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Recap

I Studying ODEs of form:

y ′′ + p(x)y ′ + q(x)y = 0

I Reduction of order: use one solution to
get another

I Constant coefficients: exponential
solutions
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Key Points

I Another type of ODE: Euler–Cauchy
I Idea of uniqueness
I Test for linear independence
I (Introducing: the Wronskian!)
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ODEs and Polynomials

Recall
To solve

y ′′ + ay ′ + by = 0

consider
λ2 + aλ+ b

(auxilliary or characteristic equation)

ODEs Polynomials

Not a coincidence (learn more in Fourier analysis).
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Euler–Cauchy ODEs
Introducing . . .
The Euler–Cauchy equations:

x2y ′′ + axy ′ + by = 0

Standard Form:

y ′′ + ax−1y ′ + bx−2y = 0

I Why? Because we can solve it.
I Anticipate “issues” at 0!
I Similar to y ′′ + ay ′ + by = 0
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How to Solve an ODE: Guess!
I Degree shift: try xm

I Substitute in:

m(m − 1)xm−2 + ax−1mxm−1 + bx−2xm = 0

I Gather terms: (
m(m − 1) + ma + b

)
xm−2 = 0

I Auxilliary equation:

m2 + (a − 1)m + b
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Solution

Solution of Cauchy–Euler
If m is a root of

m2 + (a − 1)m + b

then xm satisfies
x2y ′′ + axy ′ + by = 0

I Note: m ∈ R. Not Z!
I 2 distinct real roots 2 distinct solutions
I Potential problems at x = 0 (as expected)
I 1 real root or 2 complex roots not much harder

But not on syllabus. . .
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Pretty Pictures

x1/2

xπ

x−2

x2 + x−1
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Spot the Difference

Compare and Contrast

x2y ′′ + axy ′ + by = 0

y ′′ + ax−1y ′ + bx−2y = 0
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Case Study

x2y ′′ − 3xy ′ + 3y = 0

Auxilliary equation:

m2 + (−3 − 1)m + 3

Roots:
m = 1, m = 3

Solutions:
cx + dx3

So far so good
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Case Study
x2y ′′ − 3xy ′ + 3y = 0, cx + dx3

Initial conditions: y(0) = 0, y ′(0) = 0.

c0 + d0 = 0
c + d0 = 0

Conclusion: Infinitely many solutions!

Initial conditions: y(0) = 1, y ′(0) = 0.

c0 + d0 = 1
c + d0 = 0

Conclusion: No solutions!
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Caveat Solvator

Important

Functions make sense at x = 0

Solutions make sense at x = 0
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Spot The Difference

Compare and Contrast

x2y ′′ + axy ′ + by = 0

y ′′ + ax−1y ′ + bx−2y = 0

Solution

I No substantial difference
I Standard form clearer hence better
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What Is an ODE?

Question
What is an ODE?

Answer
A way of specifying a curve by its derivatives.
Key word: specifying.
If it doesn’t specify, it isn’t (so) useful!
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Uniqueness or Existence

Theorem

y ′′ + p(x)y ′ + q(x)y = 0, y(x0) = K 0, y ′(x0) = K 1

Interval I:
I p(x), q(x) continuous on I
I x0 ∈ I.

Then IVP has a solution and it is unique.

Existence There is a solution
Uniqueness The solution is unique
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Uniqueness By Squeezing

Key Property of Continuous Functions
f : [a,b]→ R continuous

∃t0 ∈ [a,b] : |f(t0)| ≥ |f(t)|∀t ∈ [a,b]
i.e. |f | achieves its maximum

Apply to: p(x), q(x), y ′(x).
Simplifying Assumptions:

1. Work on [0,1]

2. |p(x)|, |q(x)| ≤ 1/4 all x ∈ [0,1]

3. Consider IVP with y(0) = 0, y ′(0) = 0
Know that y(x) = 0 is a solution.
Goal: Show it is the only solution.
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Uniqueness By Squeezing

y ′′ + p(x)y ′ + q(x)y = 0, y(0) = 0, y ′(0) = 0

Assume: y : [0,1]→ R is a solution.

By Key Property of Continuous Functions:
there is x0 ∈ [0,1] : |y ′(x0)| ≥ |y ′(x)| all 0 ≤ x ≤ 1

Integration |y(x)| ≤ |y ′(x0)| also
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Uniqueness By Squeezing
Then:

y ′(x0) =

∫ x0

0
y ′′(x)dx

= −

∫ x0

0
p(x)y ′(x) + q(x)y(x)dx

|y ′(x0)| ≤

∫ x0

0
|p(x)||y ′(x)|+ |q(x)||y(x)|dx

≤
1
2

∫ x0

0
|y ′(x0)|dx

≤
1
2
|y ′(x0)|x0 ≤

1
2
|y ′(x0)|

Only possible if |y ′(x0)| = 0
But |y ′(x)| ≤ |y ′(x0)| so y ′(x) = 0 for all x ∈ [0,1]!
So y(x) = 0 and solution is unique.
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Uniqueness Facts

y ′′ + p(x)y ′ + q(x)y = 0

1. y1 , 0 solution
y1(x) and y ′1(x) never simultaneously zero

If so, y1 solution with y(x0) = 0, y ′(x0) = 0
Uniqueness y1 = 0

2. y1 , 0, y2 solutions
y1(x0) = 0 = y2(x0) some x0

y2 = ky1 some k ∈ R
Non-zero y ′1(x0) , 0

y′2(x0)

y′1(x0)
y1 + y2 satisfies ??

3. Same with y ′1(x0) = 0 = y ′2(x0).
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Uniqueness Example

Example

y ′′ + 4y = 0

Solutions: sin(2x), cos(2x), sin(x) cos(x).

1. sin(2x) and d
dx sin(2x) never simultaneously zero

2. sin(2π) = 0 = sin(π) cos(π) sin(2x) = 2 sin(x) cos(x)
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Linear Independence
Uniqueness motivates linear independence:

Theorem
y1, y2 linearly independent solutions

All solutions uniquely of form
ay1 + by2

Recall:

Definition
y1, y2 linearly independent

ay1 + by2 = 0 a = b = 0
Problem: Have to test all a,b and all x
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Testing Linear Independence

y1, y2 not linearly independent

one is a multiple of the other

y2 = ky1 or y1 = 0
y2(x) = ky1(x)∀x or y1(x) = 0∀x

Problem: k unknown if it exists
Solution: use a x0 to limit choices
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Testing Linear Independence(
y1(x0) = 0 and y ′1(x0) = 0

) (
y1 = 0

)
dependent.

So if y1 , 0, at least one of

y2(x0)

y1(x0)
,

y ′2(x0)

y ′1(x0)

is well-defined and if y2 = ky1 then k is one of them.

Tests

1. Is y1 = 0?

2. Is y1(x0) , 0 and y2 =
y2(x0)

y1(x0)
y1?

3. Is y ′1(x0) , 0 and y2 =
y′2(x0)

y′1(x0)
y1?

Yes to any dependent No to all independent
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Testing Linear Independence
1. Is y1 = 0?

Are y1(x0) = 0 and y ′1(x0) = 0?
2. Is y1(x0) , 0 and y2 =

y2(x0)

y1(x0)
y1?

y3 B y2 −
y2(x0)

y1(x0)
y1 solution with y3(x0) = 0

y3 = 0 y ′3(x0) = 0
y2 =

y2(x0)

y1(x0)
y1 y ′2(x0) =

y2(x0)

y1(x0)
y ′1(x0)

y2 =
y2(x0)

y1(x0)
y1 y ′2(x0)y1(x0) − y2(x0)y ′1(x0) = 0

3. Is y ′1(x0) , 0 and y2 =
y′2(x0)

y′1(x0)
y1?

y3 B y2 −
y′2(x0)

y′1(x0)
y1 solution with y ′3(x0) = 0

y3 = 0 y3(x0) = 0
y2 =

y2(x0)

y1(x0)
y1 y2(x0) =

y′2(x0)

y′1(x0)
y1(x0)

y2 =
y2(x0)

y1(x0)
y1 y2(x0)y ′1(x0) − y ′2(x0)y1(x0) = 0
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Testing Linear Independence

Claim
y1 and y2 linearly independent

y1(x0)y ′2(x0) − y ′1(x0)y2(x0) = 0
for some x0

How can it be zero?
1. y1(x0) = 0 and y ′1(x0) = 0 test 1 holds
2. y1(x0) , 0 test 2 holds
3. y1(x0) , 0 test 3 holds
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Introducing . . . The Wronskian

Definition
The Wronskian of two functions

y1, y2

is

W(y1, y2) B y1y ′2 − y ′1y2

Examples

1. W(x , x2) = x2x − x2 = x2

2. W(ex ,e−x) = ex(−e−x) − exe−x = −2
3. W(cos(x), sin(x)) = cos(x) cos(x) − (− sin(x) sin(x)) = 1
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Wronskian and Linear Independence

y ′′ + p(x)y ′ + q(x)y = 0

y1 and y2 solutions of ODE.
y1, y2 linearly independent

W(y1, y2)(x) = 0 for all x

W(y1, y2)(x0) = 0 for some x0
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The Norwegian Connection

Really Weird Fact
W(y1, y2) depends on ODE and almost not on y1 and y2!

y ′′ − 2y ′ + 2y = 0
Solutions: ax + bx2

W(a1x + b1x2,a2x + b2x2)

= (a1x + b1x2)(a2 + 2b2x)

− (a1 + 2b1x)(a2x + b2x2)

= a1a2x + (2a1b2 + a2b1)x2 + 2b1b2x3

− a1a2x − (a1b2 + 2a2b1)x2
− 2b1b2x3

= (a1b2 − a1b1)x2

Always a multiple of x2!
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Abel’s Identity

W(y1, y2)
′ = y ′1y ′2 + y1y ′′2 − y ′′1 y2 − y ′1y ′2
= y1(−py ′2 − qy2) − (−py ′1 − qy1)y2

= −p(y1y ′2 − y ′1y2)

= −pW(y1, y2)

1st Order Linear ODE!
Solution:

W(y1, y2)(x) = W(y1, y2)(x0)e
−

∫ x
x0

p(t)dt

Curiousity for now, useful later.
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Summary

I Euler–Cauchy ODEs provide useful examples of
solvable ODEs

I Uniqueness is extremely useful
I Standard form important to see extent of ODE
I Linear independence testable by computing

y1(x0)y ′2(x0) − y ′1(x0)y2(x0)

at any x0 in the interval of interest
I Above formula will be useful, so give it a name:

Wronskian
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