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About the lectures

m We aim at explaining the fundamentals of Lie group integrators

m For material which is more "background type" we use slides
(made available to all participants)

m For material at the core of the topic we may write live on iPad

m There will be exercises every afternoon to practice the
understanding of the material

m Supplementary material will be provided as documents
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II.1 Introduction, motivation and
historical remarks
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Traditional view on solving ordinary differential equations (ODEs)

Traditionally one considered initial value problems for ODEs in a black
box sense

y(t) = f(t,y(t)), y(0)=y f:RxR" = R"

m No more detail or structure was assumed on f(t, y)
m Later one found reason to separate “stiff’ and “nonstiff”

m Then came DAE problems, mix between ODEs and algebraic
equations

m Geometric or structure preserving methods became important in the
numerical analysis community from ca 1990.

m Lie group integrators is a subfield of Geometric integration that was
studied systematically from the early 1990’s.
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Lie group integrators — first view — Example 1

Consider as an example the Euler equations for the free rigid body
(angular momentum equations)

m(t) = m(t) x I"'m(t), 1 inertia tensor

Then <||m(t)||> = (m(t), m(t) x I"*m(t)) =0

Constant ||m(t)|| is associated to the the sphere as a submanifold
of R3.

Evolution of the solution should effectively be by rotations

The space of rotations is a Lie group
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Lie group integrators — First view — Example 2

Stiefel manifold

m Let My, be the manifold of d x k-matrices with orthonormal
columns.

m and so(d) the skew-symmetric d x d-matrices, AT = —A.
Consider matrix-differential equation
Y=AY)-Y, A:Mgi— so(d)
Invariant: /(Y) =YY,
Applications
m Computation of Lyapunov exponents
m Multi-variate data analysis

m Image/signal processing

If numerical solution Y, — Y1 can be evolved by Y,.1 = Q,Y,
and Q, is an orthogonal d x d matrix, then /(Y,.1) = I(Y}).
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Lie group integrators - Second view - Example 3

Northern light

Equation for particle movement (Carl Stgrmer)
X = x x d(x)

x particle position, d(x) earth magnetic field at x.

Spiralling movement not easily followed by straight lines
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Lie group integrators - Second view - Example 4

Solving PDEs by means of “simpler’ PDEs
We take as example a non-homogeneous heat equation

uy = v(x)Au
Fast solvers are available for the equation
ur = vAu + f(x).
The first problem can be approximated locally by the second, e.g. set

[ v(x) dx
[ dx

V=

for a local known approximation u* (-, t*) let

f(x) = (v(x) — 7)Au*

Solving the simple PDE is an action by a Lie group
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Summarising

m When the solution is known to £ ] e 2
be restricted to some manifold ' )

m When it is useful to be able to
move along curves rather than
straight line segments

/S
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The prototypical case

“Lie group equation™’
y=A(y) -y, Aisa matrix.

Given y,, we could approximate this equation locally by the problem

Vy=AWn) -y = ynp1 =eM00 .y

y
This is called the Lie-Euler method. J

Many questions remain to be answered
® What is the form of A(y) and y?
® Are these all the problems we can solve?
® What does it have to do with Lie groups and manifolds?

® How can we get higher order of convergence?
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1.2 A primer on Lie group methods
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A new look on the Explicit Euler method
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A new interpretation: Solve ://://://://&ﬁ\m
exactly the local problem &/JJ&/:K&\
AAAg“ﬁgj
2= f(yn), 2(0) =y, gggg&777
Set yni1 = z(h), the1 = t, + h. ™~ AN
Yn+1 () +1 QXXQK;;
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Free rigid body

We consider the Euler free rigid body
m=mxI"tm, 1=diag(h,bh,hk)

We can rewrite this as

n'11 O T—: —’7—22 mq
m | =| -2 0 7 | mp | =A(m)-m (%)
n'13 ’7—22 _f7l7_11 0 ms3
Now ||m(t)|| = ||m(0)]| for all t since A(m) is skew-symmetric and
1d
§E(me) =m'm=m"A(m)m=0

Inspired by the “New look” we could replace (x) by
z=A(m,)z, z(0)= m,

Solution: z(t) = eAlm)m, so mpy1 = eMm)m, (Lie-Euler)
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Remarks on Lie-Euler

Mpy1 = ehA(m,,) " Mp

m The exponential here is the matrix exponential

m When a matrix A is skew-symmetric then Q = ¢ is orthogonal,
RTQ=1

m Orthogonal matrices preserve the Euclidean norm ||Qx|| = ||x]| for
any vector x

m This means that the Lie-Euler method preserves ||m|, i.e.

|m,|| = [|mo]| for all n.
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Stepping it up to Runge—Kutta with two stages

Modified Euler

A o
&/JJ&/QS
&/JJJ&,&\

Aiﬁégﬁj
g$§gg\77
AN -A&.77
NN
Allgx77

Yl = Yn,
Y2 = V¥n —+ hf(Yl),

Geometric interpretation

is ambiguous.
Yor1 = Yo+ 2(F(Y1) 4+ f(Y2)) | Details on next slide
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Geometric interpretation of modified Euler method

Step 1.
Solve z = f(y,), z(0) = y,.
Set Y, = z(h). Then

Interpretation 1 Interpretation 2

Evaluate Z := z(h/2) fromstep 1 Let f = 1(f(Y1) + f(Y2))

Solve w = f(Y2), w(0) =2z Solve w = f, w(0) = y,

Set yn11 = w(h/2) Set y,11 = w(h)

FRB version FRB version

ey — 05h2 3 A m ey — eg(A1+Az)mn |
Here

AL = A(m,), Ay = A(e™m,)
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Explicit Runge—Kutta methods

Runge—Kutta standard Runge—Kutta Lie (naive)
Y1 = Yn My = m,
i—1 i—1
Yi:)/n+hzaijf(yj)a M; = exp (hZaUA(MJ))mm
j=1 j=1
Vil = Yn + hz bif(Y;) Mpi1 = exp (hz b,-A(M,-)) mp,
i=1 i=1

Alternatively, in the Runge—Kutta Lie, we could have defined

M; = ehai,i—1/\/7i—1 . ehai,i—z/\/’i—z . ehai,1M1 m,

My = MbsMs . ghboaMiz .

Hybrids between the two RK-Lie methods can also be considered.
For the first type, no method of order higher than p = 2 can be achieved.
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Examples of Lie group integrators for m = A(m) - m

First order methods with one stage

Mpi1 = eMAlma) (Lie-Euler)

Explicit methods with two stages. Write My = m,,, A; :== A(M;)

mn+1 — eh(b1A1+hb2A2)mn7 M2 — eh321A1 mn

or

mn+1 — ehbzAzehblA]_ mn’ M2 — eh321A1 mn

Second order whenever b; + b, = 1 and brar; = %

Important fact: e*T8 £ e“eP in general for matrices A and B.
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A method of order 4 (of the first type) RKMK method

We define: Matrix commutator [A, B] = AB — BA for matrices A and B.

A1 = hA(m,),
Ax = hA(exp(2A1) - my),
As = hA(exp(3 A2 — £[A1, Ad]) - my),
Ay = hA(exp(As) - my),
mpy1 = exp(z (A1 + 242 4+ 2A3 + Ay — Z[A1, Ad])) - m,.

This is a generalisation of the “classical” Runge—Kutta method of order 4
found in all the text books.
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A method of order 4 (of the second type) Commutator-free method

Commutator-free Lie group method

M; = m,
My = exp %hAl) - mp,
Mz = exp %hAz) my,
hAs — ZhA1) - Mo

where A,‘ = f(/\/l,)
Note: one exponential is saved in computing M, by making use of M.
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Summary and remarks so far

m We have consider one simple model problem of the type
m = A(m) - m where A is a matrix and m is a vector.

m We have naively generalised an interpretation of standard
Runge—Kutta scheme, breaking them down into building blocks that
consist of solving simpler differential equations exactly.

m We get away with this for methods of convergence order p < 2.

m For p > 2 we need to either include extra corrections (commutators)
or compose together building blocks to get the right order

Several open questions remain.
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1.3 Manifolds
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Manifolds

A manifold is a set M with a collection of charts (U, ) such that
mUCM
mp:U— p(U)CR"is a bijective map

m o(m)=(xy,...,x,) are called coordinates of the point m,

24 /58



Compatible charts

(U,¢), (U, ¢') overlapping:

V=eUNU)CR",
V = (UNU') C R"

(U,p) and (U, ¢") compatible if

¢/o¢_1:V—%\/
Yo (gp’)_l V=SV

are C°,

Differentiable manifold

® There is a collection of charts such that each m € M is a
member of at least one chart

® M is a union of compatible charts
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Tangent space

Curve

Two (for us) useful definitions

® By curves

® By derivations '

fy(t)7 S Cl(_575)
Vi = 7(0), tangent
vector at m = +(0).

Derivation acting on function germs. A tangent vector v,, can be seen
as a linear operator acting on functions on M

B vy [af + g = avy[f] + Bvmlg] (linearity)
m v,[fg] = vi[flg(m) + f(m)vy|g] (derivation property)

Interpretation: v,,[f] is the directional derivative of f in the direction of
V,, at m. In coordinates v,, = v - V.
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Examples — Manifolds and their tangent spaces

The 2-sphere S°. The Euclidean space R".

Vectors of unit norm, Tangent space at x: T,R" ~ R".

n
(x €R3:x2 4 x2 +x2 =1} Curve x + tv for any v € R".

C t t satisf i
urve () must satisfy Orthogonal n x n-matrices O(n).

= 2 _q Manifold contains identity matrix /.
Z%(t) - Curve ~(t) through /, i.e.
=1

Differentiating wrt. t, 7(0) =1, 4(0) =v.

3 Orthogonality: v(t)"~(t) = I Vt
> " Fi(t)yni(t) =0
i=1

%v(t)Tv(t) = ()" (t) + () 4(t)

— T .
Suppose 7(0) = r and §(0) = v, t=0 =>v' +v=0

Tr52:{v€IR{3:er} T/O(H)Z{VERnanVT:—V}
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Dual spaces and the cotangent space

Linear space V/, dual space V*

- For f € V*, u,veV,
f(au+ pv) = af(u) + Bf(v)

a, 8 €R

- Duality pairing, write

f(v) = (f,v)
- Basis for V, e1,...,¢eq4
- Dual basis €1, ...,¢ey4

ei(e) = (ei, &)

Cotangent space

- T.,,M is a linear space

- T»M its dual

- v € T,,M velocity vector
- p € T;;M momentum

- Kinetic energy

1

T = §<P, V>
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Tangent and cotangent bundles

Smoothly glue together the (co)tangent spaces at each m

™M= | TaM, M= ] Thm
meM meM

Note

m These bundles are not (generally) linear spaces, but they are
manifolds in their own right.

m Local coordinate charts are induced on TM from M.

d:M>U—=¢(U) — ¢ TM> TU — (U x V)

m Extra structure is needed to connect/compare v € T,,M and
v e T, M.

m If it holds that e.g TM = M x V for some linear space V
then the manifold is called trivial
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Maps and tangent maps

Let M and N be manifolds and ¥ : M — N a map.
The tangent map TV, : T,M — Ty(,) N is defined via curves.

Let n = W(m).
’Y(t) c M, 7(0) = m, 7(0) =V
The curve o(t) = V(7(t)) € N satisfies ¢(0) = n and

w:=0c(0) e T,N.
w = TWV,(v)

M N

’y(t)*\ W
m E— ¥(m) &

V3 ()
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Tangent bundle maps

One can extend the definition to all of TM, TV : TM — TN. Then only
linear when restricted to fibers T,,M: J

Exercise. Local coordinates (xi,...,x») on M and similarly,
(y1,.--,¥n) on N. Thus, y = W(x) can be expressed as

Y1 \Ul(Xl,...,Xm)

Yn wn(Xla---axm)

Show, by using the definition of the tangent map that TW is just
the Jacobian matrix of WV, i.e.

oV, .. 9V
8X1 8Xm
=1 : . :
oV, oV,
Oxy OXm
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Vector fields on manifolds

A vector field on M is a map

X M— TM s.t.
Vm:mw— X|, € TmM

A vector field on M is called a section of TM, write X € X (M) or
X € (TM). We can also have sections on T*M. They are called
differential one-forms.

Example. If f is a function on M, f : M — R then Tf :
TM — TR. We have TR = R x R, but often omit the first

factor.
df|m: TmM — R, df € [(T*M)

32 /58



Vector fields as derivations of functions

- fe F(M) = C>®(M)
- Vector field X € X'(M)

L X F(M) — F(M) as In coordinates xi, ..., xy
d
X[£1(m) = X|mf] X =3 X (x)0x

I
=
\,

Duality of vector fields and differential forms
It X € [(TM) and w € I'(T*M) then we have a point-wise pairing

(w, X) € F(M)
For one-forms df one has

df (X) = (df, X) = X[f]
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Flow of a vector field

Flow Domain
X € X: vector field on M. exp on|y defined on open
Consider the ODE subset
x(t) = X(x(t)), x(0) = x. exp(tX): Dy — M
Solution x(t), t € (ax, Bx) 2 0.
Write Di={xe M:te (aylx)}
x(t) = exp(tX)x
(£) = exp(£X) pee
exp(X) : M — M is called the t>0

flow of X.
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Relatedness, push-forward and pull-back

Relatedness

Let V: M — N be a differentiable map and let X and Y be vector fields
on M and N respectively. If

TUVoX =YoVW

then we say that X is W-related to Y.

Push-forward. If V is also invertible we can, for any vector field
X € X(M) define

Y=U,X=TWVoXoVUteX(N)
Pull-back. V* : X(N) — X(N)

X=VY =(TV) loYouw

Note. If y(t) = W(x(t)), x = X(x), y = Y(y), then X is W-related to X.
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Push-forward and pull-back apply also to other objects

v,
T(Ex) > T(Ey)
\P*
M T

Functions. F : N - R

VF = FoW ie W*F(x) = F(W(x))

Differential one-forms. Let w be a one-form on N, X € X(M).

(W w, X) = (w, TYU(X))
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Lie-Jacobi bracket of vector fields

Let X and Y be vector fields on M. They act as derivations on functions
f € F(M). We define the vector field

Z=1[X,Y] e X(M)
as the derivation

Z[f] = X[Y[f]] = Y[X[f]] for every f € F(M)

In coordinates (xi,...,xy) Pushforward homomorphism
letV: M — N

- d i i X,Y € X(M). Then
V. [X, Y] = [V.X, V., Y]

. Y A
= Ox; 0Xx;
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Frames of vector fields

A frame is a set of vector fields on a manifold M, say E;, ..., E4 such
that for each me M

span(Eilm, -, Edlm} = TmM

Clearly d > dim M. Sometimes, frames are defined only locally, on a
subset U C M and one requires d = dim M.
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