TMA4115 Matematikk 3

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet
Trondheim
Spring 2010

Lecture 12: Mathematics' Marvellous Matrices

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet
Trondheim

19th February 2010

Key Points

- Process \longleftrightarrow Matrix:

Obvious manipulations of processes
\longleftrightarrow

Matrix manipulations

- The true meaning of "invertible"

Detailed Recap

Definition

A
matrix
is a rectangular grid
(of numbers)

Detailed Recap

Definition

> A
> matrix
> is a rectangular grid (of numbers)

Example

$$
\left[\begin{array}{rrrr}
1 & 3 & -4 & 5 \\
\pi & \mathrm{e}^{\pi} & -\pi^{\mathrm{e}} & -\mathrm{e} \\
0 & 28 & -2 & 0
\end{array}\right]
$$

Detailed Recap

Definition

$$
\begin{gathered}
\text { A } \\
\text { matrix } \\
\text { is a rectangular grid } \\
\text { (of numbers) }
\end{gathered}
$$

Example

$$
\left[\begin{array}{rrrr}
1 & 3 & -4 & 5 \\
\pi & \mathrm{e}^{\pi} & -\pi^{\mathrm{e}} & -\mathrm{e} \\
0 & 28 & -2 &
\end{array}\right]
$$

Detailed Recap

Definition

> A
> matrix
> is a rectangular grid (of numbers)

Example

$$
\left[\begin{array}{rrrr}
1 & 3 & & 5 \\
\pi & \mathrm{e}^{\pi} & -\pi^{\mathrm{e}} & -\mathrm{e} \\
0 & 28 & -2 & 0
\end{array}\right]
$$

Meaningful Matrices

Key Point

Matrices encode certain processes

Dairy Production

Factory 1

Factory 2

Dairy Production

Dairy Production

The Processes

Factories to Products
Products: how much of factory 2's output is butter?
$\left[\begin{array}{rrr} & \text { factory } 1 & \text { factory } 2 \\ \text { butter } & .3 & .1 \\ \text { cream } & .1 & .0 \\ \text { yogurt } & .2 & .4 \\ \text { cheese } & .4 & .5\end{array}\right]$

Products to Cities
How much of each tonne of butter goes to Trondheim?
$\left[\begin{array}{rrrrr} & \text { butter } & \text { cream } & \text { yogurt } & \text { cheese } \\ \text { Trondheim } & .22 & .25 & .27 & .21 \\ \text { Bergen } & .30 & .30 & .30 & .30 \\ \text { Oslo } & .48 & .45 & .43 & .49\end{array}\right]$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\left[\begin{array}{lll}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & & \\
\mathrm{~B} & & \\
\mathrm{O} & &
\end{array}\right]=\left[\begin{array}{cccc}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{cc}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{aligned}
& {\left[\begin{array}{lll}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & & \\
\mathrm{~B} & & \\
\mathrm{O} & &
\end{array}\right]=\left[\begin{array}{llll}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
& .22 \times .3+.25 \times .1+.27 \times .2+.21 \times .4
\end{aligned}
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{gathered}
{\left[\begin{array}{lll}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & .229 & \\
\mathrm{~B} & & \\
\mathrm{O} &
\end{array}\right]=\left[\begin{array}{llll}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
.22 \times .3+.25 \times .1+.27 \times .2+.21 \times .4=.229
\end{gathered}
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{aligned}
& {\left[\begin{array}{lll}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & .229 & \\
\mathrm{~B} & & \\
\mathrm{O} & &
\end{array}\right]=\left[\begin{array}{llll}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
& .22 \times .1+.25 \times .0+.27 \times .4+.21 \times .5
\end{aligned}
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{gathered}
{\left[\begin{array}{lll}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & .229 & .235 \\
\mathrm{~B} & & \\
\mathrm{O} & &
\end{array}\right]=\left[\begin{array}{llll}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
.22 \times .1+.25 \times .0+.27 \times .4+.21 \times .5=.235
\end{gathered}
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & .229 & .235 \\
\mathrm{~B} & & \\
\mathrm{O} &
\end{array}\right]=\left[\begin{array}{llll}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
& .30 \times .3+.30 \times .1+.30 \times .2+.30 \times .4
\end{aligned}
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{gathered}
{\left[\begin{array}{lll}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & .229 & .235 \\
\mathrm{~B} & .300 & \\
\mathrm{O} &
\end{array}\right]=\left[\begin{array}{llll}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
.30 \times .3+.30 \times .1+.30 \times .2+.30 \times .4=.300
\end{gathered}
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & .229 & .235 \\
\mathrm{~B} & .300 & \\
\mathrm{O} &
\end{array}\right]=\left[\begin{array}{llll}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
& .30 \times .1+.30 \times .0+.30 \times .4+.30 \times .5
\end{aligned}
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{gathered}
{\left[\begin{array}{ccc}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & .229 & .235 \\
\mathrm{~B} & .300 & .300 \\
\mathrm{O} &
\end{array}\right]=\left[\begin{array}{llll}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
.30 \times .1+.30 \times .0+.30 \times .4+.30 \times .5=.300
\end{gathered}
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & .229 & .235 \\
\mathrm{~B} & .300 & .300 \\
\mathrm{O} &
\end{array}\right]=\left[\begin{array}{llll}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
. & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
& .48 \times .3+.45 \times .1+.43 \times .2+.49 \times .4
\end{aligned}
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{gathered}
{\left[\begin{array}{ccc}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & .229 & .235 \\
\mathrm{~B} & .300 & .300 \\
\mathrm{O} & .471 &
\end{array}\right]=\left[\begin{array}{cccc}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
.48 \times .3+.45 \times .1+.43 \times .2+.49 \times .4=.465
\end{gathered}
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & .229 & .235 \\
\mathrm{~B} & .300 & .300 \\
\mathrm{O} & .471 &
\end{array}\right]=\left[\begin{array}{llll}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
& .48 \times .1+.45 \times .0+.43 \times .4+.49 \times .5
\end{aligned}
$$

From Factory to City

How much "stuff" goes from Factory 1 to Trondheim?

$$
\begin{gathered}
{\left[\begin{array}{ccc}
& \mathrm{F} 1 & \mathrm{~F} 2 \\
\mathrm{~T} & .229 & .235 \\
\mathrm{~B} & .300 & .300 \\
\mathrm{O} & .471 & .465
\end{array}\right]=\left[\begin{array}{cccc}
.22 & .25 & .27 & .21 \\
.30 & .30 & .30 & .30 \\
.48 & .45 & .43 & .49
\end{array}\right]\left[\begin{array}{ll}
.3 & .1 \\
.1 & .0 \\
.2 & .4 \\
.4 & .5
\end{array}\right]} \\
.48 \times .1+.45 \times .0+.43 \times .4+.49 \times .5=.465
\end{gathered}
$$

Add in Depots

Add in Depots

Add in Depots

Partitioning Processes

Factory to City

Partitioning Processes

Factory to City
via Depot 1
via Depot 2

$$
\left[\begin{array}{ll}
.087 & .105 \\
.087 & .105 \\
.116 & .140
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
.142 & .030 \\
.213 & .195 \\
.355 & .325
\end{array}\right]
$$

Partitioning Processes

Factory to City
via Depot 1

via Depot 2

$$
\left[\begin{array}{ll}
.087 & .105 \\
.087 & .105 \\
.116 & .140
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
.142 & .030 \\
.213 & .195 \\
.355 & .325
\end{array}\right]
$$

Total
Factory 1 to Trondheim

$$
=
$$

Factory 1 to Trondheim via Depot 1
$+$
Factory 1 to Trondheim via Depot 2

$$
\left[\begin{array}{ll}
.087 & .105 \\
.087 & .105 \\
.116 & .140
\end{array}\right]+\left[\begin{array}{ll}
.142 & .030 \\
.213 & .195 \\
.355 & .325
\end{array}\right]=\left[\begin{array}{ll}
.229 & .235 \\
.300 & .300 \\
.471 & .465
\end{array}\right]
$$

Combining Processes

1. One process follows the other: multiply matrices
2. Two processes partition another: add matrices

A Secret Process

Question

How do we increase factory output?

A Secret Process

Question

How do we increase factory output?

Answer

Increase Milk Production!

A Secret Process

Question

How do we increase factory output?

Answer

Increase Milk Production!

- Factory output proportional to milk production

A Secret Process

Question

How do we increase factory output?

Answer

 Increase Milk Production!- Factory output proportional to milk production
- View factory output, $\left(p_{1}, p_{2}\right)$, as a process:

Milk \longrightarrow Produce

A Secret Process

Question

How do we increase factory output?

Answer

 Increase Milk Production!- Factory output proportional to milk production
- View factory output, $\left(p_{1}, p_{2}\right)$, as a process:

Milk \longrightarrow Produce

- Representing matrix is:

$$
\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]
$$

Vectors

Definition

A column vector is a matrix with one column

Vectors

Definition

A column vector is a matrix with one column

Remark

1. Column vectors written as \vec{u} or u or \underline{u}

Vectors

Definition

A column vector is a matrix with one column

Remark

1. Column vectors written as \vec{u} or u or \underline{u}
2. View as "initial process": defining the input data for a process

Vectors

Definition

> A column vector is a matrix with one column

Remark

1. Column vectors written as \vec{u} or u or \underline{u}
2. View as "initial process": defining the input data for a process
3. Matrix \times column vector $=$ column vector because output of one process is input of next

Matrices and Column Vectors

$$
[]=\left[\begin{array}{cccc}
1 & 3 & -4 & 5 \\
2 & 8 & 0 & 0 \\
2 & 1 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

Matrices and Column Vectors

$$
[\square]=\left[\begin{array}{cccc}
1 & 3 & -4 & 5 \\
2 & 8 & 0 & 0 \\
2 & 1 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

Matrices and Column Vectors

$$
\left[\begin{array}{l}
1 \\
\end{array}\right]=\left[\begin{array}{cccc}
1 & 3 & -4 & 5 \\
2 & 8 & 0 & 0 \\
2 & 1 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

Matrices and Column Vectors

$$
\left[\begin{array}{l}
1 \\
\end{array}\right]=\left[\begin{array}{cccc}
1 & 3 & -4 & 5 \\
2 & 8 & 0 & 0 \\
2 & 1 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

Matrices and Column Vectors

$$
\left[\begin{array}{c}
1 \\
-10
\end{array}\right]=\left[\begin{array}{cccc}
1 & 3 & -4 & 5 \\
2 & 8 & 0 & 0 \\
2 & 1 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

Matrices and Column Vectors

$$
\left[\begin{array}{c}
1 \\
-10
\end{array}\right]=\left[\begin{array}{cccc}
1 & 3 & -4 & 5 \\
2 & 8 & 0 & 0 \\
2 & 1 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

Matrices and Column Vectors

$$
\left[\begin{array}{c}
1 \\
-10 \\
10
\end{array}\right]=\left[\begin{array}{cccc}
1 & 3 & -4 & 5 \\
2 & 8 & 0 & 0 \\
2 & 1 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

Column Vectors and Linear Systems

Linear System

$$
x+2 y+z=2
$$

Find x, y, z such that $2 x-3 y+z=3$

$$
-x+y+2 z=4
$$

Column Vectors and Linear Systems

Linear System

$$
x+2 y+z=2
$$

Find x, y, z such that $2 x-3 y+z=3$

$$
-x+y+2 z=4
$$

Matrices
Find $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that $\left[\begin{array}{rrr}1 & 2 & 1 \\ 2 & -3 & 1 \\ -1 & 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$

Column Vectors and Linear Systems

Linear System

$$
x+2 y+z=2
$$

Find x, y, z such that $2 x-3 y+z=3$

$$
-x+y+2 z=4
$$

Matrices
Find $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that $\left[\begin{array}{rrr}1 & 2 & 1 \\ 2 & -3 & 1 \\ -1 & 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$

Same question!

A Convenient Notation

Write generic linear system as:

$$
A \vec{x}=\vec{b}
$$

A Convenient Notation

Write generic linear system as:

$$
A \vec{x}=\vec{b}
$$

Composition order:

- A and B represent processes

A Convenient Notation

Write generic linear system as:

$$
A \vec{x}=\vec{b}
$$

Composition order:

- A and B represent processes
- feed outputs of A into B to get new process, matrix C

A Convenient Notation

Write generic linear system as:

$$
A \vec{x}=\vec{b}
$$

Composition order:

- A and B represent processes
- feed outputs of A into B to get new process, matrix C
- write $C=B A$

A Convenient Notation

Write generic linear system as:

$$
A \vec{x}=\vec{b}
$$

Composition order:

- A and B represent processes
- feed outputs of A into B to get new process, matrix C
- write $C=B A$
- substitute into notation for linear system:

$$
C \vec{x}=B A \vec{x}
$$

do A first and then B

Factory to Depot

Passing Through the Depots

$$
\left[\begin{array}{lll}
& F 1 & F 2 \\
D 1 & .29 & .35 \\
D 2 & .71 & .65
\end{array}\right]
$$

Factory to Depot

Passing Through the Depots

$$
\left[\begin{array}{lll}
& F 1 & F 2 \\
D 1 & .29 & .35 \\
D 2 & .71 & .65
\end{array}\right]
$$

Recall: matrix records proportions

Factory to Depot

Passing Through the Depots

$$
\left[\begin{array}{lll}
& F 1 & F 2 \\
D 1 & .29 & .35 \\
D 2 & .71 & .65
\end{array}\right]
$$

Recall: matrix records proportions

Question

Can we find out the productivity of the factories by measuring what arrives at the depots?

Factory to Depot

Passing Through the Depots

$$
\left[\begin{array}{lll}
& F 1 & F 2 \\
D 1 & .29 & .35 \\
D 2 & .71 & .65
\end{array}\right]
$$

Recall: matrix records proportions

Question

Can we find out the productivity of the factories by measuring what arrives at the depots?

Solve:

$$
\begin{aligned}
& .29 p_{1}+.35 p_{2}=d_{1} \\
& .71 p_{1}+.65 p_{2}=d_{2}
\end{aligned}
$$

Solution

$$
\left[\begin{array}{ll|l}
.29 & .35 & d_{1} \\
.71 & .65 & d_{2}
\end{array}\right]
$$

Solution

$$
\left[\begin{array}{ll|l}
.29 & .35 & d_{1} \\
.71 & .65 & d_{2}
\end{array}\right] \xrightarrow{R_{2} \rightarrow .29 q_{2}}\left[\begin{array}{cc|c}
.29 & .35 & d_{1} \\
.2059 & .1885 & .29 d_{2}
\end{array}\right]
$$

Solution

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
.29 & .35 & d_{1} \\
.71 & .65 & d_{2}
\end{array}\right] \xrightarrow{d_{2} \rightarrow .29 q_{2}}\left[\begin{array}{cc|c}
.29 & .35 & d_{1} \\
.2059 & .1885 & .29 d_{2}
\end{array}\right]} \\
& \xrightarrow{R_{2}-77 R_{1}}\left[\left.\begin{array}{cc}
-29 & .35 \\
0 & -.06
\end{array} \right\rvert\, .29 d_{2}-.71 d_{1}\right]
\end{aligned}
$$

Solution

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
.29 & .35 & d_{1} \\
.71 & .65 & d_{2}
\end{array}\right] \xrightarrow{R_{2} \rightarrow .29 R_{2}}\left[\begin{array}{cc|c}
.29 & .35 & d_{1} \\
.2059 & .1885 & .29 d_{2}
\end{array}\right] } \\
& \xrightarrow{R_{2}-.71 R_{1}}\left[\begin{array}{cc|c|c}
.29 & .35 & d_{1} \\
0 & -.06 & .29 d_{2}-.71 d_{1}
\end{array}\right] \\
& \xrightarrow{R_{1} \rightarrow-.06 R_{1}}\left[\begin{array}{ccc|c}
-.0174 & -.0210 & -.06 d_{1} \\
0 & -.06 & .29 d_{2}-.71 d_{1}
\end{array}\right]
\end{aligned}
$$

Solution

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
.29 & .35 & d_{1} \\
.71 & .65 & d_{2}
\end{array}\right] \xrightarrow{d_{2} \rightarrow .29 R_{2}}\left[\begin{array}{cc|c}
.29 & .35 & d_{1} \\
.2059 & .1885 & .29 d_{2}
\end{array}\right]} \\
& \xrightarrow{R_{2}-71 R_{1}}\left[\begin{array}{cc|c}
.29 & .35 \\
0 & -.06 & .29 d_{2}-.71 d_{1}
\end{array}\right] \\
& \xrightarrow{R_{1} \rightarrow-.06 R_{1}}\left[\begin{array}{cc|c}
-.0174 & -.0210 & -.06 d_{1} \\
0 & -.06 & .29 d_{2}-.71 d_{1}
\end{array}\right] \\
& \xrightarrow{R_{1}-.35 R_{2}}\left[\begin{array}{cc|c}
-.0174 & 0 & -.1885 d_{1}-.1015 d_{2} \\
0 & -.06 & .29 d_{2}-.71 d_{1}
\end{array}\right]
\end{aligned}
$$

Solution

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
.29 & .35 & d_{1} \\
.71 & .65 & d_{2}
\end{array}\right] \xrightarrow{R_{2} \rightarrow .29 R_{2}}\left[\begin{array}{cc|c}
.29 & .35 & d_{1} \\
.2059 & .1885 & .29 d_{2}
\end{array}\right] } \\
& \xrightarrow{R_{2}-.71 R_{1}}\left[\begin{array}{cc|c|c}
.29 & .35 & d_{1} \\
0 & -.06 & .29 d_{2}-.71 d_{1}
\end{array}\right] \\
& \xrightarrow{R_{1} \rightarrow-.06 R_{1}}\left[\begin{array}{cc|c|c}
-.0174 & -.0210 & -.06 d_{1} \\
0 & -.06 & .29 d_{2}-.71 d_{1}
\end{array}\right] \\
& \xrightarrow{R_{1}-.35 R_{2}}\left[\begin{array}{cc|c}
-.0174 & 0 & -.1885 d_{1}-.1015 d_{2} \\
0 & -.06 & .29 d_{2}-.71 d_{1}
\end{array}\right] \\
& \xrightarrow{R_{1} \rightarrow .29-1} R_{1}\left[\begin{array}{cc|c}
-.06 & 0 & .65 d_{1}-.35 d_{2} \\
0 & -.06 & .29 d_{2}-.71 d_{1}
\end{array}\right]
\end{aligned}
$$

Back and Forth

$$
\begin{aligned}
.29 p_{1}+.35 p_{2} & =d_{1} & \frac{-100}{6}\left(.65 d_{1}-.35 d_{2}\right) & =p_{1} \\
.71 p_{1}+.65 p_{2} & =d_{2} & \frac{-100}{6}\left(-.71 d_{1}+.29 d_{2}\right) & =p_{2}
\end{aligned}
$$

Back and Forth

$$
\begin{array}{lr}
.29 p_{1}+.35 p_{2}=d_{1} & \frac{-100}{6}\left(.65 d_{1}-.35 d_{2}\right)=p_{1} \\
.71 p_{1}+.65 p_{2}=d_{2} & \frac{-100}{6}\left(-.71 d_{1}+.29 d_{2}\right)=p_{2}
\end{array}
$$

Remark

1. Can figure out what leaves factories from what arrives at depots.

Back and Forth

$$
\begin{array}{lrl}
.29 p_{1}+.35 p_{2}=d_{1} & \frac{-100}{6}\left(.65 d_{1}-.35 d_{2}\right)=p_{1} \\
.71 p_{1}+.65 p_{2}=d_{2} & \frac{-100}{6}\left(-.71 d_{1}+.29 d_{2}\right)=p_{2}
\end{array}
$$

Remark

1. Can figure out what leaves factories from what arrives at depots.
2. Can arrange for any desired arrival amounts by adjusting productions.

Back and Forth

$$
\begin{array}{lrl}
.29 p_{1}+.35 p_{2} & =d_{1} & \frac{-100}{6}\left(.65 d_{1}-.35 d_{2}\right)
\end{array}=p_{1},
$$

Remark

1. Can figure out what leaves factories from what arrives at depots.
2. Can arrange for any desired arrival amounts by adjusting productions.
3. No presumption of cause or effect.

Invertible

Definition

A process is said to be invertible if

1. Each input is uniquely determined by its output
2. Each potential output is possible

A matrix is
invertible
if
it represents an invertible process

Invertible Examples

1.

$\left[\begin{array}{ll}.29 & .35 \\ .71 & .65\end{array}\right]$
represents an invertible process

Invertible Examples

1.

$$
\left[\begin{array}{ll}
.29 & .35 \\
.71 & .65
\end{array}\right]
$$

represents an invertible process
2.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

is not invertible: $(0,0,0)$ and $(1,-2,1)$ both go to $(0,0)$

Invertible Examples

1.

$$
\left[\begin{array}{ll}
.29 & .35 \\
.71 & .65
\end{array}\right]
$$

represents an invertible process
2.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

is not invertible: $(0,0,0)$ and $(1,-2,1)$ both go to $(0,0)$ 3.

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

is not invertible: no way to get $(1,0)$

An Incredibly Important Process

Introducing

An Incredibly Important Process

Introducing

The "do nothing" process!

An Incredibly Important Process

Introducing

The "do nothing" process!

Output = Input

An Incredibly Important Process

Introducing

The "do nothing" process!

$$
\begin{gathered}
\text { Output = Input } \\
y_{1}=x_{1}, y_{2}=x_{2}, \ldots, y_{n}=x_{n}
\end{gathered}
$$

An Incredibly Important Process

Introducing

The "do nothing" process!

$$
\begin{gathered}
\text { Output = Input } \\
y_{1}=x_{1}, y_{2}=x_{2}, \ldots, y_{n}=x_{n}
\end{gathered}
$$

Representing matrix:

$$
I_{n}:=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

An Incredibly Important Process

Introducing

The "do nothing" process!

$$
\begin{gathered}
\text { Output = Input } \\
y_{1}=x_{1}, y_{2}=x_{2}, \ldots, y_{n}=x_{n}
\end{gathered}
$$

Representing matrix:

$$
I_{n}:=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

(Technically, one for each size n)

Inverses

Rough Definition

An inverse of a process is another process such that composing either way around results in the "do nothing" process.

Inverses

Rough Definition

An inverse of a process is another process such that composing either way around results in the "do nothing" process.

In matrix language: an inverse of A is B such that $A B=I_{m}$ and $B A=I_{n}$.

Inverses

Rough Definition

An inverse of a process is another process such that composing either way around results in the "do nothing" process.

In matrix language: an inverse of A is B such that $A B=I_{m}$ and $B A=I_{n}$.

Lemma

A matrix is invertible if and only if it has an inverse.

Computing Inverses

Does

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 6
\end{array}\right]
$$

have an inverse?

Computing Inverses

Does

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 6
\end{array}\right]
$$

have an inverse?
If so, $A \vec{x}=\vec{b}$ has a solution for any \vec{b}.

Computing Inverses

Does

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 6
\end{array}\right]
$$

have an inverse?
If so, $A \vec{x}=\vec{b}$ has a solution for any \vec{b}.
For example ... $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ or $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ or $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Computing Inverses

Does

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 6
\end{array}\right]
$$

have an inverse?
If so, $A \vec{x}=\vec{b}$ has a solution for any \vec{b}.
For example ... $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ or $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ or $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Let's see if it does.

Simultaneous Gaussian Elimination

$$
\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 3 & 4 & 0 & 1 & 0 \\
3 & 4 & 6 & 0 & 0 & 1
\end{array}\right]
$$

Simultaneous Gaussian Elimination

$$
\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 3 & 4 & 0 & 1 & 0 \\
3 & 4 & 6 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{3}-3 R_{1}}\left[\begin{array}{rrrrrr}
R_{2}-2 R_{1}
\end{array}\left[\begin{array}{rrrrr}
1 & 2 & 3 & 1 & 0 \\
0 \\
0 & -2 & -2 & -2 & 1 \\
0 \\
0 & -2 & -3 & -3 & 0
\end{array} 1\right]\right.
$$

Simultaneous Gaussian Elimination

$$
\begin{array}{rlllll}
{\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 3 & 4 & 0 & 1 & 0 \\
3 & 4 & 6 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\underset{R_{3}-3 R_{1}}{R_{2}-2 R_{1}}}\left[\begin{array}{rrrrrr}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -2 & -2 & -2 & 1 & 0 \\
0 & -2 & -3 & -3 & 0 & 1
\end{array}\right]} \\
& \xrightarrow[R_{1}+2 R_{2}]{R_{3}-2 R_{2}}\left[\begin{array}{rrrrrr}
1 & 0 & -1 & -3 & 2 & 0 \\
0 & -1 & -2 & -2 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 & 1
\end{array}\right]
\end{array}
$$

Simultaneous Gaussian Elimination

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 3 & 4 & 0 & 1 & 0 \\
3 & 4 & 6 & 0 & 0 & 1
\end{array}\right] \xrightarrow[R_{2}-3 R_{1}]{R_{3}-3 R_{1}}\left[\begin{array}{rrrrrr}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -2 & -2 & -2 & 1 & 0 \\
0 & -2 & -3 & -3 & 0 & 1
\end{array}\right]} \\
& \xrightarrow[R_{1}+2 R_{2}]{R_{3}-2 R_{2}}\left[\begin{array}{rrrrrr}
1 & 0 & -1 & -3 & 2 & 0 \\
0 & -1 & -2 & -2 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 & 1
\end{array}\right] \\
& \underset{R_{1}+R_{3}}{R_{2}+2 R_{3}}\left[\begin{array}{rrrrrr}
1 & 0 & 0 & -2 & 0 & 1 \\
0 & -1 & 0 & 0 & -3 & 2 \\
0 & 0 & 1 & 1 & -2 & 1
\end{array}\right]
\end{aligned}
$$

Simultaneous Gaussian Elimination

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 3 & 4 & 0 & 1 & 0 \\
3 & 4 & 6 & 0 & 0 & 1
\end{array}\right] \xrightarrow[R_{2}-2 R_{1}]{R_{3}-3 R_{1}}\left[\begin{array}{rrrrrr}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -2 & -2 & -2 & 1 & 0 \\
0 & -2 & -3 & -3 & 0 & 1
\end{array}\right]} \\
& \xrightarrow[R_{1}+2 R_{2}]{R_{3}-2 R_{2}}\left[\begin{array}{rrrrrr}
1 & 0 & -1 & -3 & 2 & 0 \\
0 & -1 & -2 & -2 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 & 1
\end{array}\right] \\
& \underset{R_{1}+R_{3}}{R_{2}+2 R_{3}}\left[\begin{array}{rrrrrr}
1 & 0 & 0 & -2 & 0 & 1 \\
0 & -1 & 0 & 0 & -3 & 2 \\
0 & 0 & 1 & 1 & -2 & 1
\end{array}\right] \\
& \xrightarrow{R_{2} \rightarrow-R_{2}}\left[\begin{array}{lllrrr}
1 & 0 & 0 & -2 & 0 & 1 \\
0 & 1 & 0 & 0 & 3 & -2 \\
0 & 0 & 1 & 1 & -2 & 1
\end{array}\right]
\end{aligned}
$$

Check Your Answer

Is

$$
B=\left[\begin{array}{rrr}
-2 & 0 & 1 \\
0 & 3 & -2 \\
1 & -2 & 1
\end{array}\right]
$$

an inverse for A ?

Check Your Answer

Is

$$
B=\left[\begin{array}{rrr}
-2 & 0 & 1 \\
0 & 3 & -2 \\
1 & -2 & 1
\end{array}\right]
$$

an inverse for A ?
Check: $A B=I_{3}$ and $B A=I_{3}$

Summary

- Matrix manipulations follow from what happens to processes
- Invertible matrices correspond to invertible processes
- Invertible process means input and output determine each other

