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Key Points

I Eigenvectors simplify problems
I Diagonalisation is hard
I Partial information can suffice



Recap

I Basis is a “point of view”
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Key Question

Question
Where do w+ (etc) come from?
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Definition
v is an eigenvector

of a square matrix A with eigenvalue λ
if

v , 0 and Av = λv
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Definition

v is an eigenvector
of a square matrix A with eigenvalue λ

if
v , 0 and Av = λv



Matrix ODEs: General Method

To Solve
u′(t) = Au(t)

1. Find vi such that Avi = λivi

2. Solution with u(0) = vi is u(t) = e−λi tvi

3. For general v, try to write as v = µ1v1 + · · ·+ µk vk

then
u(t) = µ1e−λ1tv1 + · · ·+ µk e−λk tvk
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Enough Eigenvectors

Remark
Works for all v if enough eigenvectors

Need a basis of eigenvectors.

Definition
A matrix is

diagonalisable
if there is a basis of the space

consisting of eigenvectors of the matrix
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Recall: Predator–Prey[
Pfoxes

Prabbits

]
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What’s the long-term prognosis?

Answer

A k u0
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The Power of Diagonalisability

To compute A k u0: easy if A is diagonalisable!

If Av = λv then A k v = λk v so

A k

u0 = µ1v1 + · · ·+ µnvn

Example: Predator–Prey

A k u0 = µ1(0.27)k

[
−0.92

0.40

]
+ µ2(1.33)k

[
0.31
0.95

]
Easy to spot general trend: Pfoxes ' 1/3Prabbits
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Obvious Question

Question
When is a matrix diagonalisable?

Nice Answer
Almost always (over C)

Not So Nice Answer
Even if it is, it’s hard to find the eigenvalues.
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An Abelian Diversion

Finding Eigenvectors

Solve (A − λI)v = 0 for both λ and v.

1. First solve for λ: find λ so that A − λI is not invertible.
Find λ : det(A − λI) = 0

2. Then solve (A − λI)v = 0 using GE

Definition
det(λI − A)

is the characteristic polynomial of A
degree = number of rows of A
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Solving Characteristic Polynomials

[
a b
c d

]
7→ λ2

− (a + d)λ+ (ad − bc)

Can get any monic quadratic equation:
[
0 −µ
1 −ν

]
Fundamental Problem of Algebra

Solving equations is hard!

Okay for 2 × 2 or 3 × 3, impractical for higher.



Solving Characteristic Polynomials

[
a b
c d

]
7→ λ2

− (a + d)λ+ (ad − bc)

Can get any monic quadratic equation:
[
0 −µ
1 −ν

]

Fundamental Problem of Algebra

Solving equations is hard!

Okay for 2 × 2 or 3 × 3, impractical for higher.



Solving Characteristic Polynomials

[
a b
c d

]
7→ λ2

− (a + d)λ+ (ad − bc)

Can get any monic quadratic equation:
[
0 −µ
1 −ν

]
Fundamental Problem of Algebra

Solving equations is hard!

Okay for 2 × 2 or 3 × 3, impractical for higher.



Examples

I3 =

1 0 0
0 1 0
0 0 1

 c(λ) = (λ − 1)3
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]
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[
1
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More Reasonable Uses

Sensible Question
Do the foxes die out?

Key Point

Don’t actually need to know eigenvalues to solve this!

A k u0 = µ1λ
k
1v1 + µ2λ

k
2v2

if |λi | < 1, yes; otherwise, almost certainly not.
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answer the question

Sensible Question
Were the coupled pendula overdamped or underdamped?

Answer
All eigenvalues real and negative so overdamped.
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A k for large k !
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Interpretation
Question
The eigenvectors are
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4
4

 ,


1
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1
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2




but the useful functions are
w+ = ya + yb + za + zb

x+ = 4ya + 4yb + za + zb

w− = 2ya − 2yb + za − zb

x− = 3ya − 3yb + za − zb



What is a Vector, Exactly?

[
1
3

]

Means: have 1 lot of e1 and 3 lots of e2.

Basis B
{[

1
1

]
,
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−1

]}
[
1
3

]
= 2

[
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−
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1
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]

Have 2 lots of
[
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1

]
and −1 lot of

[
1
−1

]
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Rewriting Rule

Question
Bases {uj}, {vj}.

x =

µ1u1 + · · ·+ µnun

ν1v1 + · · ·+ νnvn

Know µj. What are the νi?

Usual Answer
Write uj =

∑
αijvi then [νi] =

[
αij

] [
µj

]
.

Remark: Very easy to get back-to-front.
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Modes

The modes of the system of pendula correspond to the
eigenvalues:
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The functions w±, x± measure how much of each mode is
in a particular solution.
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Summary

I Diagonalisation reveals the “best
possible point of view”

I Finding eigenvalues is hard
I Partial information is useful
I A clear head is needed to follow the

back-and-forths of it all!


