TMA4115 Matematikk 3

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet Trondheim

Spring 2010

Lecture 12: Mathematics' Marvellous Matrices

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet Trondheim

19th February 2010

Key Points

• Process \longleftrightarrow Matrix:

 \longleftrightarrow Matrix manipulations

Obvious manipulations of processes

The true meaning of "invertible"

Definition

A <u>matrix</u> is a rectangular grid (of numbers)

Meaningful Matrices

Dairy Production

Factory 1

Dairy Production

Dairy Production

The Processes

Factories to Products

Products: how much of factory 2's output is butter?

ſ	factory 1	factory 2
butter	.3	.1
cream	.1	.0
yogurt	.2	.4
cheese	.4	.5

Products to Cities

How much of each tonne of butter goes to Trondheim?

[butter	cream	yogurt	cheese
Trondheim	.22	.25	.27	.21
Bergen	.30	.30	.30	.30
Oslo	.48	.45	.43	.49

How much "stuff" goes from Factory 1 to Trondheim?

$$\begin{bmatrix} F & 1 & F & 2 \\ T & & & \\ B & & & \\ O & & & \end{bmatrix} = \begin{bmatrix} .22 & .25 & .27 & .21 \\ .30 & .30 & .30 & .30 \\ .48 & .45 & .43 & .49 \end{bmatrix} \begin{bmatrix} .3 & .1 \\ .1 & .0 \\ .2 & .4 \\ .4 & .5 \end{bmatrix}$$

How much "stuff" goes from Factory 1 to Trondheim?

 $.22 \times .3 + .25 \times .1 + .27 \times .2 + .21 \times .4$

How much "stuff" goes from Factory 1 to Trondheim?

 $.22 \times .3 + .25 \times .1 + .27 \times .2 + .21 \times .4 = .229$

How much "stuff" goes from Factory 1 to Trondheim?

 $.22 \times .1 + .25 \times .0 + .27 \times .4 + .21 \times .5$

How much "stuff" goes from Factory 1 to Trondheim?

 $.22 \times .1 + .25 \times .0 + .27 \times .4 + .21 \times .5 = .235$

How much "stuff" goes from Factory 1 to Trondheim?

 $.30 \times .3 + .30 \times .1 + .30 \times .2 + .30 \times .4$

How much "stuff" goes from Factory 1 to Trondheim?

 $.30 \times .3 + .30 \times .1 + .30 \times .2 + .30 \times .4 = .300$

How much "stuff" goes from Factory 1 to Trondheim?

 $.30 \times .1 + .30 \times .0 + .30 \times .4 + .30 \times .5$

How much "stuff" goes from Factory 1 to Trondheim?

 $.30 \times .1 + .30 \times .0 + .30 \times .4 + .30 \times .5 = .300$

How much "stuff" goes from Factory 1 to Trondheim?

 $.48 \times .3 + .45 \times .1 + .43 \times .2 + .49 \times .4$

How much "stuff" goes from Factory 1 to Trondheim?

 $.48 \times .3 + .45 \times .1 + .43 \times .2 + .49 \times .4 = .465$

How much "stuff" goes from Factory 1 to Trondheim?

 $.48 \times .1 + .45 \times .0 + .43 \times .4 + .49 \times .5$

How much "stuff" goes from Factory 1 to Trondheim?

 $.48 \times .1 + .45 \times .0 + .43 \times .4 + .49 \times .5 = .465$

Add in Depots

Add in Depots

Add in Depots

Partitioning Processes

Factory to City

Partitioning Processes

Factory to City via Depot 1

via Depot 2

[. <mark>0</mark>	87	.105	
0.	87	.105	
[.1	16	.140	

[.142	.030
.213	.195
.355	.325

Partitioning Processes

Factory to City via Depot 1 via Depot 2 .142.030.213.195.355.325 .087 .105 .087 .105 116 140 Total Factory 1 to Trondheim Factory 1 to Trondheim via Depot 1

Factory 1 to Trondheim via Depot 2

$$\begin{bmatrix} .087 & .105 \\ .087 & .105 \\ .116 & .140 \end{bmatrix} + \begin{bmatrix} .142 & .030 \\ .213 & .195 \\ .355 & .325 \end{bmatrix} = \begin{bmatrix} .229 & .235 \\ .300 & .300 \\ .471 & .465 \end{bmatrix}$$

Combining Processes

- 1. One process follows the other: multiply matrices
- 2. Two processes partition another: add matrices

Question

How do we increase factory output?

Question

How do we increase factory output?

Answer

Increase Milk Production!

Question

How do we increase factory output?

Answer

Increase Milk Production!

Factory output proportional to milk production

Question

How do we increase factory output?

Answer

Increase Milk Production!

- Factory output proportional to milk production
- ▶ View factory output, (*p*₁, *p*₂), as a process:

 $\mathsf{Milk} \longrightarrow \mathsf{Produce}$
A Secret Process

Question

How do we increase factory output?

Answer

Increase Milk Production!

- Factory output proportional to milk production
- ▶ View factory output, (*p*₁, *p*₂), as a process:

 $\mathsf{Milk} \longrightarrow \mathsf{Produce}$

Representing matrix is:

$$\begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$

Definition

A column vector is a matrix with one column

Definition

A column vector is a matrix with one column

Remark

1. Column vectors written as \vec{u} or **u** or \underline{u}

Definition

A column vector is a matrix with one column

Remark

- 1. Column vectors written as \vec{u} or **u** or \underline{u}
- 2. View as "initial process": defining the input data for a process

Definition

A column vector is a matrix with one column

Remark

- 1. Column vectors written as \vec{u} or **u** or \underline{u}
- 2. View as "initial process": defining the input data for a process
- Matrix × column vector = column vector because output of one process is input of next

$$\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} = \begin{bmatrix} 1 & 3 & -4 & 5 \\ 2 & 8 & 0 & 0 \\ 2 & 1 & -3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} = \begin{bmatrix} 1 & 3 & -4 & 5 \\ 2 & 8 & 0 & 0 \\ 2 & 1 & -3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -4 & 5 \\ 2 & 8 & 0 & 0 \\ 2 & 1 & -3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 & 3 & -4 & 5 \\ 2 & 8 & 0 & 0 \\ 2 & 1 & -3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -10 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -4 & 5 \\ 2 & 8 & 0 & 0 \\ 2 & 1 & -3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -10 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -4 & 5 \\ 2 & 8 & 0 & 0 \\ 2 & 1 & -3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1\\ -10\\ 10 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -4 & 5\\ 2 & 8 & 0 & 0\\ 2 & 1 & -3 & 4 \end{bmatrix} \begin{bmatrix} 3\\ -2\\ -1\\ 0 \end{bmatrix}$$

Column Vectors and Linear Systems

Linear System x + 2y + z = 2Find x, y, z such that 2x - 3y + z = 3-x + y + 2z = 4

Column Vectors and Linear Systems

Linear System x+2y+z=2Find x, y, z such that 2x - 3y + z = 3-x + y + 2z = 4**Matrices** Find $\begin{vmatrix} x \\ y \end{vmatrix}$ such that $\begin{vmatrix} 1 & 2 & 1 \\ 2 & -3 & 1 \\ -1 & 1 & 2 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} 2 \\ 3 \\ 4 \end{vmatrix}$

Column Vectors and Linear Systems

Linear System x+2y+z=2Find x, y, z such that 2x - 3y + z = 3-x + y + 2z = 4**Matrices** Find $\begin{vmatrix} x \\ y \end{vmatrix}$ such that $\begin{vmatrix} 1 & 2 & 1 \\ 2 & -3 & 1 \\ -1 & 1 & 2 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} 2 \\ 3 \\ 4 \end{vmatrix}$

Same question!

Write generic linear system as:

 $A\vec{x} = \vec{b}$

Write generic linear system as:

 $A\vec{x} = \vec{b}$

Composition order:

A and B represent processes

Write generic linear system as:

 $A\vec{x} = \vec{b}$

Composition order:

- A and B represent processes
- feed outputs of A into B to get new process, matrix C

Write generic linear system as:

 $A\vec{x} = \vec{b}$

Composition order:

- A and B represent processes
- ▶ feed outputs of A into B to get new process, matrix C
- write C = BA

Write generic linear system as:

 $A\vec{x} = \vec{b}$

Composition order:

- A and B represent processes
- ▶ feed outputs of A into B to get new process, matrix C
- write C = BA
- substitute into notation for linear system:

 $C\vec{x} = BA\vec{x}$

do A first and then B

Passing Through the Depots

Passing Through the Depots

Γ	<i>F</i> 1	F2]
D1	.29	.35
D2	.71	.65

Recall: matrix records proportions

Passing Through the Depots

Γ	<i>F</i> 1	F2]
D1	.29	.35
D2	.71	.65

Recall: matrix records proportions

Question

Can we find out the productivity of the factories by measuring what arrives at the depots?

Passing Through the Depots

Γ	<i>F</i> 1	F2]
D1	.29	.35
D2	.71	.65

Recall: matrix records proportions

Question

Can we find out the productivity of the factories by measuring what arrives at the depots?

Solve:

$$.29p_1 + .35p_2 = d_1$$
$$.71p_1 + .65p_2 = d_2$$

 $\begin{bmatrix} .29 & .35 & d_1 \\ .71 & .65 & d_2 \end{bmatrix}$

$$\begin{bmatrix} .29 & .35 & | & d_1 \\ .71 & .65 & | & d_2 \end{bmatrix} \xrightarrow{R_2 \to .29R_2} \begin{bmatrix} .29 & .35 & | & d_1 \\ .2059 & .1885 & | & .29d_2 \end{bmatrix}$$

$$\begin{bmatrix} .29 & .35 & | & d_1 \\ .71 & .65 & | & d_2 \end{bmatrix} \stackrel{R_2 \to .29R_2}{\longrightarrow} \begin{bmatrix} .29 & .35 & | & d_1 \\ .2059 & .1885 & | & .29d_2 \end{bmatrix}$$
$$\stackrel{R_2 = .71R_1}{\longrightarrow} \begin{bmatrix} .29 & .35 & | & d_1 \\ 0 & -.06 & | & .29d_2 - .71d_1 \end{bmatrix}$$

$$\begin{bmatrix} .29 & .35 & | & d_1 \\ .71 & .65 & | & d_2 \end{bmatrix} \stackrel{R_2 \to .29R_2}{\longrightarrow} \begin{bmatrix} .29 & .35 & | & d_1 \\ .2059 & .1885 & | & .29d_2 \end{bmatrix}$$
$$\stackrel{R_2 = .71R_1}{\longrightarrow} \begin{bmatrix} .29 & .35 & | & d_1 \\ 0 & -.06 & | & .29d_2 - .71d_1 \end{bmatrix}$$
$$\stackrel{R_1 \to -.06R_1}{\longrightarrow} \begin{bmatrix} -.0174 & -.0210 & | & -.06d_1 \\ 0 & -.06 & | & .29d_2 - .71d_1 \end{bmatrix}$$

$$\begin{bmatrix} .29 & .35 & | & d_1 \\ .71 & .65 & | & d_2 \end{bmatrix}^{R_2 \to .29R_2} \begin{bmatrix} .29 & .35 & | & d_1 \\ .2059 & .1885 & | .29d_2 \end{bmatrix}$$
$$\stackrel{R_2 - .71R_1}{\longrightarrow} \begin{bmatrix} .29 & .35 & | & d_1 \\ 0 & - .06 & | .29d_2 - .71d_1 \end{bmatrix}$$
$$\stackrel{R_1 \to -.06R_1}{\longrightarrow} \begin{bmatrix} -.0174 & -.0210 & | & -.06d_1 \\ 0 & - .06 & | .29d_2 - .71d_1 \end{bmatrix}$$
$$\stackrel{R_1 - .35R_2}{\longrightarrow} \begin{bmatrix} -.0174 & 0 & | & -.1885d_1 - .1015d_2 \\ 0 & - .06 & | & .29d_2 - .71d_1 \end{bmatrix}$$

$$\begin{bmatrix} .29 & .35 & | & d_1 \\ .71 & .65 & | & d_2 \end{bmatrix} \stackrel{R_2 \to .29R_2}{\longrightarrow} \begin{bmatrix} .29 & .35 & | & d_1 \\ .2059 & .1885 & | & .29d_2 \end{bmatrix}$$

$$\stackrel{R_2 = .71R_1}{\longrightarrow} \begin{bmatrix} .29 & .35 & | & d_1 \\ 0 & -.06 & | & .29d_2 = .71d_1 \end{bmatrix}$$

$$\stackrel{R_1 \to ..06R_1}{\longrightarrow} \begin{bmatrix} -.0174 & -.0210 & | & -.06d_1 \\ 0 & -.06 & | & .29d_2 = .71d_1 \end{bmatrix}$$

$$\stackrel{R_1 \to .35R_2}{\longrightarrow} \begin{bmatrix} -.0174 & 0 & | & -.1885d_1 = .1015d_2 \\ 0 & -.06 & | & .29d_2 = .71d_1 \end{bmatrix}$$

$$\stackrel{R_1 \to .29^{-1}R_1}{\longrightarrow} \begin{bmatrix} -.06 & 0 & | & .65d_1 = .35d_2 \\ 0 & -.06 & | & .29d_2 = .71d_1 \end{bmatrix}$$

$$\begin{array}{ll} -29p_1 + .35p_2 = d_1 & \frac{-100}{6} \left(.65d_1 - .35d_2 \right) = p_1 \\ .71p_1 + .65p_2 = d_2 & \frac{-100}{6} \left(- .71d_1 + .29d_2 \right) = p_2 \end{array}$$

$$\begin{array}{ll} .29p_1 + .35p_2 = d_1 & \frac{-100}{6} \left(.65d_1 - .35d_2 \right) = p_1 \\ .71p_1 + .65p_2 = d_2 & \frac{-100}{6} \left(- .71d_1 + .29d_2 \right) = p_2 \end{array}$$

Remark

1. Can figure out what leaves factories from what arrives at depots.

$$\begin{array}{ll} .29p_1 + .35p_2 = d_1 & \frac{-100}{6} \left(.65d_1 - .35d_2 \right) = p_1 \\ .71p_1 + .65p_2 = d_2 & \frac{-100}{6} \left(- .71d_1 + .29d_2 \right) = p_2 \end{array}$$

Remark

- 1. Can figure out what leaves factories from what arrives at depots.
- 2. Can arrange for any desired arrival amounts by adjusting productions.

$$\begin{array}{ll} .29p_1 + .35p_2 = d_1 & \frac{-100}{6} \left(.65d_1 - .35d_2 \right) = p_1 \\ .71p_1 + .65p_2 = d_2 & \frac{-100}{6} \left(- .71d_1 + .29d_2 \right) = p_2 \end{array}$$

Remark

- 1. Can figure out what leaves factories from what arrives at depots.
- 2. Can arrange for any desired arrival amounts by adjusting productions.
- 3. No presumption of cause or effect.

Invertible

Invertible Examples

1.

represents an invertible process
Invertible Examples

1.

2.

represents an invertible process

 $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$

is not invertible: (0, 0, 0) and (1, -2, 1) both go to (0, 0)

Invertible Examples

Introducing

Introducing The "do nothing" process!

Introducing

The "do nothing" process!

Output = Input

Introducing The "do nothing" process!

Output = Input

$$\mathbf{y}_1 = \mathbf{x}_1, \mathbf{y}_2 = \mathbf{x}_2, \dots, \mathbf{y}_n = \mathbf{x}_n$$

The "do nothing" process!

Output = Input

$$\mathbf{y}_1 = \mathbf{x}_1, \mathbf{y}_2 = \mathbf{x}_2, \dots, \mathbf{y}_n = \mathbf{x}_n$$

Representing matrix:

Introducing

$$I_n := \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

The "do nothing" process!

Output = Input

$$\mathbf{y}_1 = \mathbf{x}_1, \mathbf{y}_2 = \mathbf{x}_2, \dots, \mathbf{y}_n = \mathbf{x}_n$$

Representing matrix:

Introducing

$$I_n := \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

(Technically, one for each size *n*)

Inverses

Rough Definition

An inverse of a process is another process such that composing either way around results in the "do nothing" process.

Rough Definition

An inverse of a process is another process such that composing either way around results in the "do nothing" process.

In matrix language: an inverse of A is B such that $AB = I_m$ and $BA = I_n$.

Rough Definition

An inverse of a process is another process such that composing either way around results in the "do nothing" process.

In matrix language: an inverse of A is B such that $AB = I_m$ and $BA = I_n$.

Lemma

A matrix is invertible if and only if it has an inverse.

 $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}$

have an inverse?

Does

Does

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}$$

have an inverse? If so, $A\vec{x} = \vec{b}$ has a solution for any \vec{b} .

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 3 & 4 & 0 & 1 & 0 \\ 3 & 4 & 6 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 3 & 4 & 0 & 1 & 0 \\ 3 & 4 & 6 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -3 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 3 & 4 & 0 & 1 & 0 \\ 3 & 4 & 6 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -3 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{R_3 - 2R_2} \begin{bmatrix} 1 & 0 & -1 & -3 & 2 & 0 \\ 0 & -1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 3 & 4 & 0 & 1 & 0 \\ 3 & 4 & 6 & 0 & 0 & 1 \end{bmatrix} \stackrel{R_2 - 2R_1}{\underset{R_3 - 3R_1}{\longrightarrow}} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -2 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -3 & 0 & 1 \end{bmatrix}$$
$$\stackrel{R_3 - 2R_2}{\underset{R_1 + 2R_2}{\longrightarrow}} \begin{bmatrix} 1 & 0 & -1 & -3 & 2 & 0 \\ 0 & -1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{bmatrix}$$
$$\stackrel{R_2 + 2R_3}{\underset{R_1 + R_3}{\longrightarrow}} \begin{bmatrix} 1 & 0 & 0 & -2 & 0 & 1 \\ 0 & -1 & 0 & 0 & -3 & 2 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{bmatrix}$$

Check Your Answer

$$B = \begin{bmatrix} -2 & 0 & 1 \\ 0 & 3 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

an inverse for A?

ls

Check Your Answer

ls

$$B = \begin{bmatrix} -2 & 0 & 1 \\ 0 & 3 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

an inverse for A? Check: $AB = I_3$ and $BA = I_3$

Summary

- Matrix manipulations follow from what happens to processes
- Invertible matrices correspond to invertible processes
- Invertible process means input and output determine each other