Limits in Maple.

$f:=n \rightarrow\left(1+\frac{1}{n}\right)^{n} ;$

$$
\begin{equation*}
n \rightarrow\left(\frac{1}{n}+1\right)^{n} \tag{1}
\end{equation*}
$$

$\operatorname{limit}(f(n), n=i n f i n i t y) ; \operatorname{evalf}(\%) ;$

$$
\begin{equation*}
2.718281828 \tag{2}
\end{equation*}
$$

$\operatorname{limit}\left(\frac{x^{2}-c^{2}}{x-c}, x=c\right)$;

$$
\begin{equation*}
2 c \tag{3}
\end{equation*}
$$

$g:=x \rightarrow \frac{1}{x} ;$

$$
\begin{equation*}
x \rightarrow \frac{1}{x} \tag{4}
\end{equation*}
$$

$\operatorname{limit}(g(x), x=-2) ; \operatorname{limit}(g(x), x=0) ; \operatorname{limit}(g(x), x=-\operatorname{infinity}) ;$

$$
-\frac{1}{2}
$$

undefined

0
$\operatorname{limit}(g(f(x)), x=\operatorname{infinity}) ; \operatorname{limit}(f(g(x)), x=0) ;$

$$
\begin{gather*}
\mathrm{e}^{-1} \\
\mathrm{e} \tag{6}
\end{gather*}
$$

$\operatorname{limit}\left(\sqrt{x^{2}+c \cdot x}-x, x=\right.$ infinity $) ;$

$$
\begin{equation*}
\frac{1}{2} c \tag{7}
\end{equation*}
$$

$\operatorname{limit}\left(\left(\frac{x+a}{x+b}\right)^{x}, x=\right.$ infinity $) ;$

$$
\begin{equation*}
\mathrm{e}^{a-b} \tag{8}
\end{equation*}
$$

$h:=x \rightarrow \frac{\sin (x)}{x} ;$

$$
\begin{equation*}
x \rightarrow \frac{\sin (x)}{x} \tag{9}
\end{equation*}
$$

$\operatorname{limit}(h(x), x=0)$;
This limit can be shown by squeezing $\sin (x) / x$ between $\cos (x)$ and 1 around 0 . $\operatorname{plot}(\{\cos (x), h(x), 1\}, x=-4 . .4, y=-1 . .1 .5)$;

$l:=x \rightarrow \frac{\left(x^{2}-3 \cdot x\right)}{\sin (x)} ;$

$$
\begin{equation*}
x \rightarrow \frac{x^{2}-3 x}{\sin (x)} \tag{11}
\end{equation*}
$$

$\operatorname{limit}(l(x), x=0) ;$
$\operatorname{plot}(l(x), x=-1 . .2) ;$

$\operatorname{plot}(f(n), n=0 . .100) ;$

$d:=x \rightarrow x^{2} \sin \left(\frac{1}{x}\right) ;$

$$
\begin{equation*}
x \rightarrow x^{2} \sin \left(\frac{1}{x}\right) \tag{13}
\end{equation*}
$$

$\operatorname{limit}(d(x), x=0) ;$
$\operatorname{plot}(d(x), x=-0.1 . .0 .1) ;$

Limit does not exist, but the one-sided limits both exist.

$m:=x \rightarrow\left\{\begin{array}{ll}0 & x<0 \\ 1 & x \geq 0\end{array} ;\right.$

$$
\begin{equation*}
x \rightarrow \text { piecewise }(x<0,0,0 \leq x, 1) \tag{15}
\end{equation*}
$$

$\operatorname{limit}(m(x), x=0, \operatorname{left}) ; \operatorname{limit}(m(x), x=0, \operatorname{right}) ; \operatorname{limit}(m(x), x=0) ;$

Another phenomena so that limit does not exist: "oscillation". $\operatorname{limit}\left(\sin \left(\frac{1}{x}\right), x=0\right)$;

$$
\begin{equation*}
-1 \text {.. } 1 \tag{17}
\end{equation*}
$$

$\operatorname{plot}\left(\sin \left(\frac{1}{x}\right), x=-1 . .1\right) ;$

A special function; note that $\mathbf{x}^{\wedge} \mathbf{x}=\mathbf{e}^{\wedge}(\mathbf{x} \ln (\mathbf{x})), \mathbf{x}>\mathbf{0}$. $p:=x \rightarrow x^{x}$;

$$
\begin{equation*}
x \rightarrow x^{x} \tag{18}
\end{equation*}
$$

$\operatorname{limit}(p(x), x=0, r i g h t) ;$
$\operatorname{limit}(p(x), x=0)$;
1
$\operatorname{plot}(p(x), x=0 . .1 .5, y=0 . .2)$;

$\operatorname{seq}(p(x), x=0.01 . .0,-0.001)$
$0.9549925860,0.9584913162,0.9621099806,0.9658633485,0.9697703628,0.9738562370$,
$0.9781562629,0.9827235503,0.9876477075,0.9931160484$, Float(undefined)
$\operatorname{extrema}\left(p(x),\{ \}, x, a^{\prime}\right) ; \operatorname{evalf}(\%) ; \operatorname{evalf}(a)$;

$$
\begin{gather*}
\left\{\mathrm{e}^{-\mathrm{e}^{-1}}\right\} \\
\{0.6922006275\} \\
\{\{x=0.3678794412\}\} \tag{22}
\end{gather*}
$$

Test: How to make loops?

for n from 1 to 20 do $u(n):=x \rightarrow x^{n}$ end do:
$\operatorname{plot}(\{u(1)(x), u(3)(x), u(9)(x), u(18)(x)\}, x=0 . .1)$;

One can apply the "intermediate value theorem" to show that $x=\cos (x)$ has a solution.
$0-\cos (0) ; \frac{\pi}{2}-\cos \left(\frac{\pi}{2}\right)$;

$$
\begin{align*}
& -1 \\
& \frac{1}{2} \pi \tag{23}
\end{align*}
$$

$\operatorname{plot}(\{x, \cos (x)\}, x=-\pi . . \pi) ;$

