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Key Points

- Eigenvectors simplify problems
- Diagonalisation is hard
- Partial information can suffice



Recap

- Basis is a “point of view”
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Key Question

Question
Where do w, (etc) come from?



Reconstruction
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Differentiation
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Differentiation
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Differentiation
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Rearrangement
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Rearrangement
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Eigenvectors
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Eigenvectors

— 01 O O
Q- O O
o 01 O -

4 4 -1 -9 6

Definition
V is an eigenvector
of a square matrix A with eigenvalue A
if
v 0 and Av = Av

0 1 31[-4
1 1 3—3 ol
0 4 4—1 9 —6|| 0o

-5 0



Matrix ODEs: General Method

To Solve
u’(t) = Au(t)
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Matrix ODEs: General Method

To Solve
u’(t) = Au(t)

1. Find v, such that Av; = A,v;
2. Solution with u(0) = v; is u(t) = e ity;
3. For general v, try to write as v = p1qVq + -+ + iV

then
u(t) = e ™"y 4 -+ 4 e Mty
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Enough Eigenvectors

Remark
Works for all v if enough eigenvectors
Need a basis of eigenvectors.
Definition
A matrix is
diagonalisable

if there is a basis of the space
consisting of eigenvectors of the matrix



The Power of Diagonalisability

Recall: Predator—Prey
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The Power of Diagonalisability

Recall: Predator—Prey
P foxes _ 04 0.3 P, foxes
P, rabbits 04 12]|P rabbits

Question
What'’s the long-term prognosis?

Answer

Akuo



The Power of Diagonalisability

To compute AXug: easy if A is diagonalisable!
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The Power of Diagonalisability

To compute AXug: easy if A is diagonalisable!
If Av = Av then Akv = A*v so

A¥ug = i Afvy + -+ kv

Example: Predator—Prey
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Akuy = H1(o.z7)kl 0. 40] + up(1.33)" [0‘95]



The Power of Diagonalisability

To compute AXug: easy if A is diagonalisable!
If Av = Av then Akv = A*v so

A¥ug = i Afvy + -+ kv

Example: Predator—Prey

~0.92 0.31
Akug = H1(o.27)k[ 0. 40] + up(1.33)" [0‘95]

Easy to spot general trend: Pioyes = 1/3Papbits
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Obvious Question

Question
When is a matrix diagonalisable?

Nice Answer

Almost always (over ()

Not So Nice Answer
Even if it is, it's hard to find the eigenvalues.
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Finding Eigenvectors
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2. Then solve (A — Al)v = 0 using GE



An Abelian Diversion

Finding Eigenvectors
Solve (A — Al)v = 0 for both A and v.

1. First solve for A: find A so that A — Alis not invertible.
Find A : det(A - Al) =0
2. Then solve (A — Al)v = 0 using GE

Definition
det(Al—-A)
is the characteristic polynomial of A
degree = number of rows of A



Solving Characteristic Polynomials
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Solving Characteristic Polynomials

[i Z]H/\Q—(a+d)A+(ad—bc)

Can get any monic quadratic equation: [(1) __f/l]

Fundamental Problem of Algebra

Solving equations is hard!

Okay for 2 x 2 or 3 x 3, impractical for higher.
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Examples

100
13[0 1 o] c(A)=(A-1)3
001

Eigenvalue: 1; Eigenvectors: any non-zero v.

i[5 3
43 5

] c(A)=(A-5)2-9=212-101+16

Eigenvalues: 2, 8; Eigenvectors: |_ﬂ H]



Examples
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Examples

0 0 1 0
0 0 0 1 414 3 2

5 1 -5 0 c(A) = A* +10A% 4+ 3512 + 504 + 24
1 -5 0 -5

Eigenvalues: -1, -2, -3, -4
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Eigenvectors: e; (and non-zero multiples)



Examples

[(1) ﬂ o(A) = (A - 1)°

Eigenvalues: 1
Eigenvectors: e; (and non-zero multiples)

But nothing else!
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More Reasonable Uses

Sensible Question
Do the foxes die out?

Key Point

Don’t actually need to know eigenvalues to solve this!

AKUO = ‘L11Aq(V1 + [ng/\gVQ

if |1 < 1, yes; otherwise, almost certainly not.
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Enough is Enough

Key Point

Partial information about eigenvalues may be enough to
answer the question

Sensible Question
Were the coupled pendula overdamped or underdamped?

Answer
All eigenvalues real and negative so overdamped.
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Inanity of Powers

Use of Diagonalisation

Simpler to compute A¥ when A is diagonal.

Misuse of Diagonalisation

Algorithm for computing eigenvalues works by computing
Ak for large k!



Interpretation

Question

The eigenvectors are
—1 1 -1 1
-1 1 1 -1
4" -1y’ 37 |-2
4 -1 -3 2

but the useful functions are
Wi=Ya+yYp+Zat2p
Xt =4Ya+4Yp + Za + Zp
W_=2ya—=2Yp+Za—2p
X-=3Ya—3Yp+Za—2p
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What is a Vector, Exactly?

1
3
Means: have 1 lot of e; and 3 lots of es.
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What is a Vector, Exactly?

1
3
Means: have 1 lot of e; and 3 lots of es.

sess = 1] | L)

Have 2 lots of m and -1 lot of [_ﬂ
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Rewriting Rule

Question
Bases {uj}, {v;}.
o JHaU e

ViVi 4 - + vV
Know p;. What are the v;?

Usual Answer
Write u = Z iV then [1/,'] = [a,-j] [‘Uj]

Remark: Very easy to get back-to-front.



Rewriting Rule

Unusual Answer

Find a row vector c so that cv; = o;.
Then Vi = Z uicu;.
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Rewriting Rule

Unusual Answer

Find a row vector ¢ so that cv; = y0;.

Thenv; =

[1
[4
[2
3

Iy Y. uicu;.
11 1]
41 1]
-2 1 -1]
-3 1 —1]



Modes

The modes of the system of pendula correspond to the
eigenvalues:
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Modes

The modes of the system of pendula correspond to the
eigenvalues:

-1 1 -1 1
-1 1 1 -1

—4t —t -3t -2t
e 4l e 1|’ e 31 e )
4 -1 -3 2

The functions w., x. measure how much of each mode is
in a particular solution.



Summary

~ Diagonalisation reveals the “best
possible point of view”

- Finding eigenvalues is hard
~ Partial information is useful

~ A clear head is needed to follow the
back-and-forths of it all!



