THREAD - NWT6 - Part II: Lie group integrators

Brynjulf Owren

Department of Mathematical Sciences, NTNU, Trondheim, Norway

February 5, 8, 9 - 2021

About the lectures

- We aim at explaining the fundamentals of Lie group integrators
- For material which is more "background type" we use slides (made available to all participants)
- For material at the core of the topic we may write live on iPad
- There will be exercises every afternoon to practice the understanding of the material
- Supplementary material will be provided as documents

Content

- 1 Introduction, motivation and historical remarks
- 2 A primer on Lie group methods
- **3** Manifolds
- 4 Lie groups and Lie algebras
- **5** Lie group integrators

II.1 Introduction, motivation and historical remarks

Traditional view on solving ordinary differential equations (ODEs)

Traditionally one considered initial value problems for ODEs in a black box sense

$$\dot{y}(t) = f(t, y(t)), \quad y(0) = y_0 \ f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

- No more detail or structure was assumed on f(t, y)
- Later one found reason to separate "stiff" and "nonstiff"
- Then came DAE problems, mix between ODEs and algebraic equations
- Geometric or structure preserving methods became important in the numerical analysis community from ca 1990.
- Lie group integrators is a subfield of Geometric integration that was studied systematically from the early 1990's.

Lie group integrators – first view – Example 1

Consider as an example the Euler equations for the free rigid body (angular momentum equations)

$$\dot{m}(t) = m(t) \times \mathbb{I}^{-1} m(t), \quad \mathbb{I}$$
 inertia tensor

Then
$$\frac{d}{dt} \|m(t)\|^2 = \langle m(t), m(t) \times \mathbb{I}^{-1} m(t) \rangle = 0$$

Constant ||m(t)|| is associated to the sphere as a submanifold of \mathbb{R}^3 .

Evolution of the solution should effectively be by rotations

The space of rotations is a Lie group

Lie group integrators – First view – Example 2

Stiefel manifold

- Let $M_{d,k}$ be the manifold of $d \times k$ -matrices with orthonormal columns.
- and $\mathfrak{so}(d)$ the skew-symmetric $d \times d$ -matrices, $A^T = -A$.

Consider matrix-differential equation

$$\dot{Y} = A(Y) \cdot Y, \quad A: M_{d,k} \to \mathfrak{so}(d)$$

Invariant: $I(Y) = Y^T Y$. Applications

- Computation of Lyapunov exponents
- Multi-variate data analysis
- Image/signal processing

If numerical solution $Y_n \mapsto Y_{n+1}$ can be evolved by $Y_{n+1} = Q_n Y_n$ and Q_n is an orthogonal $d \times d$ matrix, then $I(Y_{n+1}) = I(Y_n)$.

Lie group integrators - Second view - Example 3

Northern light

Equation for particle movement (Carl Størmer)

$$\ddot{\mathbf{x}} = \dot{\mathbf{x}} \times \mathbf{d}(\mathbf{x})$$

x particle position, d(x) earth magnetic field at x.

Spiralling movement not easily followed by straight lines

Lie group integrators - Second view - Example 4

Solving PDEs by means of "simpler" PDEs

We take as example a non-homogeneous heat equation

$$u_t = \nu(\mathbf{x})\Delta u$$

Fast solvers are available for the equation

$$u_t = \bar{\nu} \Delta u + f(\mathbf{x}).$$

The first problem can be approximated locally by the second, e.g. set

$$\bar{\nu} = \frac{\int \nu(\mathbf{x}) \, \mathrm{d}\mathbf{x}}{\int \mathrm{d}\mathbf{x}}$$

for a local known approximation $u^*(\cdot, t^*)$ let

$$f(\mathbf{x}) = (\nu(\mathbf{x}) - \bar{\nu}) \Delta u^*$$

Solving the simple PDE is an action by a Lie group

Summarising

- When the solution is known to be restricted to some manifold
- When it is useful to be able to move along curves rather than straight line segments

The prototypical case

"Lie group equation"

$$\dot{y} = A(y) \cdot y$$
, A is a matrix.

Given y_n , we could approximate this equation locally by the problem

$$\dot{y} = A(y_n) \cdot y \quad \Rightarrow y_{n+1} = e^{hA(y_n)} \cdot y_n$$

This is called the Lie-Euler method.

Many questions remain to be answered

- 1 What is the form of A(y) and y?
- 2 Are these all the problems we can solve?
- 3 What does it have to do with Lie groups and manifolds?
- 4 How can we get higher order of convergence?

II.2 A primer on Lie group methods

A new look on the Explicit Euler method

$$\dot{y} = f(y),$$

$$y_{n+1} = y_n + hf(y_n)$$

A new interpretation: Solve exactly the local problem

$$\dot{z} = f(y_n), \ z(0) = y_n$$

Set
$$y_{n+1} = z(h)$$
, $t_{n+1} = t_n + h$.

Free rigid body

We consider the Euler free rigid body

$$\dot{m} = m \times \mathbb{I}^{-1}m$$
, $\mathbb{I} = \text{diag}(I_1, I_2, I_3)$

We can rewrite this as

$$\begin{pmatrix} \dot{m}_1 \\ \dot{m}_2 \\ \dot{m}_3 \end{pmatrix} = \begin{pmatrix} 0 & \frac{m_3}{l_3} & -\frac{m_2}{l_2} \\ -\frac{m_3}{l_3} & 0 & \frac{m_1}{l_1} \\ \frac{m_2}{l_2} & -\frac{m_1}{l_1} & 0 \end{pmatrix} \cdot \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = A(m) \cdot m \quad (*)$$

Now ||m(t)|| = ||m(0)|| for all t since A(m) is skew-symmetric and

$$\frac{1}{2}\frac{d}{dt}(m^Tm) = m^T\dot{m} = m^TA(m)m = 0$$

Inspired by the "New look" we could replace (*) by

$$\dot{z} = A(m_n)z, \quad z(0) = m_n$$

Solution: $z(t) = e^{tA(m_n)}m_n$ so $m_{n+1} = e^{hA(m_n)}m_n$ (Lie-Euler)

14/58

Remarks on Lie-Euler

$$m_{n+1} = e^{hA(m_n)} \cdot m_n$$

- The exponential here is the matrix exponential
- When a matrix A is skew-symmetric then $Q = e^A$ is orthogonal, $Q^T Q = I$
- Orthogonal matrices preserve the Euclidean norm $\|Qx\| = \|x\|$ for any vector x
- This means that the Lie-Euler method preserves ||m||, i.e. $||m_n|| = ||m_0||$ for all n.

Stepping it up to Runge-Kutta with two stages

Modified Euler

$$Y_1 = y_n,$$

 $Y_2 = y_n + hf(Y_1),$
 $y_{n+1} = y_n + \frac{h}{2}(f(Y_1) + f(Y_2))$

Geometric interpretation is ambiguous.
Details on next slide

Geometric interpretation of modified Euler method

Step 1.

Solve
$$\dot{z} = f(y_n), \ z(0) = y_n$$
.

Set
$$Y_2 = z(h)$$
. Then

Interpretation 1

Evaluate $\bar{z} := z(h/2)$ from step 1

Solve $\dot{w} = f(Y_2), \ w(0) = \bar{z}$

Set $y_{n+1} = w(h/2)$

FRB version

$$m_{n+1} = \mathrm{e}^{\frac{h}{2}A_2} \mathrm{e}^{\frac{h}{2}A_1} m_n$$

Interpretation 2

Let $\bar{f} = \frac{1}{2}(f(Y_1) + f(Y_2))$

Solve $\dot{w} = \bar{f}$, $w(0) = \bar{y_n}$

Set $y_{n+1} = w(h)$

FRB version

$$m_{n+1} = e^{\frac{h}{2}(A_1 + A_2)} m_n$$

Here

$$A_1 = A(m_n), \qquad A_2 = A(e^{hA_1}m_n)$$

Explicit Runge-Kutta methods

Runge-Kutta standard

$$Y_1 = y_n$$

$$Y_i = y_n + h \sum_{j=1}^{i-1} a_{ij} f(Y_j),$$

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i f(Y_i)$$

Runge-Kutta Lie (naive)

$$M_1 = m_n$$

$$M_i = \exp\left(h\sum_{j=1}^{i-1} a_{ij}A(M_j)\right)m_n,$$

$$m_{n+1} = \exp\left(h\sum_{i=1}^s b_i A(M_i)\right) m_n$$

Alternatively, in the Runge-Kutta Lie, we could have defined

$$M_{i} = e^{ha_{i,i-1}M_{i-1}} \cdot e^{ha_{i,i-2}M_{i-2}} \cdots e^{ha_{i,1}M_{1}} m_{n}$$

$$m_{n+1} = e^{hb_{s}M_{s}} \cdot e^{hb_{s-1}M_{i-2}} \cdots e^{hb_{1}M_{1}} m_{n}$$

Hybrids between the two RK-Lie methods can also be considered. For the first type, no method of order higher than p = 2 can be achieved.

Examples of Lie group integrators for $\dot{m} = A(m) \cdot m$

First order methods with one stage

$$m_{n+1} = e^{hA(m_n)} \cdot m_n$$
 (Lie-Euler)

Explicit methods with two stages. Write $M_1 = m_n$, $A_i := A(M_i)$

$$m_{n+1} = e^{h(b_1 A_1 + h b_2 A_2)} m_n, \quad M_2 = e^{h a_{21} A_1} m_n$$

or

$$m_{n+1} = e^{hb_2A_2}e^{hb_1A_1}m_n, \quad M_2 = e^{ha_{21}A_1}m_n$$

Second order whenever $b_1 + b_2 = 1$ and $b_2 a_{21} = \frac{1}{2}$.

Important fact: $e^{A+B} \neq e^A e^B$ in general for matrices A and B.

A method of order 4 (of the first type) RKMK method

We define: Matrix commutator [A, B] = AB - BA for matrices A and B.

$$A_1 = hA(m_n),$$
 $A_2 = hA(\exp(\frac{1}{2}A_1) \cdot m_n),$
 $A_3 = hA(\exp(\frac{1}{2}A_2 - \frac{1}{8}[A_1, A_2]) \cdot m_n),$
 $A_4 = hA(\exp(A_3) \cdot m_n),$
 $m_{n+1} = \exp(\frac{1}{6}(A_1 + 2A_2 + 2A_3 + A_4 - \frac{1}{2}[A_1, A_4])) \cdot m_n.$

This is a generalisation of the "classical" Runge–Kutta method of order 4 found in all the text books.

Commutator-free Lie group method

$$M_{1} = m_{n}$$

$$M_{2} = \exp(\frac{1}{2}hA_{1}) \cdot m_{n}$$

$$M_{3} = \exp(\frac{1}{2}hA_{2}) \cdot m_{n}$$

$$M_{4} = \exp(hA_{3} - \frac{1}{2}hA_{1}) \cdot M_{2}$$

$$m_{n+\frac{1}{2}} = \exp(\frac{1}{12}h(3A_{1} + 2A_{2} + 2A_{3} - A_{4})) \cdot m_{n}$$

$$m_{n+1} = \exp(\frac{1}{12}h(-A_{1} + 2A_{2} + 2A_{3} + 3A_{4})) \cdot m_{n+\frac{1}{2}}$$

where $A_i = f(M_i)$.

Note: one exponential is saved in computing M_4 by making use of M_2 .

Summary and remarks so far

- We have consider one simple model problem of the type $\dot{m} = A(m) \cdot m$ where A is a matrix and m is a vector.
- We have naively generalised an interpretation of standard Runge-Kutta scheme, breaking them down into building blocks that consist of solving simpler differential equations exactly.
- We get away with this for methods of convergence order $p \leq 2$.
- For p > 2 we need to either include extra corrections (commutators) or compose together building blocks to get the right order

Several open questions remain.

II.3 Manifolds

Manifolds

A manifold is a set M with a collection of charts (U, φ) such that

- $U \subset M$
- lacksquare $\varphi:U
 ightarrow arphi(U)\subset \mathbb{R}^n$ is a bijective map
- $\varphi(m) = (x_1, \dots, x_n)$ are called coordinates of the point m,

Compatible charts

 (U,φ) , (U',φ') overlapping:

$$V = \varphi(U \cap U') \subset \mathbb{R}^n,$$

$$V' = \varphi'(U \cap U') \subset \mathbb{R}^n.$$

 (U,φ) and (U',φ') compatible if

$$\varphi' \circ \varphi^{-1} : V \to V'$$
$$\varphi \circ (\varphi')^{-1} : V' \to V$$

are C^{∞} .

Differentiable manifold

- 1 There is a collection of charts such that each $m \in M$ is a member of at least one chart
- \bigcirc *M* is a union of compatible charts

Tangent space

Two (for us) useful definitions

- By curves
- 2 By derivations

$$\gamma(t), t \in C^1(-\varepsilon, \varepsilon)$$

 $v_m = \dot{\gamma}(0), \text{ tangent}$
vector at $m = \gamma(0)$.

Derivation acting on function germs. A tangent vector v_m can be seen as a linear operator acting on functions on M

- $v_m[\alpha f + \beta g] = \alpha v_m[f] + \beta v_m[g]$ (linearity)
- $v_m[fg] = v_m[f]g(m) + f(m)v_m[g]$ (derivation property)

Interpretation: $v_m[f]$ is the directional derivative of f in the direction of v_m at m. In coordinates $v_m = \mathbf{v} \cdot \nabla$.

Examples - Manifolds and their tangent spaces

The 2-sphere S^2 .

Vectors of unit norm,

$${x \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1}.$$

Curve $\gamma(t)$ must satisfy

$$\sum_{i=1}^3 \gamma_i(t)^2 = 1$$

Differentiating wrt. t,

$$\sum_{i=1}^{3} \dot{\gamma}_i(t) \gamma_i(t) = 0$$

Suppose $\gamma(0) = r$ and $\dot{\gamma}(0) = v$,

$$T_r S^2 = \{ v \in \mathbb{R}^3 : v \perp r \}$$

The Euclidean space \mathbb{R}^n .

Tangent space at x: $T_x \mathbb{R}^n \simeq \mathbb{R}^n$. Curve x + tv for any $v \in \mathbb{R}^n$.

Orthogonal $n \times n$ -matrices $\mathcal{O}(n)$.

Manifold contains identity matrix I. Curve $\gamma(t)$ through I, i.e.

$$\gamma(0)=I, \quad \dot{\gamma}(0)=v.$$

Orthogonality: $\gamma(t)^T \gamma(t) = I \ \forall t$

$$\frac{\mathrm{d}}{\mathrm{d}t}\gamma(t)^{\mathsf{T}}\gamma(t) = \dot{\gamma}(t)^{\mathsf{T}}\gamma(t) + \gamma(t)^{\mathsf{T}}\dot{\gamma}(t)$$
$$t = 0 \implies v^{\mathsf{T}} + v = 0$$

$$T_I \mathcal{O}(n) = \{ v \in \mathbb{R}^{n \times n} : v^T = -v \}$$

Dual spaces and the cotangent space

Linear space V, dual space V^*

For $f \in V^*$, $u, v \in V$,

$$f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)$$

$$\alpha, \beta \in \mathbb{R}$$

· Duality pairing, write

$$f(v) = \langle f, v \rangle$$

- · Basis for V, e_1, \ldots, e_d
- · Dual basis $\varepsilon_1, \dots, \varepsilon_d$ $\varepsilon_i(e_i) = \langle \varepsilon_i, e_i \rangle$

Cotangent space

- · $T_m M$ is a linear space
- T_m^*M its dual
- $\cdot \ v \in T_m M$ velocity vector
- $\cdot p \in T_m^*M$ momentum
- · Kinetic energy

$$T=rac{1}{2}\langle p,v
angle$$

Tangent and cotangent bundles

Smoothly glue together the (co)tangent spaces at each m

$$TM = \bigcup_{m \in M} T_m M, \qquad T^*M = \bigcup_{m \in M} T_m^* M$$

Note

- These bundles are not (generally) linear spaces, but they are manifolds in their own right.
- Local coordinate charts are induced on *TM* from *M*.

$$\phi: M \supset U \rightarrow \phi(U) \longrightarrow \phi': TM \supset TU \rightarrow (U \times V)$$

- Extra structure is needed to connect/compare $v \in T_m M$ and $v' \in T_{m'} M$.
- If it holds that e.g $TM = M \times V$ for some linear space V then the manifold is called trivial

29 / 58

Maps and tangent maps

Let M and N be manifolds and $\Psi: M \to N$ a map. The tangent map $T\Psi_m: T_mM \to T_{\Psi(m)}N$ is defined via curves. Let $n = \Psi(m)$.

$$\gamma(t) \in M$$
, $\gamma(0) = m$, $\dot{\gamma}(0) = v$

The curve $\sigma(t) = \Psi(\gamma(t)) \in N$ satisfies $\sigma(0) = n$ and $w := \dot{\sigma}(0) \in T_n N$.

$$w := T\Psi_m(v)$$

Tangent bundle maps

One can extend the definition to all of TM, $T\Psi:TM\to TN$. Then only linear when restricted to fibers T_mM :

Exercise. Local coordinates (x_1, \ldots, x_m) on M and similarly, (y_1, \ldots, y_n) on N. Thus, $y = \Psi(x)$ can be expressed as

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \Psi_1(x_1, \dots, x_m) \\ \vdots \\ \Psi_n(x_1, \dots, x_m) \end{bmatrix}$$

Show, by using the definition of the tangent map that $T\Psi$ is just the Jacobian matrix of Ψ , i.e.

$$T\Psi = \begin{bmatrix} \frac{\partial \Psi_1}{\partial x_1} & \cdots & \frac{\partial \Psi_1}{\partial x_m} \\ \vdots & \vdots & \vdots \\ \frac{\partial \Psi_n}{\partial x_1} & \cdots & \frac{\partial \Psi_n}{\partial x_m} \end{bmatrix}$$

Vector fields on manifolds

A vector field on M is a map

 $X:M\to TM$ s.t.

 $\forall m : m \mapsto X|_m \in T_m M$

A vector field on M is called a section of TM, write $X \in \mathcal{X}(M)$ or $X \in \Gamma(TM)$. We can also have sections on T^*M . They are called differential one-forms.

Example. If f is a function on M, $f:M\to\mathbb{R}$ then $Tf:TM\to T\mathbb{R}$. We have $T\mathbb{R}\equiv\mathbb{R}\times\mathbb{R}$, but often omit the first factor.

$$df|_m: T_mM \to \mathbb{R}, \quad df \in \Gamma(T^*M)$$

Vector fields as derivations of functions

- $f \in \mathcal{F}(M) := C^{\infty}(M)$ $\cdot \text{ Vector field } X \in \mathcal{X}(M)$ $\cdot X : \mathcal{F}(M) \to \mathcal{F}(M) \text{ as}$ $X[f](m) = X|_{m}[f]$

$$X[f](m) = X|_m[f]$$

In coordinates x_1, \ldots, x_d

$$X = \sum_{i=1}^{d} X_i(x) \partial x_i$$

Duality of vector fields and differential forms

If $X \in \Gamma(TM)$ and $\omega \in \Gamma(T^*M)$ then we have a point-wise pairing

$$\langle \omega, X \rangle \in \mathcal{F}(M)$$

For one-forms *df* one has

$$df(X) = \langle df, X \rangle = X[f]$$

Flow of a vector field

Flow

 $X \in \mathcal{X}$: vector field on M. Consider the ODE

$$\dot{x}(t) = X(x(t)), \ x(0) = x.$$

Solution $x(t), t \in (\alpha_x, \beta_x) \ni 0$. Write

$$x(t) = \exp(tX)x$$

 $\exp(X): M \to M$ is called the flow of X.

Domain

exp only defined on open
subset

$$\exp(tX): \mathcal{D}_t \to M$$

$$\mathcal{D}_t = \{ x \in M : t \in (\alpha_x, \beta_x) \}$$

$$\bigcup_{t>0} \mathcal{D}_t = M$$

Relatedness, push-forward and pull-back

Relatedness

Let $\Psi: M \to N$ be a differentiable map and let X and Y be vector fields on M and N respectively. If

$$T\Psi \circ X = Y \circ \Psi$$

then we say that X is Ψ -related to Y.

Push-forward. If Ψ is also invertible we can, for any vector field $X \in \mathcal{X}(M)$ define

$$Y = \Psi_* X = T \Psi \circ X \circ \Psi^{-1} \in \mathcal{X}(N)$$

Pull-back. $\Psi^*: \mathcal{X}(N) \to \mathcal{X}(N)$

$$X = \Psi^* Y = (T\Psi)^{-1} \circ Y \circ \Psi$$

Note. If $y(t) = \Psi(x(t))$, $\dot{x} = X(x)$, $\dot{y} = Y(y)$, then X is Ψ -related to X.

Push-forward and pull-back apply also to other objects

Functions. $F: \mathbb{N} \to \mathbb{R}$

$$\Psi^*F = F \circ \Psi$$
 i.e. $\Psi^*F(x) = F(\Psi(x))$

Differential one-forms. Let ω be a one-form on N, $X \in \mathcal{X}(M)$.

$$\langle \Psi^* \omega, X \rangle = \langle \omega, T \Psi(X) \rangle$$

Lie-Jacobi bracket of vector fields

Let X and Y be vector fields on M. They act as derivations on functions $f \in \mathcal{F}(M)$. We define the vector field

$$Z = [X, Y] \in \mathcal{X}(M)$$

as the derivation

$$Z[f] = X[Y[f]] - Y[X[f]]$$
 for every $f \in \mathcal{F}(M)$

In coordinates (x_1, \ldots, x_d)

$$Z^{i} = \sum_{j=1}^{d} \left(X_{j} \frac{\partial Y^{i}}{\partial x_{j}} - Y_{j} \frac{\partial X^{i}}{\partial x_{j}} \right)$$

Pushforward homomorphism

Let $\Psi: M \to N$ $X, Y \in \mathcal{X}(M)$. Then

$$\Psi_*[X,Y] = [\Psi_*X,\Psi_*Y]$$

Frames of vector fields

A frame is a set of vector fields on a manifold M, say E_1, \ldots, E_d such that for each $m \in M$

$$span(E_1|_m, \ldots, E_d|_m) = T_m M$$

Clearly $d \ge \dim M$. Sometimes, frames are defined only locally, on a subset $U \subset M$ and one requires $d = \dim M$.