TMA4115 Matematikk 3

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet Trondheim

Spring 2010

Recap

► Studying ODEs of form:

 $y^{\prime\prime} + p(x)y^{\prime} + q(x)y = 0$

- Reduction of order: use one solution to get another
- Constant coefficients: exponential solutions

Lecture 5: The Grand Tour

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet Trondheim

27th January 2010

Key Points

- ► Another type of ODE: Euler–Cauchy
- Idea of uniqueness
- ► Test for linear independence
- (Introducing: the Wronskian!)

How to Solve an ODE: Guess!

- ► Degree shift: try x^m
- Substitute in:

$$m(m-1)x^{m-2} + ax^{-1}mx^{m-1} + bx^{-2}x^{m} = 0$$

• Gather terms:

$$(m(m-1)+ma+b)x^{m-2}=0$$

Auxilliary equation:

$$m^2 + (a - 1)m + b$$

Andrew Stacey (NTNU)

Euler–Cauchy ODEs

Introducing ... The Euler–Cauchy equations:

$$x^2y'' + axy' + by = 0$$

Standard Form:

$$y'' + ax^{-1}y' + bx^{-2}y = 0$$

- ▶ Why? Because we can solve it.
- Anticipate "issues" at 0!
- Similar to y'' + ay' + by = 0
- Andrew Stacey (NTNU)

Lecture 5: The Grand Tour

27th January 2010 4 / 1

Solution

Solution of Cauchy–Euler If *m* is a root of

$$m^2 + (a - 1)m + b$$

then x^m satisfies

$$x^2y'' + axy' + by = 0$$

- ▶ Note: $m \in \mathbb{R}$. Not \mathbb{Z} !
- 2 distinct real roots \Longrightarrow 2 distinct solutions
- Potential problems at x = 0 (as expected)
- 1 real root or 2 complex roots not much harder But not on syllabus...

Case Study

$$x^2y'' - 3xy' + 3y = 0$$

Auxilliary equation:

$$m^2 + (-3 - 1)m + 3$$

Roots:

m = 1, m = 3

Solutions:

So far so good

Andrew Stacey (NTNU)

Lecture 5: The Grand Tour

 $cx + dx^3$

27th January 2010

9/1

Spot the Difference **Compare and Contrast** $x^2y'' + axy' + by = 0$ $y'' + ax^{-1}y' + bx^{-2}y = 0$ Andrew Stacey (NTNU) Lecture 5: The Grand Tour 27th January 2010 8 / 1

Case Study			
x ² y''	-3xy'+3y=0,	$cx + dx^3$	
Initial conditions: y	$(0) = 0, \ y'(0) = 0.$		
	c0 + d0 = 0 $c + d0 = 0$		
Conclusion: Infin Initial conditions: <i>y</i>	itely many solutions! (0) = 1, y'(0) = 0.		
	c0 + d0 = 1 $c + d0 = 0$		
Conclusion: No se	olutions!		
Andrew Stacey (NTNU)	Lecture 5: The Grand Tour	27th January 2010	10 / 1

What Is an ODE?

Question What is an ODE?

Answer

A way of **specifying** a curve by its derivatives. Key word: specifying. If it doesn't **specify**, it isn't (so) useful!

Spot The Difference

Compare and Contrast

 $x^{2}y'' + axy' + by = 0$ $y'' + ax^{-1}y' + bx^{-2}y = 0$

Solution

- ► No substantial difference
- ► Standard form clearer hence better

Andrew Stacey (NTNU)

Lecture 5: The Grand Tour

27th January 2010 12 / 1

Uniqueness or Existence

Theorem

y'' + p(x)y' + q(x)y = 0, $y(x_0) = K_0, y'(x_0) = K_1$

Interval I:

- p(x), q(x) continuous on l
- ► $x_0 \in I$.

Then IVP has a solution and it is unique.

Existence There is a solution

Uniqueness The solution is unique

Then: $\begin{aligned} y'(x_0) &= \int_0^{x_0} y''(x) dx \\ &= -\int_0^{x_0} p(x) y'(x) + q(x) y(x) dx \\ &= -\int_0^{x_0} p(x) |y'(x)| + |q(x)| |y(x)| dx \\ &= \frac{1}{2} \int_0^{x_0} |p(x)| |y'(x)| + |q(x)| |y(x)| dx \\ &\leq \frac{1}{2} \int_0^{x_0} |y'(x_0)| dx \\ &\leq \frac{1}{2} |y'(x_0)| x_0 \leq \frac{1}{2} |y'(x_0)| \\ \end{aligned}$ Only possible if $|y'(x_0)| = 0$ But $|y'(x)| \leq |y'(x_0)|$ so y'(x) = 0 for all $x \in [0, 1]!$ So y(x) = 0 and solution is unique. Mater Stacey (NTW) Let us 2 to the Grant Table 2 to the formula of the f

17/1

Uniqueness By Squeezing $\gamma'' + p(x)\gamma' + q(x)\gamma = 0, \quad \gamma(0) = 0, \quad \gamma'(0) = 0$ $\gamma'' + p(x)\gamma' + q(x)\gamma = 0, \quad \gamma(0) = 0, \quad \gamma'(0) = 0$ Assume: $\gamma: [0, 1] \rightarrow \mathbb{R}$ is a solution.**By Key Property of Continuous Functions:**
there is $x_0 \in [0, 1] : |\gamma'(x_0)| \ge |\gamma'(x)|$ all $0 \le x \le 1$ Integration $\Longrightarrow |\gamma(x)| \le |\gamma'(x_0)|$ also

Uniqueness Facts v'' + p(x)v' + q(x)v = 0**1.** $v_1 \neq 0$ solution \implies $y_1(x)$ and $y'_1(x)$ never simultaneously zero If so, y_1 solution with $y(x_0) = 0$, $y'(x_0) = 0$ Uniqueness $\implies y_1 = 0$ **2.** $y_1 \neq 0$, y_2 solutions $y_1(x_0) = 0 = y_2(x_0)$ some x_0 \implies $y_2 = ky_1$ some $k \in \mathbb{R}$ Non-zero \implies $y'_1(x_0) \neq 0$ $\implies \frac{y'_2(x_0)}{y'_1(x_0)}y_1 + y_2$ satisfies **?? 3.** Same with $y'_1(x_0) = 0 = y'_2(x_0)$. Andrew Stacey (NTNU) Lecture 5: The Grand Tour 27th January 2010 18/1

Lecture 5: The Grand Tour

27th January 2010

21/1

Andrew Stacey (NTNU)

Linear Independence

Uniqueness motivates linear independence:

Theorem

Definition

Recall:

 y_1, y_2 linearly independent

$$ay_1 + by_2 = 0 \Longrightarrow a = b = 0$$

Problem: Have to test **all** *a*, *b* and **all** *x*

Andrew Stacey (NTNU)

Lecture 5: The Grand Tour

27th January 2010 20 / 1

Testing Linear Independence

 $(y_1(x_0) = 0 \text{ and } y'_1(x_0) = 0) \Longrightarrow (y_1 = 0) \Longrightarrow \text{dependent.}$ So if $y_1 \neq 0$, at least one of

$$\frac{y_2(x_0)}{y_1(x_0)}, \qquad \frac{y_2'(x_0)}{y_1'(x_0)}$$

is well-defined and if $y_2 = ky_1$ then k is one of them.

Tests

1. Is
$$y_1 = 0$$
?2. Is $y_1(x_0) \neq 0$ and $y_2 = \frac{y_2(x_0)}{y_1(x_0)}y_1$?3. Is $y'_1(x_0) \neq 0$ and $y_2 = \frac{y'_2(x_0)}{y'_1(x_0)}y_1$?Yes to any \Longrightarrow dependentNo to all \Longrightarrow independentAndrew Stacey (NTNU)Lecture 5: The Grand Tour27th January 201022 / 1

Testing Linear Independence

J1(0)	$y_2(x_0)y'_1(x_0) - y'_2(x_0)y'_1(x_0)$	$x_1(x_0) = 0$	
$y_2 = \frac{y_2(x_0)}{y_1(x_0)} y_1 \iff$	$y_2(x_0) = \frac{y'_2(x_0)}{y'_1(x_0)} y_1(x_0)$		
$y_3 = 0 \iff y_3(x_0)$	$_{0}) = 0$		
$y_3 \coloneqq y_2 - \frac{y'_2(x_0)}{y'_1(x_0)}y_1$	solution with $y'_3(x_0) =$	0	
3. Is $y'_1(x_0) \neq 0$ and	$y_2 = \frac{y'_2(x_0)}{y'_1(x_0)}y_1$?		
J1(×0)	$y'_2(x_0)y_1(x_0) - y_2(x_0)y_1(x_0)$	$x'_{1}(x_{0}) = 0$	
J1(×0)	$y'_{2}(x_{0}) = \frac{y_{2}(x_{0})}{y_{1}(x_{0})}y'_{1}(x_{0})$		
$y_3 = 0 \iff y'_3(x_0)$	0 = 0		
$y_3 := y_2 - \frac{y_2(x_0)}{y_1(x_0)}y_1$	solution with $y_3(x_0) =$	0	
2. Is $y_1(x_0) \neq 0$ and	$y_2 = \frac{y_2(x_0)}{y_1(x_0)} y_1$?		
Are $y_1(x_0) = 0$ and	nd $y'_1(x_0) = 0$?		
1. Is $y_1 = 0$?			
5			

Introducing ... The Wronskian

Definition

The **Wronskian** of two functions y₁, y₂ is

$$W(y_1, y_2) \coloneqq y_1 y_2' - y_1' y_2$$

Examples

- **1.** $W(x, x^2) = x^2 x^2 = x^2$
- **2.** $W(e^x, e^{-x}) = e^x(-e^{-x}) e^x e^{-x} = -2$
- **3.** $W(\cos(x), \sin(x)) = \cos(x)\cos(x) (-\sin(x)\sin(x)) = 1$

Claim $y_1 \text{ and } y_2 \text{ linearly independent}$ $\Leftrightarrow \\ y_1(x_0)y'_2(x_0) - y'_1(x_0)y_2(x_0) = 0$ for some x_0 How can it be zero? 1. $y_1(x_0) = 0$ and $y'_1(x_0) = 0 \Longrightarrow$ test 1 holds 2. $y_1(x_0) \neq 0 \Longrightarrow$ test 2 holds 3. $y_1(x_0) \neq 0 \Longrightarrow$ test 3 holds (Marw Stacey (NTW))

The Norwegian Connection

Summary

- Euler–Cauchy ODEs provide useful examples of solvable ODEs
- Uniqueness is extremely useful
- Standard form important to see extent of ODE
- Linear independence testable by computing

 $y_1(x_0)y'_2(x_0) - y'_1(x_0)y_2(x_0)$

at **any** x_0 in the interval of interest

 Above formula will be useful, so give it a name: Wronskian

Abel's Identity

$$W(y_1, y_2)' = y'_1 y'_2 + y_1 y''_2 - y''_1 y_2 - y'_1 y'_2$$

= $y_1(-py'_2 - qy_2) - (-py'_1 - qy_1)y_2$
= $-p(y_1 y'_2 - y'_1 y_2)$
= $-pW(y_1, y_2)$

1st Order Linear ODE! Solution:

$$W(y_1, y_2)(x) = W(y_1, y_2)(x_0)e^{-\int_{x_0}^x p(t)dt}$$

Curiousity for now, useful later.

```
Andrew Stacey (NTNU)
```

Lecture 5: The Grand Tour

```
27th January 2010 28 / 1
```


27th January 2010

29/1