TMA4115 Matematikk 3

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet Trondheim

Spring 2010

Lecture 5: The Grand Tour

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet Trondheim

27th January 2010

Key Points

- Another type of ODE: Euler-Cauchy
- Idea of uniqueness
- Test for linear independence
- (Introducing: the Wronskian!)
- Reduction of order: use one solution to get another
- Constant coefficients: exponential solutions

ODEs and Polynomials

Recall

To solve

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

consider

$$
\lambda^{2}+a \lambda+b
$$

(auxilliary or characteristic equation)

$$
\text { ODEs } \longleftrightarrow \text { Polynomials }
$$

Not a coincidence (learn more in Fourier analysis).

How to Solve an ODE: Guess!

- Degree shift: try x^{m}
- Substitute in:

$$
m(m-1) x^{m-2}+a x^{-1} m x^{m-1}+b x^{-2} x^{m}=0
$$

- Gather terms:

$$
(m(m-1)+m a+b) x^{m-2}=0
$$

- Auxilliary equation:

$$
m^{2}+(a-1) m+b
$$

Euler-Cauchy ODEs

Introducing
The Euler-Cauchy equations:

$$
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0
$$

Standard Form:

$$
y^{\prime \prime}+a x^{-1} y^{\prime}+b x^{-2} y=0
$$

- Why? Because we can solve it.
- Anticipate "issues" at 0 !
- Similar to $y^{\prime \prime}+a y^{\prime}+$ by $=0$

Andrew Stacey (NTNU)

Solution

Solution of Cauchy-Euler

If m is a root of

$$
m^{2}+(a-1) m+b
$$

then x^{m} satisfies

$$
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0
$$

- Note: $m \in \mathbb{R}$. Not \mathbb{Z} !
- 2 distinct real roots $\Longrightarrow 2$ distinct solutions
- Potential problems at $x=0$ (as expected)
- 1 real root or 2 complex roots not much harder But not on syllabus...

Pretty Pictures

Case Study

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0
$$

Auxilliary equation:

$$
m^{2}+(-3-1) m+3
$$

Roots:

$$
m=1, \quad m=3
$$

Solutions:

$$
c x+d x^{3}
$$

So far so good

Spot the Difference

Compare and Contrast

$$
\begin{gathered}
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0 \\
y^{\prime \prime}+a x^{-1} y^{\prime}+b x^{-2} y=0
\end{gathered}
$$

Case Study

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0, \quad c x+d x^{3}
$$

Initial conditions: $y(0)=0, y^{\prime}(0)=0$.

$$
\begin{array}{r}
c 0+d 0=0 \\
c+d 0=0
\end{array}
$$

Conclusion: Infinitely many solutions!
Initial conditions: $y(0)=1, y^{\prime}(0)=0$.

$$
\begin{aligned}
c 0+d 0 & =1 \\
c+d 0 & =0
\end{aligned}
$$

Conclusion: No solutions!

Caveat Solvator

Important

Functions make sense at $x=0$
\nRightarrow
Solutions make sense at $x=0$

What Is an ODE?

Question

What is an ODE?

Answer

A way of specifying a curve by its derivatives.
Key word: specifying.
If it doesn't specify, it isn't (so) useful!

Solution

- No substantial difference
- Standard form clearer hence better

Spot The Difference

Compare and Contrast

$$
\begin{gathered}
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0 \\
y^{\prime \prime}+a x^{-1} y^{\prime}+b x^{-2} y=0
\end{gathered}
$$

Uniqueness or Existence

Theorem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad y\left(x_{0}\right)=K_{0}, y^{\prime}\left(x_{0}\right)=K_{1}
$$

Interval I:

- $p(x), q(x)$ continuous on I
- $x_{0} \in I$.

Then IVP has a solution and it is unique.
Existence There is a solution
Uniqueness The solution is unique

Uniqueness By Squeezing

Key Property of Continuous Functions

$f:[a, b] \rightarrow \mathbb{R}$ continuous
$\exists t_{0} \in[a, b]:\left|f\left(t_{0}\right)\right| \geq|f(t)| \forall t \in[a, b]$
i.e. $|f|$ achieves its maximum

Apply to: $p(x), q(x), y^{\prime}(x)$.

Simplifying Assumptions:

1. Work on $[0,1]$
2. $|p(x)|,|q(x)| \leq 1 / 4$ all $x \in[0,1]$
3. Consider IVP with $y(0)=0, y^{\prime}(0)=0$

Know that $y(x)=0$ is a solution.
Goal: Show it is the only solution.

Uniqueness By Squeezing

Then:

$$
\begin{aligned}
y^{\prime}\left(x_{0}\right) & =\int_{0}^{x_{0}} y^{\prime \prime}(x) \mathrm{d} x \\
& =-\int_{0}^{x_{0}} p(x) y^{\prime}(x)+q(x) y(x) \mathrm{d} x \\
\left|y^{\prime}\left(x_{0}\right)\right| & \leq \int_{0}^{x_{0}}|p(x)|\left|y^{\prime}(x)\right|+|q(x)||y(x)| \mathrm{d} x \\
& \leq \frac{1}{2} \int_{0}^{x_{0}}\left|y^{\prime}\left(x_{0}\right)\right| \mathrm{d} x \\
& \leq \frac{1}{2}\left|y^{\prime}\left(x_{0}\right)\right| x_{0} \leq \frac{1}{2}\left|y^{\prime}\left(x_{0}\right)\right|
\end{aligned}
$$

Only possible if $\left|y^{\prime}\left(x_{0}\right)\right|=0$
But $\left|y^{\prime}(x)\right| \leq\left|y^{\prime}\left(x_{0}\right)\right|$ so $y^{\prime}(x)=0$ for all $x \in[0,1]$!
So $y(x)=0$ and solution is unique.

Uniqueness By Squeezing

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad y(0)=0, y^{\prime}(0)=0
$$

Assume: $y:[0,1] \rightarrow \mathbb{R}$ is a solution.
By Key Property of Continuous Functions:
there is $x_{0} \in[0,1]:\left|y^{\prime}\left(x_{0}\right)\right| \geq\left|y^{\prime}(x)\right|$ all $0 \leq x \leq 1$
Integration $\Longrightarrow|y(x)| \leq\left|y^{\prime}\left(x_{0}\right)\right|$ also

Uniqueness Facts

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

1. $y_{1} \neq 0$ solution
$\Longrightarrow y_{1}(x)$ and $y_{1}^{\prime}(x)$ never simultaneously zero
If so, y_{1} solution with $y\left(x_{0}\right)=0, y^{\prime}\left(x_{0}\right)=0$
Uniqueness $\Longrightarrow y_{1}=0$
2. $y_{1} \neq 0, y_{2}$ solutions
$y_{1}\left(x_{0}\right)=0=y_{2}\left(x_{0}\right)$ some x_{0}
$\Longrightarrow y_{2}=k y_{1}$ some $k \in \mathbb{R}$
Non-zero $\Longrightarrow y_{1}^{\prime}\left(x_{0}\right) \neq 0$
$\Longrightarrow \frac{y_{2}^{\prime}\left(x_{0}\right)}{y_{1}^{\prime}\left(x_{0}\right)} y_{1}+y_{2}$ satisfies ??
3. Same with $y_{1}^{\prime}\left(x_{0}\right)=0=y_{2}^{\prime}\left(x_{0}\right)$.

Uniqueness Example

Example

$$
y^{\prime \prime}+4 y=0
$$

Solutions: $\sin (2 x), \cos (2 x), \sin (x) \cos (x)$.

1. $\sin (2 x)$ and $\frac{d}{d x} \sin (2 x)$ never simultaneously zero
2. $\sin (2 \pi)=0=\sin (\pi) \cos (\pi) \Longrightarrow \sin (2 x)=2 \sin (x) \cos (x)$

Linear Independence

Uniqueness motivates linear independence:

Theorem

y_{1}, y_{2} linearly independent solutions
All solutions uniquely of form

Recall:

Definition

$$
\begin{aligned}
& y_{1}, y_{2} \text { linearly independent } \\
& a y_{1}+b y_{2}=0 \Longrightarrow a=b=0
\end{aligned}
$$

Problem: Have to test all a, b and all x

Testing Linear Independence

$\left(y_{1}\left(x_{0}\right)=0\right.$ and $\left.y_{1}^{\prime}\left(x_{0}\right)=0\right) \Longrightarrow\left(y_{1}=0\right) \Longrightarrow$ dependent.
So if $y_{1} \neq 0$, at least one of

$$
\frac{y_{2}\left(x_{0}\right)}{y_{1}\left(x_{0}\right)}, \quad \frac{y_{2}^{\prime}\left(x_{0}\right)}{y_{1}^{\prime}\left(x_{0}\right)}
$$

is well-defined and if $y_{2}=k y_{1}$ then k is one of them.

Tests

1. Is $y_{1}=0$?
2. Is $y_{1}\left(x_{0}\right) \neq 0$ and $y_{2}=\frac{y_{2}\left(x_{0}\right)}{y_{1}\left(x_{0}\right)} y_{1}$?
3. Is $y_{1}^{\prime}\left(x_{0}\right) \neq 0$ and $y_{2}=\frac{y_{2}^{\prime}\left(x_{0}\right)}{y_{1}^{\prime}\left(x_{0}\right)} y_{1}$?

Yes to any \Longrightarrow dependent \quad No to all \Longrightarrow independent

Testing Linear Independence

1. Is $y_{1}=0$?

Are $y_{1}\left(x_{0}\right)=0$ and $y_{1}^{\prime}\left(x_{0}\right)=0$?
2. Is $y_{1}\left(x_{0}\right) \neq 0$ and $y_{2}=\frac{y_{2}\left(x_{0}\right)}{y_{1}\left(x_{0}\right)} y_{1}$?
$y_{3}:=y_{2}-\frac{y_{2}\left(x_{0}\right)}{y_{1}\left(x_{0}\right)} y_{1}$ solution with $y_{3}\left(x_{0}\right)=0$
$y_{3}=0 \Longleftrightarrow y_{3}^{\prime}\left(x_{0}\right)=0$
$y_{2}=\frac{y_{2}\left(x_{0}\right)}{y_{1}\left(x_{0}\right)} y_{1} \Longleftrightarrow y_{2}^{\prime}\left(x_{0}\right)=\frac{y_{2}\left(x_{0}\right)}{y_{1}\left(x_{0}\right)} y_{1}^{\prime}\left(x_{0}\right)$
$y_{2}=\frac{y_{2}\left(x_{0}\right)}{y_{1}\left(x_{0}\right)} y_{1} \Longleftrightarrow y_{2}^{\prime}\left(x_{0}\right) y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right) y_{1}^{\prime}\left(x_{0}\right)=0$
3. Is $y_{1}^{\prime}\left(x_{0}\right) \neq 0$ and $y_{2}=\frac{y_{2}^{\prime}\left(x_{0}\right)}{y_{1}^{\prime}\left(x_{0}\right)} y_{1}$?
$y_{3}:=y_{2}-\frac{y_{2}^{\prime}\left(x_{0}\right)}{y_{1}^{\prime}\left(x_{0}\right)} y_{1}$ solution with $y_{3}^{\prime}\left(x_{0}\right)=0$
$y_{3}=0 \Longleftrightarrow y_{3}\left(x_{0}\right)=0$
$y_{2}=\frac{y_{2}\left(x_{0}\right)}{y_{1}\left(x_{0}\right)} y_{1} \Longleftrightarrow y_{2}\left(x_{0}\right)=\frac{y_{2}^{\prime}\left(x_{0}\right)}{y_{1}^{\prime}\left(x_{0}\right)} y_{1}\left(x_{0}\right)$
$y_{2}=\frac{y_{2}\left(x_{0}\right)}{y_{1}\left(x_{0}\right)} y_{1} \Longleftrightarrow y_{2}\left(x_{0}\right) y_{1}^{\prime}\left(x_{0}\right)-y_{2}^{\prime}\left(x_{0}\right) y_{1}\left(x_{0}\right)=0$
Andrew Stacey (NTNU)
Lecture 5: The Grand Tour
27th January 2010
How can it be zero?

1. $y_{1}\left(x_{0}\right)=0$ and $y_{1}^{\prime}\left(x_{0}\right)=0 \Longrightarrow$ test 1 holds
2. $y_{1}\left(x_{0}\right) \neq 0 \Longrightarrow$ test 2 holds
3. $y_{1}\left(x_{0}\right) \neq 0 \Longrightarrow$ test 3 holds

Wronskian and Linear Independence

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

y_{1} and y_{2} solutions of ODE.
y_{1}, y_{2} linearly independent

$$
\begin{gathered}
\left.\begin{array}{c}
\\
\left(y_{1}, y_{2}\right)
\end{array}\right) \stackrel{x}{\Longleftrightarrow}=0 \text { for all } x \\
W\left(y_{1}, y_{2}\right)\left(x_{0}\right)=0 \text { for some } x_{0}
\end{gathered}
$$

The Norwegian Connection

Really Weird Fact

$W\left(y_{1}, y_{2}\right)$ depends on ODE and almost not on y_{1} and y_{2} !

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

Solutions: $a x+b x^{2}$

$$
\begin{aligned}
& W\left(a_{1} x+b_{1} x^{2}, a_{2} x+b_{2} x^{2}\right) \\
&=\left(a_{1} x+b_{1} x^{2}\right)\left(a_{2}+2 b_{2} x\right) \\
&-\left(a_{1}+2 b_{1} x\right)\left(a_{2} x+b_{2} x^{2}\right) \\
&= a_{1} a_{2} x+\left(2 a_{1} b_{2}+a_{2} b_{1}\right) x^{2}+2 b_{1} b_{2} x^{3} \\
&-a_{1} a_{2} x-\left(a_{1} b_{2}+2 a_{2} b_{1}\right) x^{2}-2 b_{1} b_{2} x^{3} \\
&=\left(a_{1} b_{2}-a_{1} b_{1}\right) x^{2}
\end{aligned}
$$

Always a multiple of x^{2} !

Abel's Identity

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)^{\prime} & =y_{1}^{\prime} y_{2}^{\prime}+y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}-y_{1}^{\prime} y_{2}^{\prime} \\
& =y_{1}\left(-p y_{2}^{\prime}-q y_{2}\right)-\left(-p y_{1}^{\prime}-q y_{1}\right) y_{2} \\
& =-p\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right) \\
& =-p W\left(y_{1}, y_{2}\right)
\end{aligned}
$$

1st Order Linear ODE!
Solution:

$$
W\left(y_{1}, y_{2}\right)(x)=W\left(y_{1}, y_{2}\right)\left(x_{0}\right) e^{-\int_{x_{0}}^{x} p(t) d t}
$$

Curiousity for now, useful later.

Summary

- Euler-Cauchy ODEs provide useful examples of solvable ODEs
- Uniqueness is extremely useful
- Standard form important to see extent of ODE
- Linear independence testable by computing

$$
y_{1}\left(x_{0}\right) y_{2}^{\prime}\left(x_{0}\right)-y_{1}^{\prime}\left(x_{0}\right) y_{2}\left(x_{0}\right)
$$

at any x_{0} in the interval of interest

- Above formula will be useful, so give it a name: Wronskian

