Problems with Powers, pt II

Problems in \mathbb{R}

$$
a^{b}
$$

not defined for all $a, b \in \mathbb{R}$!
Works for:

- $a \in(0, \infty), b \in \mathbb{R}$
- $a \in \mathbb{R} \backslash\{0\}, a \in \mathbb{Z}$
- $a \in \mathbb{R}, \stackrel{b}{a} \in \mathbb{N}$

Defining Power
How do we define:

$$
a^{b} ?
$$

Lots of ways...

$$
e^{b}=\operatorname{li}\left(1+\frac{b}{n}\right)^{n}
$$

Solving $f^{\prime}=$ if

The Double Derivative Trick: If $f(t)$ satisfies $f^{\prime}=$ if then it also satisfies

$$
f^{\prime \prime}=\text { if } f^{\prime}=\text { iif }=-f
$$

Solutions:

$$
f(t)=c \sin (t)+d \cos (t)
$$

Key Step: $c, d \in \mathbb{C}$!

- $f(0)=1 \Longrightarrow d=1$
- $f^{\prime}(0)=\mathrm{if}(0)=\mathrm{i} \Longrightarrow c=\mathrm{i}$

Solution:

$$
\begin{aligned}
& f(t)=\cos (t)+i \sin (t) \\
& f^{\prime}(t)=i(i \sin (t)+\cos (t))=i f(t)
\end{aligned}
$$

Pretty Pictures

Addition, Subtraction

Not Just Pretty Pictures

Summary

- The complex plane let's us see what's happening
- Can use knowledge of to help with \mathbb{C}
- e^{z} makes sense
- In(z) makes sense - multi-valued!
- $z^{1 / n}$ makes sense - multi-valued!
- These have nice geometric pictures.

