TMA4115 Matematikk 3

Andrew Stacey
Norges Teknisk-Naturvitenskapelige Universitet Trondheim

Spring 2010

Lecture 1: y i?

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet Trondheim

13th January 2010

Usual Questions

Questions
What? Square root of -1
Why? Because it's useful
How? Ah, now that's an interesting question...

More detail on "why"

Mathematics is a language:

- Words \longleftrightarrow Definitions
- Sentences \longleftrightarrow Theorems
(Roughly)
Need words to express ideas
Words have no intrinsic reality; their worth comes from their usefulness.
- Does "dog" exist?
- Does " $\sqrt{-1}$ " exist?

Wrong Question!

Is $\sqrt{-1}$ Useful?

Real Question

What concepts does $\sqrt{-1}$ allow us to talk about?

- Roots of any polynomial, e.g. $x^{2}+1$ Seems boring, but incredibly useful
- Signal analysis
- Electromagnetism
- Quantum Theory
- ...

The shortest path between two truths in the real domain passes through the complex plane.

Hadamard

Andrew Stacey (NTNU)
Lecture 1: $y \mathrm{i}$?
13th January 2010

But How?

Form Versus Function

Slogan

Mathematical objects are determined more by what they do than what they are.

Dynamic not static.

What can we do with numbers?

1. Add: $2+3=5, \pi+e=5.8599 \ldots$
2. Subtract: $3-2=1, \pi-e=0.42331 \ldots$
3. Multiply: $2 \times 3=6, \pi \times e=8.5397 \ldots$
4. Divide (if non-zero): $6 \div 3=2, \pi \div e=1.1557 \ldots$
5. Compare: $2 \leq 3, \pi \geq \mathrm{e}$
6. Subject to (lots of) rules.

We'd like to do these with complex numbers.

Notational Pause

Warning

Notation $\sqrt{-1}$ is unsafe!

Problem

Already in \mathbb{R}, square roots are not unique.

Solution

Don't add $\sqrt{-1}$.
Add i and add the rule $\mathrm{i}^{2}=-1$.

Set of Complex Numbers

Written as \mathbb{C}.

What Else?

Question

What else must we have?
(So that,,$+- \times, \div$ defined)

Answer

Nothing!
Because of the rules.

Rules? What rules?

Same as \mathbb{R}.

Generating Complex Numbers

- Start: $\mathbb{R} \subseteq \mathbb{C}$ and $\mathrm{i} \in \mathbb{C}$.
- Add: $3+\mathrm{i} \in \mathbb{C}, x+i \in \mathbb{C}$,
- Multiply: i2 $\in \mathbb{C}$, iy $\in \mathbb{C}$,
- Back to Add: $3+\mathrm{i} 2 \in \mathbb{C}, x+\mathrm{i} y \in \mathbb{C}$.

Story So Far

$$
x, y \in \mathbb{R} \Longrightarrow x+i y \in \mathbb{C}
$$

Examples

1. $2+\mathrm{i} 3$
2. $1+\mathrm{i}(-1)$
3. $\pi+\mathrm{ie}$

Addition

$$
\begin{aligned}
(\mathrm{e}+\mathrm{i} 3)+(\pi+\mathrm{i} 2) & =(\mathrm{e}+\mathrm{i} 3)+(\mathrm{i} 2+\pi) \\
& =\mathrm{e}+(\mathrm{i} 3+(\mathrm{i} 2+\pi)) \\
& =\mathrm{e}+((\mathrm{i} 3+\mathrm{i} 2)+\pi) \\
& =\mathrm{e}+(\pi+\mathrm{i}(3+2)) \\
& =(\mathrm{e}+\pi)+\mathrm{i} 5
\end{aligned}
$$

Of the form $x+$ iy with $x, y \in \mathbb{R}$.
General Rule

$$
(x+\mathrm{i} y)+(u+\mathrm{i} v)=(x+u)+\mathrm{i}(y+v)
$$

Subtraction

$$
\begin{aligned}
(e+i 3)-(\pi+i 2) & =(e+i 3)+((-\pi)+i(-2)) \\
& =(e-\pi)+i(3-2) \\
& =(e-\pi)+i 1 \\
& =(e-\pi)+i
\end{aligned}
$$

Of the form $x+$ iy with $x, y \in \mathbb{R}$.

General Rule

$$
(x+\mathrm{i} y)-(u+\mathrm{i} v)=(x-u)+\mathrm{i}(y-v)
$$

Division

Question

What is division?

Answer

$$
\frac{1}{x} \times x=1
$$

Question

$$
\text { What is } 1 ?
$$

Answer

$$
1 \times x=x
$$

Multiplication

$$
\begin{aligned}
(\mathrm{e}+\mathrm{i} 3)(\pi+\mathrm{i} 2) & =\mathrm{e} \pi+\mathrm{ei} 2+\mathrm{i} 3 \pi+\mathrm{i} 3 \mathrm{i} 2 \\
& =\mathrm{e} \pi+\mathrm{ie} 2+\mathrm{i} 3 \pi+\mathrm{i}^{2} 6 \\
& =\mathrm{e} \pi+\mathrm{i}(\mathrm{e} 2+3 \pi)+\mathrm{i}^{2} 6 \\
& =\mathrm{e} \pi+\mathrm{i}(\mathrm{e} 2+3 \pi)+-1 \times 6 \\
& =(\mathrm{e} \pi-6)+\mathrm{i}(\mathrm{e} 2+3 \pi)
\end{aligned}
$$

General Rule

$$
(x+\mathrm{i} y)(u+\mathrm{i} v)=(x u-y v)+\mathrm{i}(x v+y u)
$$

Division

- Finding 1: solve

$$
(x+\mathrm{i} y)(u+\mathrm{i} v)=(u+\mathrm{i} v)
$$

- Specific instance: solve

$$
(x+\mathrm{i} y)(2+\mathrm{i} 3)=2+\mathrm{i} 3
$$

- Expand out multiplication:

$$
2 x-3 y+i(2 y+3 x)=2+i 3
$$

- Key Fact: $u+\mathrm{i} v=s+\mathrm{i} t \Longleftrightarrow u=s$ and $v=t$
- Solve: $2 x-3 y=2$ and $2 y+3 x=3$
- Solution: $x=1, y=0$.
- Conclusion: $1=1+\mathrm{i} 0$ (unsurprisingly)

Division

- Finding $1 /(x+i y)$: solve

$$
(x+\mathrm{i} y)(u+\mathrm{i} v)=1+\mathrm{i} 0
$$

- Specific instance: solve

$$
(2+\mathrm{i} 3)(u+\mathrm{i} v)=1+\mathrm{i} 0
$$

- Expand out multiplication:

$$
2 u-3 v+\mathrm{i}(2 v+3 u)=1+\mathrm{i} 0
$$

- Solve: $2 u-3 v=1$ and $2 v+3 u=0$
- Substitute: $v=-3 u / 2$
- Get: $u(2+9 / 2)=1$
- Solution: $u=2 / 13, v=-3 / 13$.

Story So Far

Complex Numbers

- Notation \mathbb{C}
- $z \in \mathbb{C}$ represented as $z=x+\mathrm{i} y$ with $x, y \in \mathbb{R}$
- Add, Subtract, Multiply, Divide
- Same rules as in \mathbb{R} with ...
- $\mathrm{i}^{2}=-1$
- $\mathbb{R} \subseteq \mathbb{C}$ as $x \mapsto x+i 0$
- Conventions: leave out 1 or 0 if unambiguous:

$$
2+\mathrm{i} 0 \rightarrow 2, \quad 2+\mathrm{i} 1 \rightarrow 2+\mathrm{i}
$$

Real and Imaginary Parts

$$
z=x+i y
$$

- x is the real part of z

$$
\begin{gathered}
x=\operatorname{Re} z=\frac{1}{2}(z+\bar{z}) \\
\operatorname{Re}(2+i 3)=2
\end{gathered}
$$

- y is the imaginary part of z

$$
\begin{gathered}
y=\operatorname{Im} z=\frac{1}{2}(z-\bar{z}) \\
\operatorname{Im}(2+i 3)=3
\end{gathered}
$$

- Complex numbers are like real numbers with i
- Add, Subtract, Multiply, Divide just as in \mathbb{R}
- New thing: complex conjugation

Summary

考
\square

