mathbb{R}^{3}

Actual Outputs

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=x\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=x\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+y\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]
$$

Everything that can be written in the form

$$
x\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+y\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]
$$

Actual Outputs

$$
b=A x \Longleftrightarrow b=x\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+y\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right] \text { some } x, y \in \mathbb{R}
$$

Example

$$
\begin{array}{ll}
\text { 1. }\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=0\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+0\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right] & \text { 3. }\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]=0\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+1\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right] \\
\text { 2. }\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]=1\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+0\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right] & \text { 4. }\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]=2\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]-1\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]
\end{array}
$$

Exclusive Property

$$
b=A x \Longleftrightarrow b=x\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+y\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right] \text { some } x, y \in \mathbb{R}
$$

Example
Can't get $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$:

$$
x\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+y\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \begin{array}{r}
x+2 y=0 \\
3 x+4 y=0 \\
5 x+6 y=1
\end{array}
$$

which can't happen

Describing Actual Outputs

$$
b=A x \Longleftrightarrow b=x\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+y\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right] \text { some } x, y \in \mathbb{R}
$$

Actual outputs of $A \longleftrightarrow$ everything that can be generated from $\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ by scaling and adding.
All linear combinations of $\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$.

Linear Combinations

Definition

a
linear combination
of
$\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$
is a vector \mathbf{u} for which
there exist
$a_{1}, \ldots, a_{k} \in \mathbb{R}$
such that
$\mathbf{u}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k} \mathbf{v}_{k}$

Remark
Note "there exist": may not be unique.

Spanning the Divide

Definition

> The set of all linear combinations of v_{1}, \ldots, v_{k} is call their
span.
Notation: $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right),\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\rangle$
Actual output of $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ is Span $\left(\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right)$
Actual output of A is $\operatorname{Span}\left(A \mathbf{e}_{1}, A \mathbf{e}_{2}, \ldots, A \mathbf{e}_{n}\right)$

Story So Far

- Potential Output: \mathbb{R}^{m}
- Actual Output: $\operatorname{Span}\left(A \mathbf{e}_{1}, A \mathbf{e}_{2}, \ldots, A \mathbf{e}_{n}\right)$

Question
What's the advantage of potential output over actual output?

Possible Answers

1. Easier to use
2. More structure

Inherited Structure

Lemma
If $\mathbf{u}, \mathbf{w} \in \operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ and $a \in \mathbb{R}$ then:

$$
\begin{gathered}
\mathbf{u}+\mathbf{w} \in \operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right) \\
\text { and } \\
\text { au } \in \operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)
\end{gathered}
$$

Proof.

$$
\left[\begin{array}{r}
3 \\
7 \\
11
\end{array}\right]+\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]=\left(\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]\right)+\left(2\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]-\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]\right)=(1+2)\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+(2-1)\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]
$$

Inherited Structure

Conclusion
$\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ inherits addition and scaling from \mathbb{R}^{n} In addition, they obey the same rules ... because they hold in \mathbb{R}^{n} !

Definition
A
subspace
of \mathbb{R}^{n} is a subset
$W \subseteq \mathbb{R}^{n}$
such that
$0 \in W$
$\mathbf{u}, \mathbf{v} \in W \Longrightarrow \mathbf{u}+\mathbf{w} \in W$
$\mathbf{w} \in W, a \in \mathbb{R} \Longrightarrow a \mathbf{w} \in W$

Examples

$$
\begin{aligned}
& \text { 1. } W=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}: x=y\right\} \\
& \text { 1.1 } 0=0 \Longrightarrow 0 \in W \\
& \text { 1.2 }\left[\begin{array}{l}
2 \\
2
\end{array}\right] \in W, 3\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
6 \\
6
\end{array}\right] \in W . \\
& \text { 1.3 }\left[\begin{array}{l}
2 \\
2
\end{array}\right],\left[\begin{array}{l}
-4 \\
-4
\end{array}\right] \in W,\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\left[\begin{array}{l}
-4 \\
-4
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2
\end{array}\right] \in W . \\
& \text { 2. } W=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}: x^{2}=y^{2}\right\} \\
& \text { 2.1 } 0^{2}=0^{2} \Longrightarrow \mathbf{0} \in W \\
& 2.2\left[\begin{array}{r}
2 \\
-2
\end{array}\right] \in W, 3\left[\begin{array}{r}
2 \\
-2
\end{array}\right]=\left[\begin{array}{r}
6 \\
-6
\end{array}\right] \in W\left(6^{2}=(-6)^{2}\right) . \\
& 2.3\left[\begin{array}{l}
2 \\
2
\end{array}\right],\left[\begin{array}{r}
4 \\
-4
\end{array}\right] \in W,\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\left[\begin{array}{r}
4 \\
-4
\end{array}\right]=\left[\begin{array}{r}
6 \\
-2
\end{array}\right] \notin W .
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { 3. } W=\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}: x^{2}+y^{2}=-1 \\
& 3.10^{2}+0^{2}=0 \neq-1 \Longrightarrow \mathbf{0} \notin W \\
& 3.2 \text { (in fact, } W=\varnothing \text {) } \\
& \text { 4. } W=\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}:(x-y)^{2}=0 \\
& \text { 4.1 } W=\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}: x=y \text { so subspace }
\end{aligned}
$$

One Thing, Many Views

Back to matrices...
Actual outputs: Span $\left(A \mathbf{e}_{1}, \ldots, A \mathbf{e}_{n}\right)$ subspace
Example

$$
W=\text { Span }\left(\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]\right)
$$

Question
Matrix $\xrightarrow{\text { Apply to } \mathrm{e}_{j}}$ Vectors $\xrightarrow{\text { Take span }}$ Subspace
Can we reverse those?

Describing a Subspace

$$
W=\operatorname{Span}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right)
$$

Explicit description, so very concrete. But not unique.

$$
\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]\right)=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]\right)
$$

Which is best? Hard to tell.

Describing a Subspace

$$
\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]\right)=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]\right)
$$

Which is best? The first!
Why? Second has redundancies.
Can throw out, say, $\left[\begin{array}{l}0 \\ 2 \\ 4\end{array}\right]$ without changing subspace.

Minimality: Linear Independence

Definition

Say that
$\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$
is

linearly independent if throwing any out changes the span.

Span $\left(\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right)=\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 4\end{array}\right]\right)$
So $\left\{\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 4\end{array}\right]\right\}$ not linearly independent.
(we say linearly dependent)

Linear Independence

Is $\left\{\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right\}$ linearly independent?
Throw some out and check span:
Is Span $\left(\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right)=$ Span $\left(\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\right)$? No. Done? No.
Is Span $\left(\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right)=$ Span $\left(\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right)$? No. Done? Yes.
\Longrightarrow Linearly independent.

In Pictures

Easier Test

Lemma
$\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ linearly independent
the only solution of

$$
\begin{gathered}
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k} \mathbf{v}_{k}=\mathbf{0} \\
\text { is }
\end{gathered}
$$

$$
a_{1}=a_{2}=\cdots=a_{k}=0
$$

Proof.
Suppose $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right)$
Then there are $a_{1}, \ldots, a_{k-1} \in \mathbb{R}$ such that

$$
\mathbf{v}_{k}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k-1} \mathbf{v}_{k-1}-\mathbf{v}_{k}=\mathbf{0}
$$

Examples

$$
\begin{gathered}
\left\{\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]\right\}, \quad\left\{\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]\right\} \\
a\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+b\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow a=b=0
\end{gathered}
$$

\Longrightarrow linearly independent

$$
2\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]-\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]-\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

\Longrightarrow not linearly independent (linearly dependent)

Summary

- Subspaces behave like ambient \mathbb{R}^{n}
- Set of actual outputs of a matrix are a subspace
- Useful to describe a subspace as a span of something
- Linear independence \Longleftrightarrow minimal

