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Research interests

Measurement error modeling (methods & applications) 1

Bayesian statistics (ideal for taming measurement error!)

Population biology / quantitative genetics 2

Movement ecology 3

The proper handling of statistical methods (p-values, model

selection,..)

1e.g. Muff et al. (2015); Muff and Keller (2015); Muff et al. (2017a,b)
2Ponzi et al. (in prep)
3e.g. Weinberger et al. (2016), Gehr et al. (2017) or Muff et al. (in prep).
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Why is “measurement error” an exciting research

topic?

Ubiquituous

Cross-disciplinary

Often neglected/ignored (also in introductory textbooks)

Consequences of error are often unknown

Many open questions

Challenging methodology

→ Ideal “playground” for a statistician....
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https://quotefancy.com/
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Sources of measurement measurement error (ME)

Measurement imprecision.

Incomplete or biased observations.

Preferential sampling.

Misalignment error in spatial models.

Misclassification error.

. . .

In addition, missing data is a special and extreme case of ME.
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Short preamble on measurement error in regression

models

Find regression parameters β0 and βx for the model with covariate x:

yi = β0 + βx · xi + εi , εi ∼ N(0, σ2
ε) .
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Short preamble on measurement error in regression

models II

However, assume that only an erroneous proxy w is observed with

wi = xi + ui ui ∼ N(0, σ2
u) with σ2

u = σ2
x .
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Short preamble on measurement error in regression

models III

Now assume that the erroneous proxy w is given as

xi = wi + ui ui ∼ N(0, σ2
u) with σ2

u = σ2
x .

(I have only flipped xi and wi !)
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Two fundamentally different error types

Classical measurement error: the “mismeasurement” type:

Example: uncertainty in measuring tarsus length

w = x + u

u ∼ N(0, σ2
uD)

X

W

Berkson measurement error: The “rounding” type.

Examples: Experiments; limited resolution of a measurement device

x = w + u

u ∼ N(0, σ2
uD)

W

X
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Possible bias induced by ME

Attenuation (bias towards the null)

→ Underestimated regression coefficients

→ Conservative estimates

No bias

→ But more uncertainty...

Reverse attenuation (bias away from null)

→ Overestimated regression coefficients

→ Anticonservative estimates
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Simulations and apps

Illustration with shiny apps for two error types in linear, logistic and Poisson

regression:

Classical error

Berkson error
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Correcting for the error: Error modeling

The two most popular approaches:

Bayesian methods: Prior information about the error enters a model.

Then use

posterior = likelihood× prior

to calculate the parameter distribution after error correction (with

MCMC or INLA).

SIMEX: SIMulation EXtrapolation, a heuristic and intuitive idea.

Prerequisite for error modeling:

Assessing the bias and modeling the error is only possible if the error

structure (model) and the respective model parameters (e.g., error vari-

ances) are known!

(It is sometimes better not to model the error..)
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Why Bayesian ME modeling?

1 Simple and general:

The formulation of Bayesian error models is usually straightforward

(hierarchical modeling).

2 Identifiability issues:

Most models with error components are nonidentifiable, e.g.:

wi = xi + ui with σ2
w = σ2

x + σ2
u .

The error variance σ2
u and the sampling variance σ2

x are confounded.

→ The “Bayesian crank” can be turned even if a model is

nonidentifiable.

→ All you need is a legitimate prior distribution.

→“Partially identified models” (Gustafson, 2005).
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Hierarchical Bayesian error models

Hierarchical Bayesian modeling is truly universal. Regression model with

response y and covariates x and z and inverse link function h().

Classical error in the covariate x can be modeled as

E(y | x) = h(β0 + βxx + zβz) ,

w = x + u , u ∼ N(0, τuDu) ,

x = α0 + zαz + εx , εx ∼ N(0, τxDx) .

Berkson error is modeled as

E(y | x) = h(β0 + βxx + zβz) ,

x = w + u , u ∼ N(0, τuDu) .

→ Can be fitted as a joint model with MCMC (since the 1990’s) or INLA

(since 2015, see Muff et al., 2015, jointly with A. Riebler, L. Held, H. Rue).
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Hierarchical Bayesian models with INLA

INLA is able to deal with latent Gaussian hierarchical models.

Three sub-models (here for classical ME):

Observation model

Regression model: p(y|x, z,β,θ1)

E(y) = h(β0 + βxx + z[i,]βz )

Error model: p(w|x,θ2)

w = x + u , u ∼ N(0, τuDu)

Latent model for v = (β0,β
>
z , α0,α

>
z , x

>)>

Exposure model for x: p(x|θ2)

x = α0 + zαz + εx , εx ∼ N(0, τxDx )

Independent Gaussian priors for (β0,β
>
z , α0,α

>
z )

Hyperpriors p(θ1), p(θ2) with θ2 = (βx , τu, τx)>
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Example 1: Two error mechanisms in a single

variable

(Swiss National Cohort study on cardiovascular disease mortality 4)

Goal: To find factors that influence the risk of cardiovascular disease

mortality.

Model: Weibull survival model

ηi = β0 + xiβx + z>i βz ,

hi (t) = exp(ηi ) γ t
γ−1 ,

with hazard function hi (t).

Problem: Measurement error in

self-reported mean number of cigarettes smoked per day

systolic blood pressure (SBP)

4Von Gunten et al. (2013)
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Distributions of self-reported cigarette numbers and end-digits of SBP

measurements 5:

Average number of cigarettes wi

F
re

qu
en

cy

0 20 40 60 80

0
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0
40

0
80

0

End−digits of SBP recordings

F
re

qu
en

cy

0 1 2 3 4 5 6 7 8 9

→ Rounding behaviour → Berkson error

In addition, there is a component of misremembering (cigarettes) and

mismeasurement (SBP) → classical error.

5Muff et al. (2017b)
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Formulation of a Classical/Berkson error model

The problem:

The correct variable x is first mismeasured.

The mismeasured variable is then rounded.

Observation w.

→ Trick: Introduce an additional latent variable r, such that

r = x + uc , uc ∼ N(0, τuc Dc) and

r = w + ub , ub ∼ N(0, τubDb) ,

with classical error uc and Berkson error ub.

→ Combining this model with the survival model led to corrected

parameter estimates. We used INLA to fit the model.
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Results given in terms of event time ratios. These quantify the proportional

change in survival times expected from a change by one unit.

●

●

●

●

0.980 0.986 0.992

κcig

●

●

●

●

0.4 0.5 0.6 0.7

κSBP

●

●

●

●

0.95 0.97 0.99

κgluc

Cig & SBP

SBP

Cig

Naive

In words:

The daily consumption of 20 cigarettes shrinks the expected lifetime by

a factor of 0.75 and not just 0.78 (without error modeling)

An increase in blood pressure from 120 to 160 mm Hg shrinks the

expected lifetime by a factor of 0.71 and not just 0.78 (without error

modeling).
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Example 2: Miscounting error in the response of a

ZINB regression

COPD: Chronic obstructive pulmonary disease

Exacerbation: A sudden worsening of symptoms that requires treatment with

antibiotics, corticosteroids or hospitalization.

Goal: Investigate the effect of a pharmacotherapy vs placebo (xi ∈ {0, 1})
on the number of exacerbations (yi ) of COPD patients 6.

Model: Negative binomial regression

yi ∼ NBin (exp(log(ti ) + β0 + xiβx + ziβz), θ) .

Additional covariates zi , ti=actual time under treatment (offset).

Problem: Exacerbation numbers yi are self-reported by the patients, and

thus miscounted.

6Calverley et al. (2007)
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Miscounting error model

External study 7 investigated the error in the number of self-reported

exacerbations .

Comparison between patient self-reports si and consensus

classifications by a central adjudication committee, consisting of

several experienced physicians (“gold standard”, yi ).

The external validation data were used to estimate the parameters of a

zero-inflated negative binomial error model:

si | yi ∼ ZINB (γ0 + γ1yi , pi , θE ) .

with logit(pi ) = δ0 + δ1I(yi > 0), where yi is unobserved.

7Frei et al. (2016)
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Error-corrected results

The actual treatment effect estimate increased:

●

●

l l

l l

0.65 0.70 0.75 0.85 0.95

 Corrected

Naive

Rate ratio

Naive rate ratio exp(β̂x) = 0.86 (95% CI from 0.78 to 0.95)

Corrected rate ratio exp(β̂x) = 0.80 (95% CI from 0.68 to 0.93)

(smaller=stronger)
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Example 3: Pedigree error in song sparrows

(With Erica Ponzi and Lukas Keller)

Goal: Estimate heritability and inbreeding depression for a wild bird

population using pedigree data.

Model: The animal model is a mixed model, in a simple form given as

yi = µ+ βf fi + ai + ei ,

with (a1, . . . , an)> ∼ N(0, σ2
aA), ei ∼ N(0, σ2

e ), inbreeding depression βf and

h2 = σ2
a/(σ2

a + σ2
e ).

Problem: The pedigree is known to contain misassigned paternities. This

may lead to bias in estimates of heritability, inbreeding depression etc.

www.vogelwarte.ch
Stefanie Muff (stefanie.muff@uzh.ch) Page 24 of 31
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SIMEX: A very intuitive idea (Cook and Stefanski, 1994)

Simulation phase: The error in the data is progressively aggravated.

Extrapolation phase: The observed trend is then extrapolated back

to a hypothetical error-free value.

● ●

●
●

●
●

● ●
●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
4

0.
6

0.
8

1.
0

σu
2

β x

Naive
Corrected

Example:

A regression slope βx , but x was

estimated with error

w = x + u, u ∼ N(0, σ2
u).
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Pedigree-SIMEX

The idea can be transferred to pedigree error by a successive increase of the

error proportion (up to 100%) and extrapolation to zero error.

0.0 0.2 0.4 0.6 0.8

-8
-6

-4
-2

0

Inbreeding depression 
 of juvenile survival

Misassigned proportion

0.0 0.2 0.4 0.6 0.8

0
.3

0
.4

0
.5

0
.6

Heritability of tarsus length

Misassigned proportion

Estimates

Extrapolated linear
Extrapolated quadratic

True value
Naive Estimate

Simulated values

→ PSIMEX package on CRAN (written by Erica Ponzi).
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Do you care about missing data?

... then you might want to care about error too: It is a special case of

classical measuremet error.

(Blackwell et al., 2015)
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Modeling missing data and classical ME in a unified

framework

Again the hierarchical error model:

ηi = β0 + βxxi + ziβz Regression model ,

wi = xi + ui Error model ,

xi = α0 + ziαz + (other terms) + εi , Exposure model .

Idea:

For error variances σ2
ui →∞ (missing case), the error model is

uninformative.

Information about xi is retrieved only by the exposure model, similar to

e.g. Goldstein (2011).

Many open points:

Missings in the outcome? Missing NAR?

Non-Gaussian data (misclassification)?

Berkson ME?
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uninformative.

Information about xi is retrieved only by the exposure model, similar to

e.g. Goldstein (2011).

Many open points:

Missings in the outcome? Missing NAR?

Non-Gaussian data (misclassification)?

Berkson ME?
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THANK YOU!
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