Square Row Reduction Results

$$
\begin{array}{r}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & * \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathfrak{a} \\
b
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]} \\
\text { can't get }\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{array}
$$

Square Row Reduction Results

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & * \\
0 & 0
\end{array}\right],\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right.
$$

The first is the only matrix such that:

1. A is invertible

So A invertible \Longleftrightarrow row reduces to I
2. $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b}
3. $\mathbf{A} \mathbf{x}=\mathbf{b}$ has a unique solution for some \mathbf{b}

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
38^{2} \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]}
\end{aligned}
$$

Square Row Reduction Results

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{cc}
1 & * \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

The first is the only matrix such that:

1. A is invertible

So A invertible \Longleftrightarrow row reduces to I
2. $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b}
3. $\mathbf{A x}=\mathbf{b}$ has a unique solution for some \mathbf{b}
4. $A \mathbf{x}=0$ has a unique solution

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Recall

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)
$$

Examples

1. $y^{\prime \prime}+y^{\prime}-2 y=\sin (x)$
2) $x^{2} y^{\prime \prime}+x y^{\prime}-y=x^{2}+x^{3}$
(3.) $y^{\prime \prime}+x^{-2} y^{\prime}-x^{-3} y=x^{-3}$

Examples

$$
\begin{gathered}
y^{\prime \prime}+x^{-2} y^{\prime}-x^{-3} y=x^{-3} \\
y^{\prime \prime}+x^{2} y^{\prime}-x^{-3} y=0 \\
\left(x^{3} y^{\prime \prime}+x y^{\prime}-y=0\right) \\
\operatorname{Trg} x^{k}: \\
\frac{k(k-1)}{} x^{k-2}+k x^{k-3}-x^{k-3}=0 \\
y_{1}=x
\end{gathered}
$$

$$
\begin{gathered}
y_{2}=u x \quad y_{2}^{\prime}=u+u^{\prime} x \\
y_{2}^{\prime \prime}=u^{\prime}+u^{\prime}+u^{\prime \prime} x=2 u^{\prime}+u^{\prime \prime} x \\
2 u^{\prime}+u^{\prime \prime} x+x^{-2}\left(u+u^{\prime} x\right)-x^{3} u x=0 \\
2 u^{\prime}+u^{\prime \prime} x+u^{\prime} x^{-1}=0 \\
u=u^{\prime}, \quad u^{\prime} x+u\left(2+x^{-1}\right)=0 \\
\frac{u^{\prime}}{u}=\frac{-\left(2+x^{-1}\right.}{x}
\end{gathered}
$$

$$
\begin{aligned}
\log (u) & =-\int 2 x^{-1}+x^{-2} d x \\
& =-2 \log x+x^{-1} \\
u & =\bar{x}^{2} e^{x^{-1}} \\
u & =\int u-\int x^{-2} e^{x^{-1}}=-e^{x^{-1}} \\
& \frac{u^{\prime}}{u}=\frac{-\left(2+x^{-1}\right)}{x}
\end{aligned}
$$

$$
\begin{gathered}
y_{z}=x u=-x e^{x-1} \\
x,-x e^{x-1}
\end{gathered}
$$

