Examination paper for **TMA4110 Matematikk 3**

Academic contact during examination: Antoine Julien\(^a\), Markus Szymik\(^b\)

Phone: \(^a\)73597782, \(^b\)41116793

Examination date: December 4\(^{th}\), 2014

Examination time (from–to): 09:00–13:00

Permitted examination support material: C: Simple Calculator (Casio fx-82ES PLUS, Citizen SR-270X, Citizen SR-270X College, or Hewlett Packard HP30S), Rottmann: Matematiske formelsamling

Other information:
Give reasons for all answers, ensuring that it is clear how the answer has been reached. Each exercise has the same weight.

Language: English

Number of pages: 3

Number pages enclosed: 0

Checked by:

__
Date Signature
Problem 1 In this exercise, we consider the complex numbers
\[z_1 = \frac{1}{2} + i \frac{\sqrt{3}}{2} \quad \text{and} \quad z_2 = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}. \]

a) Write \(z_1/z_2 \) in the form \(z_1/z_2 = a + ib \) (do not use the \(\cos \) or \(\sin \) functions).

b) Compute the modulus and an argument of \(z_1 \) and \(z_2 \). Write \(z_1 \) and \(z_2 \) in polar form.

c) Write \(z_1/z_2 \) in the form \(z_1/z_2 = \rho e^{i\theta} \).

d) Deduce from the above the values of \(\cos(\pi/12) \) and \(\sin(\pi/12) \).

Problem 2 In this exercise, we consider the differential equation
\[y'' - 4y' + 4y = g(x). \]

a) Compute the general solution of the homogeneous equation.

b) Compute a particular solution when \(g(x) = e^{-2x} \) and when \(g(x) = e^{2x} \).

c) Compute the general solution of the equation when
\[g(x) = \frac{1}{4}(e^{-2x} + e^{2x}). \]

Problem 3 Consider the matrix
\[A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{bmatrix}. \]

a) For which values of \(a \) is this matrix invertible?

b) Compute \(A^{-1} \), when this inverse exists.
Problem 4
In this exercise, we consider the matrix A given by

$$
A = \begin{bmatrix}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{bmatrix}.
$$

a) Find the eigenvalues of A?

b) Find a non-zero eigenvector for each eigenvalue of A.

c) Find a basis of \mathbb{R}^3 made of eigenvectors of A.

d) Find an orthonormal basis of \mathbb{R}^3 made of eigenvectors of A.

e) Find an orthogonal matrix P and a diagonal matrix D such that $D = P^T A P$.

Problem 5

a) Given the data pairs

\[
\begin{align*}
a_1 &= 1, \quad b_1 = 2, \\
a_2 &= 2, \quad b_2 = 3, \\
a_3 &= 3, \quad b_3 = 5,
\end{align*}
\]

express the system

\[
\begin{align*}
a_1 x_1 + x_2 &= b_1 \\
a_2 x_1 + x_2 &= b_2 \\
a_3 x_1 + x_2 &= b_3
\end{align*}
\]

of linear equations in matrix form $A\mathbf{x} = \mathbf{b}$: What are A, \mathbf{x} and \mathbf{b}?

b) For A and \mathbf{b} as in (b), show that $A\mathbf{x} = \mathbf{b}$ does not have a solution.

c) Use the least squares method to find an approximate solution \mathbf{x} for the equation $A\mathbf{x} = \mathbf{b}$.

d) For \mathbf{x} as in (d), sketch the three data points and the line $b = x_1 a + x_2$ into a coordinate system.

e) For \mathbf{x} as in (d), compute $4x_1 + x_2$?
Problem 6

a) Solve the following system of linear equations:

\[\begin{align*}
 x_1 + x_2 + x_3 &= 2 \\
 x_1 + 2x_2 + 4x_3 &= 3 \\
 x_1 + 3x_2 + 9x_3 &= 5.
\end{align*} \]

b) Let

\[p_x(t) = x_1 + x_2 t + x_3 t^2 \]

denote the polynomial with real coefficients \(x_1, x_2, x_3 \in \mathbb{R} \). The transformation

\[\mathbb{R}^3 \rightarrow \mathbb{R}^3 \]

\[\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} p_x(1) \\ p_x(2) \\ p_x(3) \end{bmatrix} = \begin{bmatrix} x_1 + x_2 + x_3 \\ x_1 + 2x_2 + 4x_3 \\ x_1 + 3x_2 + 9x_3 \end{bmatrix} \]

is linear. Find the matrix \(A \) that describes this linear transformation.

c) For \(A \) as in (b), show that \(A \) is invertible.

d) For \(A \) as in (b), find \(\mathbf{x} \) such that

\[A \mathbf{x} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}. \]

e) For \(\mathbf{x} \) as in (d), compute \(p_x(4) = x_1 + 4x_2 + 16x_3 \).

Problem 7

Let \(\mathbf{u} \) and \(\mathbf{v} \) be two nonzero, independent vectors in \(\mathbb{R}^3 \). Let \(\mathbf{w} \) be a nonzero vector in \(\mathbb{R}^3 \). Show that there exists a non-zero linear combination of \(\mathbf{u} \) and \(\mathbf{v} \) which is orthogonal to \(\mathbf{w} \).