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About the lectures

We aim at explaining the fundamentals of Lie group integrators

For material which is more "background type" we use slides

(made available to all participants)

For material at the core of the topic we may write live on iPad

There will be exercises every afternoon to practice the

understanding of the material

Supplementary material will be provided as documents
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II.1 Introduction, motivation and
historical remarks
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Traditional view on solving ordinary differential equations (ODEs)

Traditionally one considered initial value problems for ODEs in a black
box sense

ẏ(t) = f (t, y(t)), y(0) = y0 f : R⇥ Rn
! Rn

No more detail or structure was assumed on f (t, y)

Later one found reason to separate “stiff” and “nonstiff”

Then came DAE problems, mix between ODEs and algebraic
equations

Geometric or structure preserving methods became important in the
numerical analysis community from ca 1990.

Lie group integrators is a subfield of Geometric integration that was
studied systematically from the early 1990’s.
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Lie group integrators – first view – Example 1

Consider as an example the Euler equations for the free rigid body
(angular momentum equations)

ṁ(t) = m(t)⇥ I�1m(t), I inertia tensor

Then d
dt km(t)k2 = hm(t),m(t)⇥ I�1m(t)i = 0

Constant km(t)k is associated to the the sphere as a submanifold
of R3.

Evolution of the solution should effectively be by rotations

The space of rotations is a Lie group
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Lie group integrators – First view – Example 2

Stiefel manifold

Let Md,k be the manifold of d ⇥ k-matrices with orthonormal
columns.

and so(d) the skew-symmetric d ⇥ d-matrices, AT = �A.

Consider matrix-differential equation

Ẏ = A(Y ) · Y , A : Md,k ! so(d)

Invariant: I (Y ) = Y TY .
Applications

Computation of Lyapunov exponents

Multi-variate data analysis

Image/signal processing

If numerical solution Yn 7! Yn+1 can be evolved by Yn+1 = QnYn

and Qn is an orthogonal d ⇥ d matrix, then I (Yn+1) = I (Yn).
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Lie group integrators - Second view - Example 3

Northern light

Equation for particle movement (Carl Størmer)

ẍ = ẋ ⇥ d(x)

x particle position, d(x) earth magnetic field at x.

Spiralling movement not easily followed by straight lines
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Lie group integrators - Second view - Example 4

Solving PDEs by means of “simpler” PDEs

We take as example a non-homogeneous heat equation

ut = ⌫(x)�u

Fast solvers are available for the equation

ut = ⌫̄�u + f (x).

The first problem can be approximated locally by the second, e.g. set

⌫̄ =

R
⌫(x) dxR

dx

for a local known approximation u⇤(·, t⇤) let

f (x) = (⌫(x)� ⌫̄)�u⇤

Solving the simple PDE is an action by a Lie group
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Summarising

When the solution is known to
be restricted to some manifold

When it is useful to be able to
move along curves rather than
straight line segments
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The prototypical case

“Lie group equation” ’

ẏ = A(y) · y , A is a matrix.

Given yn, we could approximate this equation locally by the problem

ẏ = A(yn) · y ) yn+1 = ehA(yn) · yn

This is called the Lie-Euler method.

Many questions remain to be answered

1 What is the form of A(y) and y?

2 Are these all the problems we can solve?

3 What does it have to do with Lie groups and manifolds?

4 How can we get higher order of convergence?
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II.2 A primer on Lie group methods
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A new look on the Explicit Euler method

ẏ = f (y),

yn+1 = yn + hf (yn)

A new interpretation: Solve
exactly the local problem

ż = f (yn), z(0) = yn

Set yn+1 = z(h), tn+1 = tn + h.
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Free rigid body

We consider the Euler free rigid body

ṁ = m ⇥ I�1m, I = diag(I1, I2, I3)

We can rewrite this as
0
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0 m3
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�
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m3
I3
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CCA ·
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1

CCA = A(m) ·m (⇤)

Now km(t)k = km(0)k for all t since A(m) is skew-symmetric and

1
2
d

dt
(mTm) = mT ṁ = mTA(m)m = 0

Inspired by the “New look” we could replace (⇤) by

ż = A(mn)z , z(0) = mn

Solution: z(t) = etA(mn)mn so mn+1 = ehA(mn)mn (Lie-Euler)
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Remarks on Lie-Euler

mn+1 = ehA(mn) ·mn

The exponential here is the matrix exponential

When a matrix A is skew-symmetric then Q = eA is orthogonal,
QTQ = I

Orthogonal matrices preserve the Euclidean norm kQxk = kxk for
any vector x

This means that the Lie-Euler method preserves kmk, i.e.
kmnk = km0k for all n.
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Stepping it up to Runge–Kutta with two stages

Modified Euler

Y1 = yn,

Y2 = yn + hf (Y1),

yn+1 = yn +
h
2 (f (Y1) + f (Y2))

Geometric interpretation
is ambiguous.
Details on next slide
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Geometric interpretation of modified Euler method

Step 1.

Solve ż = f (yn), z(0) = yn.

Set Y2 = z(h). Then

Interpretation 1

Evaluate z̄ := z(h/2) from step 1

Solve ẇ = f (Y2), w(0) = z̄

Set yn+1 = w(h/2)

FRB version

mn+1 = e
h
2A2e

h
2A1mn

Interpretation 2

Let f̄ = 1
2 (f (Y1) + f (Y2))

Solve ẇ = f̄ , w(0) = ȳn

Set yn+1 = w(h)

FRB version

mn+1 = e
h
2 (A1+A2)mn

Here
A1 = A(mn), A2 = A(ehA1mn)
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Explicit Runge–Kutta methods

Runge–Kutta standard

Y1 = yn

Yi = yn + h
i�1X

j=1

aij f (Yj),

yn+1 = yn + h
sX

i=1

bi f (Yi )

Runge–Kutta Lie (naive)

M1 = mn

Mi = exp
�
h

i�1X

j=1

aijA(Mj)
�
mn,

mn+1 = exp
�
h

sX

i=1

biA(Mi )
�
mn

Alternatively, in the Runge–Kutta Lie, we could have defined

Mi = ehai,i�1Mi�1 · ehai,i�2Mi�2 · · · ehai,1M1 mn

mn+1 = ehbsMs · ehbs�1Mi�2 · · · ehb1M1 mn

Hybrids between the two RK-Lie methods can also be considered.
For the first type, no method of order higher than p = 2 can be achieved.
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Examples of Lie group integrators for ṁ = A(m) ·m

First order methods with one stage

mn+1 = ehA(mn) ·mn (Lie-Euler)

Explicit methods with two stages. Write M1 = mn, Ai := A(Mi )

mn+1 = eh(b1A1+hb2A2)mn, M2 = eha21A1mn

or
mn+1 = ehb2A2ehb1A1mn, M2 = eha21A1mn

Second order whenever b1 + b2 = 1 and b2a21 = 1
2 .

Important fact: eA+B
6= eAeB in general for matrices A and B .
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A method of order 4 (of the first type) RKMK method

We define: Matrix commutator [A,B] = AB � BA for matrices A and B .

A1 = hA(mn),

A2 = hA(exp( 1
2A1) ·mn),

A3 = hA(exp( 1
2A2 �

1
8 [A1,A2]) ·mn),

A4 = hA(exp(A3) ·mn),

mn+1 = exp( 1
6 (A1 + 2A2 + 2A3 + A4 �

1
2 [A1,A4])) ·mn.

This is a generalisation of the “classical” Runge–Kutta method of order 4
found in all the text books.
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A method of order 4 (of the second type) Commutator-free method

Commutator-free Lie group method

M1 = mn

M2 = exp( 1
2hA1) ·mn

M3 = exp( 1
2hA2) ·mn

M4 = exp(hA3 �
1
2hA1) ·M2

mn+ 1
2
= exp( 1

12h(3A1 + 2A2 + 2A3 � A4)) ·mn

mn+1 = exp( 1
12h(�A1 + 2A2 + 2A3 + 3A4)) ·mn+ 1

2

where Ai = f (Mi ).
Note: one exponential is saved in computing M4 by making use of M2.
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Summary and remarks so far

We have consider one simple model problem of the type
ṁ = A(m) ·m where A is a matrix and m is a vector.

We have naively generalised an interpretation of standard
Runge–Kutta scheme, breaking them down into building blocks that
consist of solving simpler differential equations exactly.

We get away with this for methods of convergence order p  2.

For p > 2 we need to either include extra corrections (commutators)
or compose together building blocks to get the right order

Several open questions remain.
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II.3 Manifolds
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Manifolds

A manifold is a set M with a collection of charts (U,') such that

U ⇢ M

' : U ! '(U) ⇢ Rn is a bijective map

'(m) = (x1, . . . , xn) are called coordinates of the point m,
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Compatible charts

(U,'), (U 0,'0) overlapping:

V = '(U \ U 0) ⇢ Rn,

V 0 = '0(U \ U 0) ⇢ Rn.

(U,') and (U 0,'0) compatible if

'0
� '�1 :V ! V 0

' � ('0)�1 :V 0
! V

are C1.

Differentiable manifold

1 There is a collection of charts such that each m 2 M is a

member of at least one chart

2 M is a union of compatible charts
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Tangent space

Two (for us) useful definitions

1 By curves

2 By derivations

�(t), t 2 C 1(�", ")
vm = �̇(0), tangent
vector at m = �(0).

Curve

T
Derivation acting on function germs. A tangent vector vm can be seen
as a linear operator acting on functions on M

vm[↵f + �g ] = ↵vm[f ] + �vm[g ] (linearity)

vm[fg ] = vm[f ]g(m) + f (m)vm[g ] (derivation property)

Interpretation: vm[f ] is the directional derivative of f in the direction of
vm at m. In coordinates vm = v ·r.
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Examples – Manifolds and their tangent spaces

The 2-sphere S2.
Vectors of unit norm,

{x 2 R3 : x2
1 + x2

2 + x2
3 = 1}.

Curve �(t) must satisfy

3X

i=1

�i (t)
2 = 1

Differentiating wrt. t,

3X

i=1

�̇i (t)�i (t) = 0

Suppose �(0) = r and �̇(0) = v ,

TrS
2 = {v 2 R3 : v ? r}

The Euclidean space Rn.

Tangent space at x : TxRn
' Rn.

Curve x + tv for any v 2 Rn.

Orthogonal n ⇥ n-matrices O(n).

Manifold contains identity matrix I .
Curve �(t) through I , i.e.

�(0) = I , �̇(0) = v .

Orthogonality: �(t)T�(t) = I 8t

d
dt

�(t)T�(t) = �̇(t)T�(t) + �(t)T �̇(t)

t = 0 ) vT + v = 0

TIO(n) = {v 2 Rn⇥n : vT = �v}
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Dual spaces and the cotangent space

Linear space V , dual space V ⇤

· For f 2 V ⇤, u, v 2 V ,

f (↵u+�v) = ↵f (u)+�f (v)

↵,� 2 R

· Duality pairing, write

f (v) = hf , vi

· Basis for V , e1, . . . , ed

· Dual basis "1, . . . , "d
"i (ej) = h"i , eji

Cotangent space

· TmM is a linear space

· T ⇤
mM its dual

· v 2 TmM velocity vector

· p 2 T ⇤
mM momentum

· Kinetic energy

T =
1
2
hp, vi
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Tangent and cotangent bundles

Smoothly glue together the (co)tangent spaces at each m

TM =
[

m2M

TmM, T ⇤M =
[

m2M

T ⇤
mM

Note

These bundles are not (generally) linear spaces, but they are
manifolds in their own right.

Local coordinate charts are induced on TM from M.

� : M � U ! �(U) �! �0 : TM � TU ! (U ⇥ V )

Extra structure is needed to connect/compare v 2 TmM and
v 0

2 Tm0M.

If it holds that e.g TM = M ⇥ V for some linear space V
then the manifold is called trivial

29 / 58



Maps and tangent maps

Let M and N be manifolds and  : M ! N a map.

The tangent map T m : TmM ! T (m)N is defined via curves.

Let n =  (m).

�(t) 2 M, �(0) = m, �̇(0) = v

The curve �(t) =  (�(t)) 2 N satisfies �(0) = n and

w := �̇(0) 2 TnN.

w := T m(v)

30 / 58



Tangent bundle maps

One can extend the definition to all of TM, T : TM ! TN. Then only
linear when restricted to fibers TmM:

Exercise. Local coordinates (x1, . . . , xm) on M and similarly,
(y1, . . . , yn) on N. Thus, y =  (x) can be expressed as

2

64
y1
...
yn

3

75 =

2

64
 1(x1, . . . , xm)

...
 n(x1, . . . , xm)

3

75

Show, by using the definition of the tangent map that T is just
the Jacobian matrix of  , i.e.

T =

2

64

@ 1
@x1

· · ·
@ 1
@xm

...
...

...
@ n
@x1

· · ·
@ n
@xm

3

75

31 / 58



Vector fields on manifolds

A vector field on M is a map

X :M ! TM s.t.

8m :m 7! X |m 2 TmM

source Wikipedia

A vector field on M is called a section of TM, write X 2 X (M) or

X 2 �(TM). We can also have sections on T ⇤M. They are called

differential one-forms.

Example. If f is a function on M, f : M ! R then Tf :
TM ! TR. We have TR ⌘ R⇥ R, but often omit the first

factor.

df |m : TmM ! R, df 2 �(T ⇤M)
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Vector fields as derivations of functions

· f 2 F(M) := C1(M)

· Vector field X 2 X (M)

· X : F(M) ! F(M) as

X [f ](m) = X |m[f ]

In coordinates x1, . . . , xd

X =
dX

i=1

Xi (x)@xi

Duality of vector fields and differential forms

If X 2 �(TM) and ! 2 �(T ⇤M) then we have a point-wise pairing

h!,X i 2 F(M)

For one-forms df one has

df (X ) = hdf ,X i = X [f ]
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Flow of a vector field

Flow

X 2 X : vector field on M.
Consider the ODE

ẋ(t) = X (x(t)), x(0) = x .

Solution x(t), t 2 (↵x ,�x) 3 0.
Write

x(t) = exp(tX )x

exp(X ) : M ! M is called the
flow of X .

Domain

exp only defined on open
subset

exp(tX ) : Dt ! M

Dt = {x 2 M : t 2 (↵x ,�x)}

[

t>0

Dt = M
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Relatedness, push-forward and pull-back

Relatedness

Let  : M ! N be a differentiable map and let X and Y be vector fields
on M and N respectively. If

T � X = Y � 

then we say that X is  -related to Y .

Push-forward. If  is also invertible we can, for any vector field
X 2 X (M) define

Y =  ⇤X = T � X � �1
2 X (N)

Pull-back.  ⇤ : X (N) ! X (N)

X =  ⇤Y = (T )�1
� Y � 

Note. If y(t) =  (x(t)), ẋ = X (x), ẏ = Y (y), then X is  -related to X .
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Push-forward and pull-back apply also to other objects

Functions. F : N ! R

 ⇤F = F � i.e.  ⇤F (x) = F ( (x))

Differential one-forms. Let ! be a one-form on N, X 2 X (M).

h ⇤!,X i = h!,T (X )i
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Lie-Jacobi bracket of vector fields

Let X and Y be vector fields on M. They act as derivations on functions
f 2 F(M). We define the vector field

Z = [X ,Y ] 2 X (M)

as the derivation

Z [f ] = X [Y [f ]]� Y [X [f ]] for every f 2 F(M)

In coordinates (x1, . . . , xd)

Z i =
dX

j=1

✓
Xj

@Y i

@xj
� Yj

@X i

@xj

◆

Pushforward homomorphism
Let  : M ! N
X ,Y 2 X (M). Then

 ⇤[X ,Y ] = [ ⇤X , ⇤Y ]

37 / 58



Frames of vector fields

A frame is a set of vector fields on a manifold M, say E1, . . . ,Ed such
that for each m 2 M

span(E1|m, . . . ,Ed |m} = TmM

Clearly d � dimM. Sometimes, frames are defined only locally, on a
subset U ⇢ M and one requires d = dimM.
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