TMA4115 Matematikk 3

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet Trondheim

Spring 2010

Lecture 24: Foxes and Rabbits

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet Trondheim

14th April 2010

Key Points

- Eigenvectors simplify problems
- Diagonalisation is hard
- Partial information can suffice

Basis is a "point of view"

The Pendula, Yet Again

$$\begin{bmatrix} y'_{a} \\ y'_{b} \\ z'_{a} \\ z'_{b} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & 1 & -5 & 0 \\ 1 & -5 & 0 & -5 \end{bmatrix} \begin{bmatrix} y_{a} \\ y_{b} \\ z_{a} \\ z_{b} \end{bmatrix}$$

The Pendula, Yet Again

$$\begin{bmatrix} y'_{a} \\ y'_{b} \\ z'_{a} \\ z'_{b} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & 1 & -5 & 0 \\ 1 & -5 & 0 & -5 \end{bmatrix} \begin{bmatrix} y_{a} \\ y_{b} \\ z_{a} \\ z_{b} \end{bmatrix}$$
$$w_{+} = y_{a} + y_{b} + z_{a} + z_{b}$$
$$x_{+} = 4y_{a} + 4y_{b} + z_{a} + z_{b}$$
$$w_{-} = 2y_{a} - 2y_{b} + z_{a} - z_{b}$$
$$x_{-} = 3y_{a} - 3y_{b} + z_{a} - z_{b}$$
$$\begin{bmatrix} w'_{+} \\ x'_{+} \\ w'_{-} \\ x'_{-} \end{bmatrix} = \begin{bmatrix} -4 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} w_{+} \\ x_{+} \\ w_{-} \\ x_{-} \end{bmatrix}$$

Key Question

Question

Where do w_+ (etc) come from?

Reconstruction

$$W_{+} = y_{a} + y_{b} + z_{a} + z_{b}$$

$$x_{+} = 4y_{a} + 4y_{b} + z_{a} + z_{b}$$

$$W_{-} = 2y_{a} -2y_{b} + z_{a} - z_{b}$$

$$x_{-} = 3y_{a} -3y_{b} + z_{a} - z_{b}$$

Reconstruction

$$\begin{bmatrix} w_+ \\ x_+ \\ w_- \\ x_- \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 4 & 4 & 1 & 1 \\ 2 & -2 & 1 & -1 \\ 3 & -3 & 1 & -1 \end{bmatrix} \begin{bmatrix} y_a \\ y_b \\ z_a \\ z_b \end{bmatrix}$$

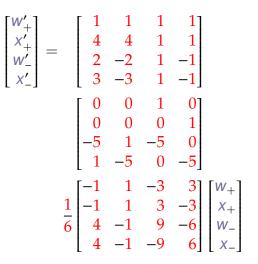
Reconstruction

$$\begin{bmatrix} w_+ \\ x_+ \\ w_- \\ x_- \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 4 & 4 & 1 & 1 \\ 2 & -2 & 1 & -1 \\ 3 & -3 & 1 & -1 \end{bmatrix} \begin{bmatrix} y_a \\ y_b \\ z_a \\ z_b \end{bmatrix}$$

$$\begin{bmatrix} y_a \\ y_b \\ z_a \\ z_b \end{bmatrix} = \frac{1}{6} \begin{bmatrix} -1 & 1 & -3 & 3 \\ -1 & 1 & 3 & -3 \\ 4 & -1 & 9 & -6 \\ 4 & -1 & -9 & 6 \end{bmatrix} \begin{bmatrix} w_+ \\ x_+ \\ w_- \\ x_- \end{bmatrix}$$

$$\begin{bmatrix} w'_{+} \\ x'_{+} \\ w'_{-} \\ x'_{-} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 4 & 4 & 1 & 1 \\ 2 & -2 & 1 & -1 \\ 3 & -3 & 1 & -1 \end{bmatrix} \begin{bmatrix} y'_{a} \\ y'_{b} \\ z'_{a} \\ z'_{b} \end{bmatrix}$$

$$\begin{bmatrix} w'_{+} \\ x'_{+} \\ w'_{-} \\ x'_{-} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 4 & 4 & 1 & 1 \\ 2 & -2 & 1 & -1 \\ 3 & -3 & 1 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & 1 & -5 & 0 \\ 1 & -5 & 0 & -5 \end{bmatrix} \begin{bmatrix} y_{a} \\ y_{b} \\ z_{a} \\ z_{b} \end{bmatrix}$$



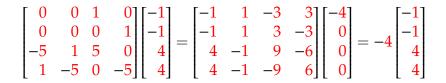
Rearrangement

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & 1 & 5 & 0 \\ 1 & -5 & 0 & -5 \end{bmatrix} \frac{1}{6} \begin{bmatrix} -1 & 1 & -3 & 3 \\ -1 & 1 & 3 & -3 \\ 4 & -1 & -9 & 6 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} -1 & 1 & -3 & 3 \\ -1 & 1 & 3 & -3 \\ 4 & -1 & 9 & -6 \\ 4 & -1 & -9 & 6 \end{bmatrix} \begin{bmatrix} -4 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$
$$\begin{pmatrix} B^{-1}AB = D \mapsto AB = BD \end{pmatrix}$$

Rearrangement

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & 1 & 5 & 0 \\ 1 & -5 & 0 & -5 \end{bmatrix} \begin{bmatrix} -1 & 1 & -3 & 3 \\ -1 & 1 & 3 & -3 \\ 4 & -1 & -9 & 6 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -3 & 3 \\ -1 & 1 & 3 & -3 \\ 4 & -1 & 9 & -6 \\ 4 & -1 & -9 & 6 \end{bmatrix} \begin{bmatrix} -4 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$
$$\begin{pmatrix} B^{-1}AB = D \mapsto AB = BD \end{pmatrix}$$

Eigenvectors



Eigenvectors

Definition

v is an eigenvector of a square matrix A with eigenvalue λ if $v \neq 0$ and $Av = \lambda v$

To Solve

 $\mathbf{u}'(t) = \mathbf{A}\mathbf{u}(t)$

To Solve

$$\mathbf{u}'(t) = \mathbf{A}\mathbf{u}(t)$$

1. Find \mathbf{v}_i such that $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$

To Solve

$$\mathbf{u}'(t) = \mathbf{A}\mathbf{u}(t)$$

- 1. Find \mathbf{v}_i such that $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$
- 2. Solution with $\mathbf{u}(0) = \mathbf{v}_i$ is $\mathbf{u}(t) = e^{-\lambda_i t} \mathbf{v}_i$

To Solve

$$\mathbf{u}'(t) = \mathbf{A}\mathbf{u}(t)$$

- 1. Find \mathbf{v}_i such that $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$
- 2. Solution with $\mathbf{u}(0) = \mathbf{v}_i$ is $\mathbf{u}(t) = e^{-\lambda_i t} \mathbf{v}_i$
- 3. For general **v**, try to write as $\mathbf{v} = \mu_1 \mathbf{v}_1 + \cdots + \mu_k \mathbf{v}_k$ then

$$\mathbf{u}(t) = \mu_1 \mathbf{e}^{-\lambda_1 t} \mathbf{v}_1 + \dots + \mu_k \mathbf{e}^{-\lambda_k t} \mathbf{v}_k$$

Enough Eigenvectors

Remark

Works for all v if enough eigenvectors

Enough Eigenvectors

Remark

Works for all v if enough eigenvectors

Need a basis of eigenvectors.

Enough Eigenvectors

Remark

Works for all v if enough eigenvectors

Need a basis of eigenvectors.

Definition

A matrix is diagonalisable if there is a basis of the space consisting of eigenvectors of the matrix

Recall: Predator-Prey

$$\begin{bmatrix} P_{\text{foxes}} \\ P_{\text{rabbits}} \end{bmatrix} = \begin{bmatrix} 0.4 & 0.3 \\ 0.4 & 1.2 \end{bmatrix} \begin{bmatrix} P_{\text{foxes}} \\ P_{\text{rabbits}} \end{bmatrix}$$

Recall: Predator–Prey

$$\begin{bmatrix} P_{\text{foxes}} \\ P_{\text{rabbits}} \end{bmatrix} = \begin{bmatrix} 0.4 & 0.3 \\ 0.4 & 1.2 \end{bmatrix} \begin{bmatrix} P_{\text{foxes}} \\ P_{\text{rabbits}} \end{bmatrix}$$

Question

What's the long-term prognosis?

Recall: Predator–Prey

$$\begin{bmatrix} P_{\text{foxes}} \\ P_{\text{rabbits}} \end{bmatrix} = \begin{bmatrix} 0.4 & 0.3 \\ 0.4 & 1.2 \end{bmatrix} \begin{bmatrix} P_{\text{foxes}} \\ P_{\text{rabbits}} \end{bmatrix}$$

Question

What's the long-term prognosis?

Answer

A^{*k*}**u**₀

To compute $A^k \mathbf{u}_0$: easy if A is diagonalisable!

To compute $A^k \mathbf{u}_0$: easy if A is diagonalisable! If $A\mathbf{v} = \lambda \mathbf{v}$ then $A^k \mathbf{v} = \lambda^k \mathbf{v}$ so

 $\mathbf{u}_0 = \mu_1 \mathbf{v}_1 + \cdots + \mu_n \mathbf{v}_n$

To compute $A^k \mathbf{u}_0$: easy if A is diagonalisable! If $A\mathbf{v} = \lambda \mathbf{v}$ then $A^k \mathbf{v} = \lambda^k \mathbf{v}$ so

$$\mathbf{A}^{k}\mathbf{u}_{0}=\mu_{1}\mathbf{A}^{k}\mathbf{v}_{1}+\cdots+\mu_{n}\mathbf{A}^{k}\mathbf{v}_{n}$$

To compute $A^k \mathbf{u}_0$: easy if A is diagonalisable! If $A\mathbf{v} = \lambda \mathbf{v}$ then $A^k \mathbf{v} = \lambda^k \mathbf{v}$ so

$$\mathbf{A}^{k}\mathbf{u}_{0}=\mu_{1}\lambda_{1}^{k}\mathbf{v}_{1}+\cdots+\mu_{n}\lambda_{n}^{k}\mathbf{v}_{n}$$

To compute $A^k \mathbf{u}_0$: easy if A is diagonalisable! If $A\mathbf{v} = \lambda \mathbf{v}$ then $A^k \mathbf{v} = \lambda^k \mathbf{v}$ so

$$\mathbf{A}^{k}\mathbf{u}_{0} = \mu_{1}\lambda_{1}^{k}\mathbf{v}_{1} + \cdots + \mu_{n}\lambda_{n}^{k}\mathbf{v}_{n}$$

Example: Predator-Prey

$$\mathbf{A}^{k}\mathbf{u}_{0} = \mu_{1}(0.27)^{k} \begin{bmatrix} -0.92\\ 0.40 \end{bmatrix} + \mu_{2}(1.33)^{k} \begin{bmatrix} 0.31\\ 0.95 \end{bmatrix}$$

To compute $A^k \mathbf{u}_0$: easy if A is diagonalisable! If $A\mathbf{v} = \lambda \mathbf{v}$ then $A^k \mathbf{v} = \lambda^k \mathbf{v}$ so

$$\mathbf{A}^{k}\mathbf{u}_{0} = \mu_{1}\lambda_{1}^{k}\mathbf{v}_{1} + \cdots + \mu_{n}\lambda_{n}^{k}\mathbf{v}_{n}$$

Example: Predator-Prey

$$\mathbf{A}^{k}\mathbf{u}_{0} = \mu_{1}(0.27)^{k} \begin{bmatrix} -0.92\\ 0.40 \end{bmatrix} + \mu_{2}(1.33)^{k} \begin{bmatrix} 0.31\\ 0.95 \end{bmatrix}$$

Easy to spot general trend: $P_{\text{foxes}} \simeq 1/3 P_{\text{rabbits}}$

Obvious Question

Question

When is a matrix diagonalisable?

Obvious Question

Question

When is a matrix diagonalisable?

Nice Answer

Almost always (over ℂ)

Obvious Question

Question

When is a matrix diagonalisable?

Nice Answer

Almost always (over ℂ)

Not So Nice Answer

Even if it is, it's hard to find the eigenvalues.

Finding Eigenvectors

Solve $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ for both λ and \mathbf{v} .

Finding Eigenvectors Solve $(A - \lambda I)\mathbf{v} = \mathbf{0}$ for both λ and \mathbf{v} .

1. First solve for λ : find λ so that $A - \lambda I$ is not invertible.

Finding Eigenvectors Solve $(A - \lambda I)\mathbf{v} = \mathbf{0}$ for both λ and \mathbf{v} .

1. First solve for λ : find λ so that $A - \lambda I$ is not invertible. Find λ : det $(A - \lambda I) = 0$

Finding Eigenvectors Solve $(A - \lambda I)\mathbf{v} = \mathbf{0}$ for both λ and \mathbf{v} .

- 1. First solve for λ : find λ so that $A \lambda I$ is not invertible. Find λ : det $(A - \lambda I) = 0$
- 2. Then solve $(\mathbf{A} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ using GE

Finding Eigenvectors Solve $(A - \lambda I)\mathbf{v} = \mathbf{0}$ for both λ and \mathbf{v} .

- 1. First solve for λ : find λ so that $A \lambda I$ is not invertible. Find λ : det $(A - \lambda I) = 0$
- 2. Then solve $(\mathbf{A} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ using GE

Definition

 $det(\lambda I - A)$ is the characteristic polynomial of A
degree = number of rows of A

Solving Characteristic Polynomials

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \lambda^2 - (a+d)\lambda + (ad-bc)$$

Solving Characteristic Polynomials

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \lambda^2 - (a + d)\lambda + (ad - bc)$$

Can get any monic quadratic equation: $\begin{bmatrix} 0 & -\mu \\ 1 & -\nu \end{bmatrix}$

Solving Characteristic Polynomials

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \lambda^2 - (a+d)\lambda + (ad-bc)$$

Can get any monic quadratic equation: $\begin{bmatrix} 0 & -\mu \\ 1 & -\nu \end{bmatrix}$

Fundamental Problem of Algebra

Solving equations is hard!

Okay for 2×2 or 3×3 , impractical for higher.

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad c(\lambda) =$$

$$c(\lambda) = (\lambda - 1)^3$$

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad c(\lambda) = (\lambda - 1)^3$$

Eigenvalue: 1; Eigenvectors: any non-zero v.

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad c(\lambda) = (\lambda - 1)^3$$

Eigenvalue: 1; Eigenvectors: any non-zero v.

$$\frac{1}{4} \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \qquad c(\lambda) = (\lambda - 5)^2 - 9 = \lambda^2 - 10\lambda + 16$$

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad c(\lambda) = (\lambda - 1)^3$$

Eigenvalue: 1; Eigenvectors: any non-zero v.

$$\frac{1}{4} \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \qquad c(\lambda) = (\lambda - 5)^2 - 9 = \lambda^2 - 10\lambda + 16$$

Eigenvalues: 2, 8; Eigenvectors:
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

 $\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & 1 & -5 & 0 \\ 1 & -5 & 0 & -5 \end{bmatrix}$

$$c(\lambda) = \lambda^4 + 10\lambda^3 + 35\lambda^2 + 50\lambda + 24$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & 1 & -5 & 0 \\ 1 & -5 & 0 & -5 \end{bmatrix} \quad c(\lambda) = \lambda^4 + 10\lambda^3 + 35\lambda^2 + 50\lambda + 24$$

$$egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} \qquad c(\lambda) = (\lambda-1)^2$$

$$egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}$$
 $c(\lambda) = (\lambda - 1)^2$

Eigenvalues: 1 Eigenvectors: e_1 (and non-zero multiples)

$$egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}$$
 $c(\lambda) = (\lambda-1)^2$

Eigenvalues: 1

Eigenvectors: e_1 (and non-zero multiples)

But nothing else!

Sensible Question

Do the foxes die out?

Sensible Question

Do the foxes die out?

Key Point

Don't actually need to know eigenvalues to solve this!

Sensible Question

Do the foxes die out?

Key Point

Don't actually need to know eigenvalues to solve this!

$$\mathbf{A}^{k}\mathbf{u}_{0} = \mu_{1}\lambda_{1}^{k}\mathbf{v}_{1} + \mu_{2}\lambda_{2}^{k}\mathbf{v}_{2}$$

Sensible Question

Do the foxes die out?

Key Point

Don't actually need to know eigenvalues to solve this!

$$\mathbf{A}^{k}\mathbf{u}_{0} = \mu_{1}\lambda_{1}^{k}\mathbf{v}_{1} + \mu_{2}\lambda_{2}^{k}\mathbf{v}_{2}$$

if $|\lambda_i| < 1$, yes; otherwise, almost certainly not.

Enough is Enough

Key Point

Partial information about eigenvalues may be enough to answer the question

Enough is Enough

Key Point

Partial information about eigenvalues may be enough to answer the question

Sensible Question

Were the coupled pendula overdamped or underdamped?

Enough is Enough

Key Point

Partial information about eigenvalues may be enough to answer the question

Sensible Question

Were the coupled pendula overdamped or underdamped?

Answer

All eigenvalues real and negative so overdamped.

Inanity of Powers

Use of Diagonalisation

Simpler to compute A^k when A is diagonal.

Inanity of Powers

Use of Diagonalisation

Simpler to compute A^k when A is diagonal.

Misuse of Diagonalisation

Algorithm for computing eigenvalues works by computing A^k for large k!

Interpretation

Question

The eigenvectors are

$$\begin{pmatrix} -1 \\ -1 \\ 4 \\ 4 \end{pmatrix}' \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}' \begin{bmatrix} -1 \\ 1 \\ 3 \\ -3 \end{bmatrix}' \begin{bmatrix} 1 \\ -1 \\ -2 \\ 2 \end{bmatrix} \}$$

but the useful functions are

$$w_{+} = y_{a} + y_{b} + z_{a} + z_{b}$$

$$x_{+} = 4y_{a} + 4y_{b} + z_{a} + z_{b}$$

$$w_{-} = 2y_{a} - 2y_{b} + z_{a} - z_{b}$$

$$x_{-} = 3y_{a} - 3y_{b} + z_{a} - z_{b}$$

[1 3]

[1] 3

Means: have 1 lot of e_1 and 3 lots of e_2 .

$\begin{bmatrix} 1\\ 3 \end{bmatrix}$

Means: have 1 lot of e_1 and 3 lots of e_2 .

$$\mathsf{Basis} \coloneqq \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$

[1]

Means: have 1 lot of e_1 and 3 lots of e_2 .

Basis :=
$$\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$
$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Means: have 1 lot of e_1 and 3 lots of e_2 . Basis := $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ $\begin{vmatrix} 1 \\ 3 \end{vmatrix} = 2 \begin{vmatrix} 1 \\ 1 \end{vmatrix} - \begin{vmatrix} 1 \\ -1 \end{vmatrix}$ Have 2 lots of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and -1 lot of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

13

Question

Bases { \mathbf{u}_{j} }, { \mathbf{v}_{j} }. $\mathbf{x} = \begin{cases} \mu_{1}\mathbf{u}_{1} + \dots + \mu_{n}\mathbf{u}_{n} \\ \nu_{1}\mathbf{v}_{1} + \dots + \nu_{n}\mathbf{v}_{n} \end{cases}$ Know μ_{j} . What are the ν_{i} ?

Question

Bases { \mathbf{u}_{j} }, { \mathbf{v}_{j} }. $\mathbf{x} = \begin{cases} \mu_{1}\mathbf{u}_{1} + \dots + \mu_{n}\mathbf{u}_{n} \\ \nu_{1}\mathbf{v}_{1} + \dots + \nu_{n}\mathbf{v}_{n} \end{cases}$ Know μ_{j} . What are the ν_{j} ?

Usual Answer

Write $\mathbf{u}_j = \sum \alpha_{ij} \mathbf{v}_i$ then $[\mathbf{v}_i] = [\alpha_{ij}] [\mu_j]$.

Question

Bases { \mathbf{u}_{j} }, { \mathbf{v}_{j} }. $\mathbf{x} = \begin{cases} \mu_{1}\mathbf{u}_{1} + \dots + \mu_{n}\mathbf{u}_{n} \\ \nu_{1}\mathbf{v}_{1} + \dots + \nu_{n}\mathbf{v}_{n} \end{cases}$ Know μ_{j} . What are the ν_{i} ?

Usual Answer

Write
$$\mathbf{u}_j = \sum \alpha_{ij} \mathbf{v}_i$$
 then $[\mathbf{v}_i] = [\alpha_{ij}] [\boldsymbol{\mu}_j]$.

Remark: Very easy to get back-to-front.

Unusual Answer

Find a row vector **c** so that $\mathbf{cv}_i = \delta_{ij}$. Then $\nu_j = \sum \mu_i \mathbf{cu}_i$.

Unusual Answer

Find a row vector **c** so that $\mathbf{cv}_i = \gamma \delta_{ij}$. Then $\nu_j = 1/\gamma \sum \mu_i \mathbf{cu}_i$.

Unusual Answer

Find a row vector **c** so that $\mathbf{cv}_i = \gamma \delta_{ij}$. Then $\nu_j = 1/\gamma \sum \mu_i \mathbf{cu}_i$.

Modes

The modes of the system of pendula correspond to the eigenvalues:

$$e^{-4t} \begin{bmatrix} -1 \\ -1 \\ 4 \\ 4 \end{bmatrix}, e^{-t} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, e^{-3t} \begin{bmatrix} -1 \\ 1 \\ 3 \\ -3 \end{bmatrix}, e^{-2t} \begin{bmatrix} 1 \\ -1 \\ -2 \\ 2 \end{bmatrix}$$

Modes

The modes of the system of pendula correspond to the eigenvalues:

$$e^{-4t} \begin{bmatrix} -1 \\ -1 \\ 4 \\ 4 \end{bmatrix}, e^{-t} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, e^{-3t} \begin{bmatrix} -1 \\ 1 \\ 3 \\ -3 \end{bmatrix}, e^{-2t} \begin{bmatrix} 1 \\ -1 \\ -2 \\ 2 \end{bmatrix}$$

The functions \mathbf{w}_{\pm} , x_{\pm} measure how much of each mode is in a particular solution.

Summary

- Diagonalisation reveals the "best possible point of view"
- Finding eigenvalues is hard
- Partial information is useful
- A clear head is needed to follow the back-and-forths of it all!