Gruppeøving 3. Matematikk 1/Teknostart

Avsnitt 2.3: 9, 16, 56

In Exercises 7–14, use the graphs to find a $\delta > 0$ such that for all x $0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.$

Each of Exercises 15-30 gives a function f(x) and numbers L, x_0 and $\epsilon > 0$. In each case, find an open interval about x_0 on which the inequality $|f(x) - L| < \epsilon$ holds. Then give a value for $\delta > 0$ such that for all x satisfying $0 < |x - x_0| < \delta$ the inequality $|f(x) - L| < \epsilon$ holds.

16.
$$f(x) = 2x - 2$$
, $L = -6$, $x_0 = -2$, $\epsilon = 0.02$

56. Manufacturing electrical resistors Ohm's law for electrical circuits like the one shown in the accompanying figure states that V = RI. In this equation, V is a constant voltage, I is the current in amperes, and R is the resistance in ohms. Your firm has been asked to supply the resistors for a circuit in which V will be 120 volts and I is to be 5 ± 0.1 amp. In what interval does R have to lie for I to be within 0.1 amp of the value $I_0 = 5$?

Avsnitt 2.4: 1, 5, 6

1. Which of the following statements about the function y = f(x)graphed here are true, and which are false?

a.
$$\lim_{x \to -1^+} f(x) = 1$$

b.
$$\lim_{x \to 0^{-}} f(x) = 0$$

c.
$$\lim_{x \to 0^{-}} f(x) = 1$$

c.
$$\lim_{x \to 0^{-}} f(x) = 1$$

e. $\lim_{x \to 0} f(x)$ exists
g. $\lim_{x \to 0} f(x) = 1$
h. $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$
g. $\lim_{x \to 0} f(x) = 1$
h. $\lim_{x \to 0} f(x) = 1$

e.
$$\lim_{x\to 0} f(x)$$
 exists

f.
$$\lim_{x \to 0} f(x) = 0$$

h. $\lim_{x \to 1} f(x) = 1$

g.
$$\lim_{x \to 0} f(x) = 1$$

h.
$$\lim_{x \to 1} f(x) =$$

$$\lim_{x\to 1} f(x) = 0$$

$$\mathbf{j.} \lim_{x \to 2^{-}} f(x) = 2$$

k.
$$\lim_{x \to -1^{-}} f(x)$$
 does not exist.

$$\lim_{x\to 2^+} f(x) = 0$$

5. Let
$$f(x) = \begin{cases} 0, & x \le 0 \\ \sin \frac{1}{x}, & x > 0. \end{cases}$$

- **a.** Does $\lim_{x\to 0^+} f(x)$ exist? If so, what is it? If not, why not?
- **b.** Does $\lim_{x\to 0^-} f(x)$ exist? If so, what is it? If not, why not?
- c. Does $\lim_{x\to 0} f(x)$ exist? If so, what is it? If not, why not?

6. Let $g(x) = \sqrt{x} \sin(1/x)$.

- a. Does $\lim_{x\to 0^+} g(x)$ exist? If so, what is it? If not, why not?
- **b.** Does $\lim_{x\to 0^-} g(x)$ exist? If so, what is it? If not, why not?
- c. Does $\lim_{x\to 0} g(x)$ exist? If so, what is it? If not, why not?

Gruppeøving 4. Matematikk 1/Teknostart

Avsnitt 2.4: 9, 52,

Graph the functions in Exercises 9 and 10. Then answer these questions.

a. What are the domain and range of f?

b. At what points c, if any, does $\lim_{x\to c} f(x)$ exist?

c. At what points does only the left-hand limit exist?

d. At what points does only the right-hand limit exist?

9.
$$f(x) = \begin{cases} \sqrt{1 - x^2}, & 0 \le x < 1 \\ 1, & 1 \le x < 2 \\ 2, & x = 2 \end{cases}$$

In Exercises 51-60, find the limit of each rational function (a) as $x \to \infty$ and (b) as $x \to -\infty$.

52.
$$f(x) = \frac{2x^3 + 7}{x^3 - x^2 + x + 7}$$

Avsnitt 2.5: 17, 21, 31

Find the limits in Exercises 17–22.

17.
$$\lim \frac{1}{x^2 - 4}$$
 as

a.
$$x \rightarrow 2^+$$

b.
$$x \rightarrow 2^-$$

c.
$$x \rightarrow -2$$

d.
$$x \rightarrow -2$$

Find the limits in Exercises 17-22.

21. $\lim \frac{x^2 - 3x + 2}{x^3 - 2x^2}$ as

a.
$$x \to 0^+$$
 b. $x \to 2^+$ **c.** $x \to 2^-$ **d.** $x \to 2$

$$h. r \rightarrow 2$$

c.
$$x \rightarrow 2$$

d.
$$x \rightarrow 2$$

e. What, if anything, can be said about the limit as $x \to 0$?

Graph the rational functions in Exercises 27-38. Include the graphs and equations of the asymptotes.

31.
$$y = \frac{x+3}{x+2}$$