Decomposable

$$
\begin{gathered}
a, b \in \mathbb{R} \\
y^{\prime \prime}+\sin (x) y^{\prime}+\cos (x) y=0
\end{gathered}
$$

has unique solution $y_{a, b}(x)$ with

$$
y_{a, b}(0)=a, y_{a, b}^{\prime}(0)=b
$$

Decomposable $\Longrightarrow y_{a, b}(x)=a y_{1,0}+b y_{0,1}$
Non-Decomposable
Need to find $y_{a, b}$ for all $a, b \in \mathbb{R}$

Decomposable

Need to find $y_{a, b}$ for only two $(a, b) \in \mathbb{R}^{2}$

Linearly independent
$\sin x_{J} \cos x$
$\sin x \neq 3 \cos x$ or any other
$\sin 2 x, \sin x \cos x$

$$
\sin 2 x=2 \sin x \cos x
$$

$\sin 2 x, \quad \sin x=\left(\sqrt{2} \sin x\left(\frac{\sqrt{2} x}{}\right.\right.$

$$
\begin{gathered}
x^{2}+4 x-12=0 \\
x=2 \\
\omega=x-2 \quad x=\omega+2 \\
x^{2}=(\omega+2)^{2}=\omega^{2}+4 \omega+4 \\
4 x=4 \omega+8 \\
-12 \\
x^{2}+4 x-12=\omega^{2}+8 w \\
\omega^{2}+8 \omega=0 \\
\omega(\omega+8)=0 \\
\omega=-8 \Rightarrow x=-6
\end{gathered}
$$

