Decomposable

$$a,b \in \mathbb{R},$$
 $y'' + \sin(x)y' + \cos(x)y = 0$
has unique solution $y_{a,b}(x)$ with
 $y_{a,b}(0) = a, y'_{a,b}(0) = b$
Decomposable $\Longrightarrow y_{a,b}(x) = ay_{1,0} + by_{0,1}$

Non-Decomposable

Need to find $y_{a,b}$ for all $a, b \in \mathbb{R}$

Decomposable

Need to find $y_{a,b}$ for only two $(a,b) \in \mathbb{R}^2$

Linearly independent Sinx, cosx Sinx + 3 cos x or any other $\sin 2x$, $\sin x \cos x$ \times $\sin 2x = 2\sin x \cos x$ Sin2x, Sinx = (2) in x (cosx)

$$x^{2} + 4x - 12 = 0$$
 $x = 2$
 $w = x - 2$
 $x^{2} = (w + 2)^{2} = w^{2} + 4w + 4$
 $4x = 4w + 8$
 -12
 $x^{2} + 4x - 12 = w^{2} + 8w$

$$\omega^2 + 8\omega = 0$$

$$\omega(\omega + 8) = 0$$

$$\omega = -8 \Rightarrow \times = -6$$