Correspondence Theory and Toeplitz operators on Fock spaces

Robert Fulsche
Leibniz Universität Hannover, Germany

Workshop on Quantum Harmonic Analysis and Applications to Operator Theory 2021
August 3rd 2021

Outline

- Basics of Fock spaces and their (Toeplitz) operators
- QHA in the Fock space setting
- How does the theory of Toeplitz operators benefit from QHA?
- How does QHA benefit from the theory of Toeplitz operators?

The basics of Fock spaces

Let $\mu_{t}, t>0$, be the family of Gaussian measures on \mathbb{C}^{n} :

$$
d \mu_{t}(z)=\frac{1}{(\pi t)^{n}} e^{-\frac{|z|^{2}}{t}} d z
$$

The basics of Fock spaces

Let $\mu_{t}, t>0$, be the family of Gaussian measures on \mathbb{C}^{n} :

$$
d \mu_{t}(z)=\frac{1}{(\pi t)^{n}} e^{-\frac{|z|^{2}}{t}} d z
$$

For $p \in(1, \infty)$ set

$$
L_{t}^{p}:=L^{p}\left(\mathbb{C}^{n}, \mu_{2 t / p}\right)
$$

The basics of Fock spaces

Let $\mu_{t}, t>0$, be the family of Gaussian measures on \mathbb{C}^{n} :

$$
d \mu_{t}(z)=\frac{1}{(\pi t)^{n}} e^{-\frac{|z|^{2}}{t}} d z
$$

For $p \in(1, \infty)$ set

$$
L_{t}^{p}:=L^{p}\left(\mathbb{C}^{n}, \mu_{2 t / p}\right)
$$

The Fock spaces are defined as $F_{t}^{p}:=L_{t}^{p} \cap \operatorname{Hol}\left(\mathbb{C}^{n}\right)$, that is $f \in \operatorname{Hol}\left(\mathbb{C}^{n}\right)$ is in F_{t}^{p} iff

$$
f e^{-\frac{\left.1 \cdot\right|^{2}}{2 t}} \in L^{p}\left(\mathbb{C}^{n}\right)
$$

Fock spaces: The standard reference

The standard reference on Fock spaces (and operator theory on them) is: Kehe Zhu: Analysis on Fock spaces, 2012, Springer Verlag.

Graduate Texts in Mathematics

Kehe Zhu
Analysis on Fock Spaces

The basics of Fock spaces

- F_{t}^{p} is a closed subspace of L_{t}^{p}
\rightsquigarrow Consequence of Cauchy's integral formula

The basics of Fock spaces

- F_{t}^{p} is a closed subspace of L_{t}^{p}
\rightsquigarrow Consequence of Cauchy's integral formula
\rightsquigarrow Cauchy's integral formula actually gives a stronger implication, which we defer for a moment.

The basics of Fock spaces

- F_{t}^{p} is a closed subspace of L_{t}^{p}
\rightsquigarrow Consequence of Cauchy's integral formula
\rightsquigarrow Cauchy's integral formula actually gives a stronger implication, which we defer for a moment.
- F_{t}^{2} is a Hilbert space with the inner product

$$
\langle f, g\rangle_{t}=\int_{\mathbb{C}^{n}} f(z) \overline{g(z)} d \mu_{t}(z)
$$

The basics of Fock spaces

- F_{t}^{p} is a closed subspace of L_{t}^{p}
\rightsquigarrow Consequence of Cauchy's integral formula
\rightsquigarrow Cauchy's integral formula actually gives a stronger implication, which we defer for a moment.
- F_{t}^{2} is a Hilbert space with the inner product

$$
\langle f, g\rangle_{t}=\int_{\mathbb{C}^{n}} f(z) \overline{g(z)} d \mu_{t}(z)
$$

- $\left(F_{t}^{p}\right)^{\prime} \cong F_{t}^{q}$ under the above inner product (with equivalent norms), where $\frac{1}{p}+\frac{1}{q}=1$.

The standard basis

For $\alpha \in \mathbb{N}_{0}^{n}$ set

$$
e_{\alpha}^{t}(z)=\frac{1}{\sqrt{\alpha!t^{|\alpha|}}} z^{\alpha}, \quad z \in \mathbb{C}^{n}
$$

The standard basis

For $\alpha \in \mathbb{N}_{0}^{n}$ set

$$
e_{\alpha}^{t}(z)=\frac{1}{\sqrt{\alpha!t^{|\alpha|}}} z^{\alpha}, \quad z \in \mathbb{C}^{n}
$$

Then, $\left\{e_{\alpha}^{t} ; \alpha \in \mathbb{N}_{0}^{n}\right\}$ is a Schauder basis for F_{t}^{p}, being orthonormal in F_{t}^{2}.

The standard basis

For $\alpha \in \mathbb{N}_{0}^{n}$ set

$$
e_{\alpha}^{t}(z)=\frac{1}{\sqrt{\alpha!t^{|\alpha|}}} z^{\alpha}, \quad z \in \mathbb{C}^{n}
$$

Then, $\left\{e_{\alpha}^{t} ; \alpha \in \mathbb{N}_{0}^{n}\right\}$ is a Schauder basis for F_{t}^{p}, being orthonormal in F_{t}^{2}. In particular, $\mathcal{P}\left[z_{1}, \ldots, z_{m}\right]$ is dense in F_{t}^{p}.

The reproducing kernel structure

Let $f \in \operatorname{Hol}\left(\mathbb{C}^{n}\right)$ and $r>0$. Then, Cauchy's integral formula yields

$$
f(z)=\frac{1}{\left(\pi r^{2}\right)^{n}} \int_{P(z, r)} f(w) d w, \quad \text { every } z \in \mathbb{C}^{n}
$$

The reproducing kernel structure

Let $f \in \operatorname{Hol}\left(\mathbb{C}^{n}\right)$ and $r>0$. Then, Cauchy's integral formula yields

$$
f(z)=\frac{1}{\left(\pi r^{2}\right)^{n}} \int_{P(z, r)} f(w) d w, \quad \text { every } z \in \mathbb{C}^{n}
$$

Here, $P(z, r):=D(z, r) \times \cdots \times D(z, r)$ is the polydisc.

The reproducing kernel structure

Let $f \in \operatorname{Hol}\left(\mathbb{C}^{n}\right)$ and $r>0$. Then, Cauchy's integral formula yields

$$
f(z)=\frac{1}{\left(\pi r^{2}\right)^{n}} \int_{P(z, r)} f(w) d w, \quad \text { every } z \in \mathbb{C}^{n}
$$

Here, $P(z, r):=D(z, r) \times \cdots \times D(z, r)$ is the polydisc. Thus,

$$
|f(z)| \lesssim \int_{P(z, r)}|f(w)| d w
$$

The reproducing kernel structure

Let $f \in \operatorname{Hol}\left(\mathbb{C}^{n}\right)$ and $r>0$. Then, Cauchy's integral formula yields

$$
f(z)=\frac{1}{\left(\pi r^{2}\right)^{n}} \int_{P(z, r)} f(w) d w, \quad \text { every } z \in \mathbb{C}^{n}
$$

Here, $P(z, r):=D(z, r) \times \cdots \times D(z, r)$ is the polydisc. Thus,

$$
\begin{aligned}
|f(z)| & \lesssim \int_{P(z, r)}|f(w)| d w \\
& \lesssim \int_{P(z, r)}|f(w)| e^{-\frac{|w|^{2}}{2 t}} d w
\end{aligned}
$$

The reproducing kernel structure

Let $f \in \operatorname{Hol}\left(\mathbb{C}^{n}\right)$ and $r>0$. Then, Cauchy's integral formula yields

$$
f(z)=\frac{1}{\left(\pi r^{2}\right)^{n}} \int_{P(z, r)} f(w) d w, \quad \text { every } z \in \mathbb{C}^{n}
$$

Here, $P(z, r):=D(z, r) \times \cdots \times D(z, r)$ is the polydisc. Thus,

$$
\begin{aligned}
|f(z)| & \lesssim \int_{P(z, r)}|f(w)| d w \\
& \lesssim \int_{P(z, r)}|f(w)| e^{-\frac{|w|^{2}}{2 t}} d w \\
& \leq\left(\int_{\mathbb{C}^{n}}|f(w)|^{p} e^{-\frac{p|w|^{2}}{2 t}} d w\right)^{1 / p}\left(\int_{P(z, r)} e^{-\frac{q|w|^{2}}{2 t}} d w\right)^{1 / q}
\end{aligned}
$$

The reproducing kernel structure

Let $f \in \operatorname{Hol}\left(\mathbb{C}^{n}\right)$ and $r>0$. Then, Cauchy's integral formula yields

$$
f(z)=\frac{1}{\left(\pi r^{2}\right)^{n}} \int_{P(z, r)} f(w) d w, \quad \text { every } z \in \mathbb{C}^{n}
$$

Here, $P(z, r):=D(z, r) \times \cdots \times D(z, r)$ is the polydisc. Thus,

$$
\begin{aligned}
|f(z)| & \lesssim \int_{P(z, r)}|f(w)| d w \\
& \lesssim \int_{P(z, r)}|f(w)| e^{-\frac{|w|^{2}}{2 t}} d w \\
& \leq\left(\int_{\mathbb{C}^{n}}|f(w)|^{p} e^{-\frac{p|w|^{2}}{2 t}} d w\right)^{1 / p}\left(\int_{P(z, r)} e^{-\frac{q|w|^{2}}{2 t}} d w\right)^{1 / q} \\
& \lesssim\|f\|_{F_{t}^{p}}
\end{aligned}
$$

The reproducing kernel structure

This shows that point evaluation are continuous linear functionals on F_{t}^{p}. In particular, F_{t}^{2} is a reproducing kernel Hilbert space:

The reproducing kernel structure

This shows that point evaluation are continuous linear functionals on F_{t}^{p}. In particular, F_{t}^{2} is a reproducing kernel Hilbert space: By Riesz' representation theorem, there exist $K_{z}^{t} \in F_{t}^{2}$ such that

$$
f(z)=\left\langle f, K_{z}^{t}\right\rangle_{t}, \quad z \in \mathbb{C}^{n}
$$

The reproducing kernel structure

This shows that point evaluation are continuous linear functionals on F_{t}^{p}. In particular, F_{t}^{2} is a reproducing kernel Hilbert space: By Riesz' representation theorem, there exist $K_{z}^{t} \in F_{t}^{2}$ such that

$$
f(z)=\left\langle f, K_{z}^{t}\right\rangle_{t}, \quad z \in \mathbb{C}^{n}
$$

One can show that the reproducing kernel functions K_{z}^{t} are given by

$$
K_{z}^{t}(w)=e^{\frac{w \cdot \bar{z}}{t}}
$$

The reproducing kernel structure

This shows that point evaluation are continuous linear functionals on F_{t}^{p}. In particular, F_{t}^{2} is a reproducing kernel Hilbert space: By Riesz' representation theorem, there exist $K_{z}^{t} \in F_{t}^{2}$ such that

$$
f(z)=\left\langle f, K_{z}^{t}\right\rangle_{t}, \quad z \in \mathbb{C}^{n} .
$$

One can show that the reproducing kernel functions K_{z}^{t} are given by

$$
K_{z}^{t}(w)=e^{\frac{w \cdot \bar{z}}{t}}
$$

Explicit computations show that $K_{z}^{t} \in F_{t}^{p}$ for any p. In particular,

$$
f(z)=\left\langle f, K_{z}^{t}\right\rangle_{t}
$$

extends to any $f \in F_{t}^{p}$.

The reproducing kernel structure

A neat thing to know is the following: Every $A \in \mathcal{L}\left(F_{t}^{p}\right)$ is actually an integral operator:

$$
A f(z)=\left\langle A f, K_{z}^{t}\right\rangle_{t}=\left\langle f, A^{*} K_{z}^{t}\right\rangle_{t}
$$

The reproducing kernel structure

A neat thing to know is the following: Every $A \in \mathcal{L}\left(F_{t}^{p}\right)$ is actually an integral operator:

$$
\begin{aligned}
A f(z) & =\left\langle A f, K_{z}^{t}\right\rangle_{t}=\left\langle f, A^{*} K_{z}^{t}\right\rangle_{t} \\
& =\int_{\mathbb{C}^{n}} f(w) \overline{A^{*} K_{z}^{t}(w)} d \mu_{t}(w)
\end{aligned}
$$

The reproducing kernel structure

A neat thing to know is the following: Every $A \in \mathcal{L}\left(F_{t}^{p}\right)$ is actually an integral operator:

$$
\begin{aligned}
A f(z) & =\left\langle A f, K_{z}^{t}\right\rangle_{t}=\left\langle f, A^{*} K_{z}^{t}\right\rangle_{t} \\
& =\int_{\mathbb{C}^{n}} f(w) \overline{A^{*} K_{z}^{t}(w)} d \mu_{t}(w) \\
& =\int_{\mathbb{C}^{n}} f(w) \overline{\left\langle A^{*} K_{z}^{t}, K_{w}^{t}\right\rangle_{t}} d \mu_{t}(w)
\end{aligned}
$$

The reproducing kernel structure

A neat thing to know is the following: Every $A \in \mathcal{L}\left(F_{t}^{p}\right)$ is actually an integral operator:

$$
\begin{aligned}
A f(z) & =\left\langle A f, K_{z}^{t}\right\rangle_{t}=\left\langle f, A^{*} K_{z}^{t}\right\rangle_{t} \\
& =\int_{\mathbb{C}^{n}} f(w) \overline{A^{*} K_{z}^{t}(w)} d \mu_{t}(w) \\
& =\int_{\mathbb{C}^{n}} f(w) \overline{\left\langle A^{*} K_{z}^{t}, K_{w}^{t}\right\rangle_{t}} d \mu_{t}(w) \\
& =\int_{\mathbb{C}^{n}} f(w)\left\langle A K_{w}^{t}, K_{z}^{t}\right\rangle_{t} d \mu_{t}(w) .
\end{aligned}
$$

This will turn out useful later!

Intermezzo: The Bargmann transform

The Bargmann transform is the isometric isomorphism $B_{t}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow F_{t}^{2}$ given by

$$
B_{t} f(z)=\left(\frac{2}{\pi t}\right)^{n / 4} \int_{\mathbb{R}^{n}} f(x) e^{2 \frac{x \cdot z}{t}-\frac{x \cdot x}{t}-\frac{z \cdot z}{t}} d x
$$

Intermezzo: The Bargmann transform

The Bargmann transform is the isometric isomorphism $B_{t}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow F_{t}^{2}$ given by

$$
B_{t} f(z)=\left(\frac{2}{\pi t}\right)^{n / 4} \int_{\mathbb{R}^{n}} f(x) e^{2 \frac{x \cdot z}{t}-\frac{x \cdot x}{t}-\frac{z \cdot z}{t}} d x
$$

The inverse can be explicitly written as

$$
B_{t}^{-1} g(x)=\left(\frac{2}{\pi t}\right)^{n / 4} \int_{\mathbb{C}^{n}} g(z) e^{2 \frac{2 \cdot \bar{z}}{t}-\frac{x \cdot x}{t}-\frac{\overline{\bar{r}} \cdot \bar{z}}{2 t}} d \mu_{t}(z)
$$

Intermezzo: The Bargmann transform

The Bargmann transform is the isometric isomorphism $B_{t}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow F_{t}^{2}$ given by

$$
B_{t} f(z)=\left(\frac{2}{\pi t}\right)^{n / 4} \int_{\mathbb{R}^{n}} f(x) e^{2 \frac{x \cdot z}{t}-\frac{x \cdot x}{t}-\frac{z \cdot z}{t}} d x
$$

The inverse can be explicitly written as

$$
B_{t}^{-1} g(x)=\left(\frac{2}{\pi t}\right)^{n / 4} \int_{\mathbb{C}^{n}} g(z) e^{2 \frac{x \cdot \overline{\bar{z}}}{t}-\frac{x \cdot x}{t}-\frac{\overline{\bar{r}} \cdot \bar{z}}{2 t}} d \mu_{t}(z)
$$

How do the F_{t}^{p} spaces transform under B_{t}^{-1} ?

Intermezzo: The Bargmann transform

The Bargmann transform is the isometric isomorphism $B_{t}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow F_{t}^{2}$ given by

$$
B_{t} f(z)=\left(\frac{2}{\pi t}\right)^{n / 4} \int_{\mathbb{R}^{n}} f(x) e^{2 \frac{x \cdot z}{t}-\frac{x \cdot x}{t}-\frac{z \cdot z}{t}} d x
$$

The inverse can be explicitly written as

$$
B_{t}^{-1} g(x)=\left(\frac{2}{\pi t}\right)^{n / 4} \int_{\mathbb{C}^{n}} g(z) e^{2 \frac{x \cdot \overline{\bar{z}}}{t}-\frac{x \cdot x}{t}-\frac{\overline{\bar{r}} \cdot \bar{z}}{2 t}} d \mu_{t}(z)
$$

How do the F_{t}^{p} spaces transform under B_{t}^{-1} ?
Theorem (Bargmann, Feichtinger, Gröchenig, Toft)
B_{t}^{-1} is an isometric isomorphism from F_{t}^{p} to the modulation space $M^{p, p}$.

Operators on Fock spaces

The orthogonal projection $P_{t}: L_{t}^{2} \rightarrow F_{t}^{2}$ is given by

$$
P_{t} f(z)=\left\langle P_{t} f, K_{z}^{t}\right\rangle_{t}=\left\langle f, P_{t} K_{z}^{t}\right\rangle_{t}
$$

Operators on Fock spaces

The orthogonal projection $P_{t}: L_{t}^{2} \rightarrow F_{t}^{2}$ is given by

$$
\begin{aligned}
P_{t} f(z) & =\left\langle P_{t} f, K_{z}^{t}\right\rangle_{t}=\left\langle f, P_{t} K_{z}^{t}\right\rangle_{t} \\
& =\left\langle f, K_{z}^{t}\right\rangle_{t}
\end{aligned}
$$

Operators on Fock spaces

The orthogonal projection $P_{t}: L_{t}^{2} \rightarrow F_{t}^{2}$ is given by

$$
\begin{aligned}
P_{t} f(z) & =\left\langle P_{t} f, K_{z}^{t}\right\rangle_{t}=\left\langle f, P_{t} K_{z}^{t}\right\rangle_{t} \\
& =\left\langle f, K_{z}^{t}\right\rangle_{t} \\
& =\int_{\mathbb{C}^{n}} f(w) e^{\frac{z \cdot \bar{w}}{t}} d \mu_{t}(w)
\end{aligned}
$$

Operators on Fock spaces

The orthogonal projection $P_{t}: L_{t}^{2} \rightarrow F_{t}^{2}$ is given by

$$
\begin{aligned}
P_{t} f(z) & =\left\langle P_{t} f, K_{z}^{t}\right\rangle_{t}=\left\langle f, P_{t} K_{z}^{t}\right\rangle_{t} \\
& =\left\langle f, K_{z}^{t}\right\rangle_{t} \\
& =\int_{\mathbb{C}^{n}} f(w) e^{\frac{z \cdot \bar{w}}{t}} d \mu_{t}(w)
\end{aligned}
$$

Theorem
P_{t}, considered as the above integral operator, gives a bounded projection from L_{t}^{p} onto F_{t}^{p}.

Operators on Fock spaces

For appropriate $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$, say $f \in L^{\infty}\left(\mathbb{C}^{n}\right)$, the Toeplitz operator $T_{f}^{t} \in \mathcal{L}\left(F_{t}^{p}\right)$ is given by

$$
T_{f}^{t} g=P_{t}(f g)
$$

Operators on Fock spaces

For appropriate $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$, say $f \in L^{\infty}\left(\mathbb{C}^{n}\right)$, the Toeplitz operator $T_{f}^{t} \in \mathcal{L}\left(F_{t}^{p}\right)$ is given by

$$
T_{f}^{t} g=P_{t}(f g)
$$

We will also encounter the Berezin transform: For $A \in \mathcal{L}\left(F_{t}^{p}\right)$, set

$$
\widetilde{A}(z):=\left\langle A k_{z}^{t}, k_{z}^{t}\right\rangle_{t}
$$

Operators on Fock spaces

For appropriate $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$, say $f \in L^{\infty}\left(\mathbb{C}^{n}\right)$, the Toeplitz operator $T_{f}^{t} \in \mathcal{L}\left(F_{t}^{p}\right)$ is given by

$$
T_{f}^{t} g=P_{t}(f g)
$$

We will also encounter the Berezin transform: For $A \in \mathcal{L}\left(F_{t}^{p}\right)$, set

$$
\widetilde{A}(z):=\left\langle A k_{z}^{t}, k_{z}^{t}\right\rangle_{t} .
$$

Here, k_{z}^{t} is the normalized reproducing kernel:

$$
k_{z}^{t}(w)=\frac{K_{z}^{t}(w)}{\left\|K_{z}^{t}\right\|}=e^{\frac{w \cdot \bar{z}}{t}-\frac{|z|^{2}}{2 t}} .
$$

Operators on Fock spaces

For appropriate $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$, say $f \in L^{\infty}\left(\mathbb{C}^{n}\right)$, the Toeplitz operator $T_{f}^{t} \in \mathcal{L}\left(F_{t}^{p}\right)$ is given by

$$
T_{f}^{t} g=P_{t}(f g)
$$

We will also encounter the Berezin transform: For $A \in \mathcal{L}\left(F_{t}^{p}\right)$, set

$$
\widetilde{A}(z):=\left\langle A k_{z}^{t}, k_{z}^{t}\right\rangle_{t} .
$$

Here, k_{z}^{t} is the normalized reproducing kernel:

$$
k_{z}^{t}(w)=\frac{K_{z}^{t}(w)}{\left\|K_{z}^{t}\right\|}=e^{\frac{w \cdot \bar{z}}{t}-\frac{|z|^{2}}{2 t}} .
$$

$A \mapsto \widetilde{A}$ is injective!

Operators on Fock spaces

The Weyl operators $W_{z}^{t}\left(z \in \mathbb{C}^{n}\right)$ are given by

$$
W_{z}^{t} g(w)=k_{z}^{t}(w) g(w-z)
$$

Operators on Fock spaces

The Weyl operators $W_{z}^{t}\left(z \in \mathbb{C}^{n}\right)$ are given by

$$
W_{z}^{t} g(w)=k_{z}^{t}(w) g(w-z)
$$

They are isometric on F_{t}^{p} and satisfy $\left(W_{z}^{t}\right)^{*}=W_{-z}^{t}$ and

$$
W_{z}^{t} W_{w}^{t}=e^{-\frac{i \operatorname{lm}(z \cdot w)}{t}} W_{z+w}^{t} .
$$

Operators on Fock spaces

The Weyl operators $W_{z}^{t}\left(z \in \mathbb{C}^{n}\right)$ are given by

$$
W_{z}^{t} g(w)=k_{z}^{t}(w) g(w-z)
$$

They are isometric on F_{t}^{p} and satisfy $\left(W_{z}^{t}\right)^{*}=W_{-z}^{t}$ and

$$
W_{z}^{t} W_{w}^{t}=e^{-\frac{i \operatorname{lm}(z \cdot w)}{t}} W_{z+w}^{t} .
$$

Finally, we will encounter the parity operator $\operatorname{Uf}(z)=f(-z)$.

The group actions

On the classical side, QHA in the Fock space picture works completely analogous on $L^{1}\left(\mathbb{C}^{n}\right)=L^{1}\left(\mathbb{R}^{2 n}\right)$ and $L^{\infty}\left(\mathbb{C}^{n}\right)=L^{\infty}\left(\mathbb{R}^{2 n}\right)$, respectively.

The group actions

On the classical side, QHA in the Fock space picture works completely analogous on $L^{1}\left(\mathbb{C}^{n}\right)=L^{1}\left(\mathbb{R}^{2 n}\right)$ and $L^{\infty}\left(\mathbb{C}^{n}\right)=L^{\infty}\left(\mathbb{R}^{2 n}\right)$, respectively. On the "quantum side", we will use the group action of \mathbb{C}^{n} on $\mathcal{L}\left(F_{t}^{p}\right)$ by

$$
\alpha_{z}(A)=W_{z}^{t} A W_{-z}^{t}
$$

Nuclear operators

An operator $A \in \mathcal{L}\left(F_{t}^{p}\right)$ is called nuclear, write $A \in \mathcal{N}\left(F_{t}^{p}\right)$, if there are $f_{j} \in F_{t}^{p}, g_{j} \in F_{t}^{q}$ such that

Nuclear operators

An operator $A \in \mathcal{L}\left(F_{t}^{p}\right)$ is called nuclear, write $A \in \mathcal{N}\left(F_{t}^{p}\right)$, if there are $f_{j} \in F_{t}^{p}, g_{j} \in F_{t}^{q}$ such that

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left\|f_{j}\right\|_{F_{t}^{p}}\left\|g_{j}\right\|_{F_{t}^{q}}<\infty \tag{1}
\end{equation*}
$$

Nuclear operators

An operator $A \in \mathcal{L}\left(F_{t}^{p}\right)$ is called nuclear, write $A \in \mathcal{N}\left(F_{t}^{p}\right)$, if there are $f_{j} \in F_{t}^{p}, g_{j} \in F_{t}^{q}$ such that

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left\|f_{j}\right\|_{F_{t}^{p}}\left\|g_{j}\right\|_{F_{t}^{q}}<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A h=\sum_{j=1}^{\infty}\left\langle h, g_{j}\right\rangle_{t} f_{j} \tag{2}
\end{equation*}
$$

Nuclear operators

An operator $A \in \mathcal{L}\left(F_{t}^{p}\right)$ is called nuclear, write $A \in \mathcal{N}\left(F_{t}^{p}\right)$, if there are $f_{j} \in F_{t}^{p}, g_{j} \in F_{t}^{q}$ such that

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left\|f_{j}\right\|_{F_{t}^{p}}\left\|g_{j}\right\|_{F_{t}^{q}}<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A h=\sum_{j=1}^{\infty}\left\langle h, g_{j}\right\rangle_{t} f_{j} \tag{2}
\end{equation*}
$$

$\mathcal{N}\left(F_{t}^{p}\right)$ is a normed ideal in $\mathcal{L}\left(F_{t}^{p}\right)$ under the norm

$$
\|A\|_{\mathcal{N}}:=\inf \left\{(1) ; f_{j}, g_{j} \text { satisfy }(2)\right\}
$$

Nuclear operators

An operator $A \in \mathcal{L}\left(F_{t}^{p}\right)$ is called nuclear, write $A \in \mathcal{N}\left(F_{t}^{p}\right)$, if there are $f_{j} \in F_{t}^{p}, g_{j} \in F_{t}^{q}$ such that

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left\|f_{j}\right\|_{F_{t}^{p}}\left\|g_{j}\right\|_{F_{t}^{q}}<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A h=\sum_{j=1}^{\infty}\left\langle h, g_{j}\right\rangle_{t} f_{j} \tag{2}
\end{equation*}
$$

$\mathcal{N}\left(F_{t}^{p}\right)$ is a normed ideal in $\mathcal{L}\left(F_{t}^{p}\right)$ under the norm

$$
\|A\|_{\mathcal{N}}:=\inf \left\{(1) ; f_{j}, g_{j} \text { satisfy }(2)\right\}
$$

$\mathcal{N}\left(F_{t}^{p}\right)$ comes with the nuclear trace:

$$
\operatorname{tr}(A)=\sum_{j=1}^{\infty}\left\langle f_{j}, g_{j}\right\rangle_{t}
$$

QHA on the Fock space

The standard operations of QHA are now defined similarly to what we already know: For $f, g \in L^{1}\left(\mathbb{C}^{n}\right)$ and $A, B \in \mathcal{N}\left(F_{t}^{p}\right)$ we set

QHA on the Fock space

The standard operations of QHA are now defined similarly to what we already know: For $f, g \in L^{1}\left(\mathbb{C}^{n}\right)$ and $A, B \in \mathcal{N}\left(F_{t}^{p}\right)$ we set

$$
f * g(z):=\int_{\mathbb{C}^{n}} f(w) g(z-w) d w
$$

QHA on the Fock space

The standard operations of QHA are now defined similarly to what we already know: For $f, g \in L^{1}\left(\mathbb{C}^{n}\right)$ and $A, B \in \mathcal{N}\left(F_{t}^{p}\right)$ we set

$$
\begin{aligned}
f * g(z) & :=\int_{\mathbb{C}^{n}} f(w) g(z-w) d w \\
f * A & :=\int_{\mathbb{C}^{n}} f(w) \alpha_{w}(A) d w
\end{aligned}
$$

QHA on the Fock space

The standard operations of QHA are now defined similarly to what we already know: For $f, g \in L^{1}\left(\mathbb{C}^{n}\right)$ and $A, B \in \mathcal{N}\left(F_{t}^{p}\right)$ we set

$$
\begin{aligned}
f * g(z) & :=\int_{\mathbb{C}^{n}} f(w) g(z-w) d w \\
f * A & :=\int_{\mathbb{C}^{n}} f(w) \alpha_{w}(A) d w \\
A * f & :=f * A
\end{aligned}
$$

QHA on the Fock space

The standard operations of QHA are now defined similarly to what we already know: For $f, g \in L^{1}\left(\mathbb{C}^{n}\right)$ and $A, B \in \mathcal{N}\left(F_{t}^{p}\right)$ we set

$$
\begin{aligned}
f * g(z) & :=\int_{\mathbb{C}^{n}} f(w) g(z-w) d w, \\
f * A & :=\int_{\mathbb{C}^{n}} f(w) \alpha_{w}(A) d w, \\
A * f & :=f * A, \\
A * B(z) & :=\operatorname{tr}\left(A W_{z}^{t} \cup B \cup W_{-z}^{t}\right) .
\end{aligned}
$$

QHA on the Fock space

On this level, all the properties of QHA we have encountered in the Schrödinger picture carry over. Almost all properties follow the same proof.

QHA on the Fock space

On this level, all the properties of QHA we have encountered in the Schrödinger picture carry over. Almost all properties follow the same proof. One notable exception: The properties of $A * B$,

$$
\begin{aligned}
\|A * B\|_{L^{1}} & \leq(\pi t)^{n}\|A\|_{\mathcal{N}}\|B\|_{\mathcal{N}} \\
\int_{\mathbb{C}^{n}} A * B(z) d z & =(\pi t)^{n} \operatorname{tr}(A) \operatorname{tr}(B),
\end{aligned}
$$

need a new proof (unless $p=2$, then the same proof can be utilized).

QHA on the Fock space

On this level, all the properties of QHA we have encountered in the Schrödinger picture carry over. Almost all properties follow the same proof. One notable exception: The properties of $A * B$,

$$
\begin{aligned}
\|A * B\|_{L^{1}} & \leq(\pi t)^{n}\|A\|_{\mathcal{N}}\|B\|_{\mathcal{N}} \\
\int_{\mathbb{C}^{n}} A * B(z) d z & =(\pi t)^{n} \operatorname{tr}(A) \operatorname{tr}(B)
\end{aligned}
$$

need a new proof (unless $p=2$, then the same proof can be utilized). Idea: Verify the identity by direct computations for $A=f_{1} \otimes g_{1}$ and $B=f_{2} \otimes g_{2}$, where $f_{j}, g_{j} \in \mathcal{P}\left[z_{1}, \ldots, z_{n}\right]$. This is done by somewhat lengthy computations involving the reproducing kernel structure.

QHA on the Fock space

On this level, all the properties of QHA we have encountered in the Schrödinger picture carry over. Almost all properties follow the same proof. One notable exception: The properties of $A * B$,

$$
\begin{aligned}
\|A * B\|_{L^{1}} & \leq(\pi t)^{n}\|A\|_{\mathcal{N}}\|B\|_{\mathcal{N}} \\
\int_{\mathbb{C}^{n}} A * B(z) d z & =(\pi t)^{n} \operatorname{tr}(A) \operatorname{tr}(B)
\end{aligned}
$$

need a new proof (unless $p=2$, then the same proof can be utilized). Idea: Verify the identity by direct computations for $A=f_{1} \otimes g_{1}$ and $B=f_{2} \otimes g_{2}$, where $f_{j}, g_{j} \in \mathcal{P}\left[z_{1}, \ldots, z_{n}\right]$. This is done by somewhat lengthy computations involving the reproducing kernel structure. Then, use that finite rank operators are dense in $\mathcal{N}\left(F_{t}^{p}\right)$ and polynomials are dense in F_{t}^{p}.

QHA on the Fock space

Since F_{t}^{p} is reflexive, we can identify $\mathcal{N}\left(F_{t}^{p}\right)^{\prime} \cong \mathcal{L}\left(F_{t}^{p}\right)$ under the trace duality:

QHA on the Fock space

Since F_{t}^{p} is reflexive, we can identify $\mathcal{N}\left(F_{t}^{p}\right)^{\prime} \cong \mathcal{L}\left(F_{t}^{p}\right)$ under the trace duality: Given $A \in \mathcal{L}\left(F_{t}^{p}\right)$,

$$
B \mapsto \operatorname{tr}(A B)
$$

is a bounded linear functional on $\mathcal{N}\left(F_{t}^{p}\right)$, and this is all of $\mathcal{N}\left(F_{t}^{p}\right)^{\prime}$.

QHA on the Fock space

Since F_{t}^{p} is reflexive, we can identify $\mathcal{N}\left(F_{t}^{p}\right)^{\prime} \cong \mathcal{L}\left(F_{t}^{p}\right)$ under the trace duality: Given $A \in \mathcal{L}\left(F_{t}^{p}\right)$,

$$
B \mapsto \operatorname{tr}(A B)
$$

is a bounded linear functional on $\mathcal{N}\left(F_{t}^{p}\right)$, and this is all of $\mathcal{N}\left(F_{t}^{p}\right)^{\prime}$. In particular, we can continue the convolution operators of QHA to one factor being in $L^{\infty}\left(\mathbb{C}^{n}\right)$ or $\mathcal{L}\left(F_{t}^{p}\right)$ by the same duality arguments.

QHA on the Fock space

As in the Schrödinger picture, we consider the strongly continuous elements of the group actions:

QHA on the Fock space

As in the Schrödinger picture, we consider the strongly continuous elements of the group actions:

$$
\begin{aligned}
\mathcal{C}_{0}: & =\left\{f \in L^{\infty}\left(\mathbb{C}^{n}\right) ; z \mapsto \alpha_{z}(f) \text { is }\|\cdot\|_{\infty} \text {-cont. }\right\} \\
& =\operatorname{BUC}\left(\mathbb{C}^{n}\right) \\
\mathcal{C}_{1}^{p, t}: & =\left\{A \in \mathcal{L}\left(F_{t}^{p}\right) ; z \mapsto \alpha_{z}(A) \text { is }\|\cdot\|_{o p} \text {-cont. }\right\}
\end{aligned}
$$

Correspondence Theory

Let $\mathcal{D}_{0} \subset L^{\infty}\left(\mathbb{C}^{n}\right)$ and $\mathcal{D}_{1} \subset \mathcal{L}\left(F_{t}^{p}\right)$ be α-invariant. $\left(\mathcal{D}_{0}, \mathcal{D}_{1}\right)$ is said to be a pair of Corresponding Spaces if:

Correspondence Theory

Let $\mathcal{D}_{0} \subset L^{\infty}\left(\mathbb{C}^{n}\right)$ and $\mathcal{D}_{1} \subset \mathcal{L}\left(F_{t}^{p}\right)$ be α-invariant. $\left(\mathcal{D}_{0}, \mathcal{D}_{1}\right)$ is said to be a pair of Corresponding Spaces if:

$$
\mathcal{N}\left(F_{t}^{p}\right) * \mathcal{D}_{0} \subset \mathcal{D}_{1}, \quad \mathcal{N}\left(F_{t}^{p}\right) * \mathcal{D}_{1} \subset \mathcal{D}_{0}
$$

Correspondence Theory

Let $\mathcal{D}_{0} \subset L^{\infty}\left(\mathbb{C}^{n}\right)$ and $\mathcal{D}_{1} \subset \mathcal{L}\left(F_{t}^{p}\right)$ be α-invariant. $\left(\mathcal{D}_{0}, \mathcal{D}_{1}\right)$ is said to be a pair of Corresponding Spaces if:

$$
\mathcal{N}\left(F_{t}^{p}\right) * \mathcal{D}_{0} \subset \mathcal{D}_{1}, \quad \mathcal{N}\left(F_{t}^{p}\right) * \mathcal{D}_{1} \subset \mathcal{D}_{0}
$$

Besides some general properties of such pairs, R. F. Werner proved that there is a $1: 1$ correspondence between certain spaces on the classical and operator side in the above sense.

Correspondence Theory

Let $\mathcal{D}_{0} \subset L^{\infty}\left(\mathbb{C}^{n}\right)$ and $\mathcal{D}_{1} \subset \mathcal{L}\left(F_{t}^{p}\right)$ be α-invariant. $\left(\mathcal{D}_{0}, \mathcal{D}_{1}\right)$ is said to be a pair of Corresponding Spaces if:

$$
\mathcal{N}\left(F_{t}^{p}\right) * \mathcal{D}_{0} \subset \mathcal{D}_{1}, \quad \mathcal{N}\left(F_{t}^{p}\right) * \mathcal{D}_{1} \subset \mathcal{D}_{0}
$$

Besides some general properties of such pairs, R. F. Werner proved that there is a $1: 1$ correspondence between certain spaces on the classical and operator side in the above sense. For this, recall that $A \in \mathcal{N}\left(F_{t}^{p}\right)$ is called a regular operator if $\operatorname{span}\left\{\alpha_{z}(A) ; z \in \mathbb{C}^{n}\right\}$ is dense in $\mathcal{N}\left(F_{t}^{p}\right)$.

The Correspondence Theorem

Theorem (R.F. Werner, 1984)

The Correspondence Theorem

Theorem (R.F. Werner, 1984)

- If $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ is a closed and α-invariant subspace, then there is exactly one closed, α-invariant subspace $\mathcal{D}_{1} \subset \mathcal{C}_{1}^{p, t}$ such that \mathcal{D}_{0} and \mathcal{D}_{1} are corresponding spaces.

The Correspondence Theorem

Theorem (R.F. Werner, 1984)

- If $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ is a closed and α-invariant subspace, then there is exactly one closed, α-invariant subspace $\mathcal{D}_{1} \subset \mathcal{C}_{1}^{p, t}$ such that \mathcal{D}_{0} and \mathcal{D}_{1} are corresponding spaces.
- If $\mathcal{D}_{1} \subset \mathcal{C}_{1}^{p, t}$ is a closed and α-invariant subspace, then there is exactly one closed, α-invariant subspace $\mathcal{D}_{0} \subset B \cup C\left(\mathbb{C}^{n}\right)$ such that \mathcal{D}_{0} and \mathcal{D}_{1} are corresponding spaces.

The Correspondence Theorem

Theorem (R.F. Werner, 1984)

- If $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ is a closed and α-invariant subspace, then there is exactly one closed, α-invariant subspace $\mathcal{D}_{1} \subset \mathcal{C}_{1}^{p, t}$ such that \mathcal{D}_{0} and \mathcal{D}_{1} are corresponding spaces.
- If $\mathcal{D}_{1} \subset \mathcal{C}_{1}^{p, t}$ is a closed and α-invariant subspace, then there is exactly one closed, α-invariant subspace $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ such that \mathcal{D}_{0} and \mathcal{D}_{1} are corresponding spaces.
- Let A be a regular operator. Then, the corresponding spaces above are given by

$$
\mathcal{D}_{1}=\overline{A * \mathcal{D}_{0}}, \quad \mathcal{D}_{0}=\overline{A * \mathcal{D}_{1}}
$$

- Let A be a regular operator, $\mathcal{D}_{0}, \mathcal{D}_{1}$ as above and $f \in \operatorname{BUC}\left(\mathbb{C}^{n}\right)$, $B \in \mathcal{C}_{1}^{p, t}$. Then, we have:

$$
f \in \mathcal{D}_{0} \Leftrightarrow A * f \in \mathcal{D}_{1}, \quad B \in \mathcal{D}_{1} \Leftrightarrow B * A \in \mathcal{D}_{0}
$$

Toeplitz operators and QHA

The connection between Toeplitz operators and QHA is now given as follows: For $f \in L^{\infty}\left(\mathbb{C}^{n}\right)$ it is:

$$
(1 \otimes 1) * f=(\pi t)^{n} T_{f}^{t}
$$

Toeplitz operators and QHA

The connection between Toeplitz operators and QHA is now given as follows: For $f \in L^{\infty}\left(\mathbb{C}^{n}\right)$ it is:

$$
(1 \otimes 1) * f=(\pi t)^{n} T_{f}^{t}
$$

In particular, $T_{f}^{t} \in \mathcal{C}_{1}^{p, t}$!

Toeplitz operators and QHA

The connection between Toeplitz operators and QHA is now given as follows: For $f \in L^{\infty}\left(\mathbb{C}^{n}\right)$ it is:

$$
(1 \otimes 1) * f=(\pi t)^{n} T_{f}^{t}
$$

In particular, $T_{f}^{t} \in \mathcal{C}_{1}^{p, t}$! Further, for $A \in \mathcal{L}\left(F_{t}^{p}\right)$:

$$
(1 \otimes 1) * A=\widetilde{A}
$$

Toeplitz operators and QHA

The connection between Toeplitz operators and QHA is now given as follows: For $f \in L^{\infty}\left(\mathbb{C}^{n}\right)$ it is:

$$
(1 \otimes 1) * f=(\pi t)^{n} T_{f}^{t}
$$

In particular, $T_{f}^{t} \in \mathcal{C}_{1}^{p, t}$! Further, for $A \in \mathcal{L}\left(F_{t}^{p}\right)$:

$$
(1 \otimes 1) * A=\widetilde{A}
$$

Since the Berezin transform

$$
\begin{aligned}
\mathcal{L}\left(F_{t}^{p}\right) & \rightarrow L^{\infty}\left(\mathbb{C}^{n}\right) \\
A & \mapsto \widetilde{A}=(1 \otimes 1) * A
\end{aligned}
$$

is injective,

Toeplitz operators and QHA

The connection between Toeplitz operators and QHA is now given as follows: For $f \in L^{\infty}\left(\mathbb{C}^{n}\right)$ it is:

$$
(1 \otimes 1) * f=(\pi t)^{n} T_{f}^{t}
$$

In particular, $T_{f}^{t} \in \mathcal{C}_{1}^{p, t}$! Further, for $A \in \mathcal{L}\left(F_{t}^{p}\right)$:

$$
(1 \otimes 1) * A=\widetilde{A}
$$

Since the Berezin transform

$$
\begin{aligned}
\mathcal{L}\left(F_{t}^{p}\right) & \rightarrow L^{\infty}\left(\mathbb{C}^{n}\right) \\
A & \mapsto \widetilde{A}=(1 \otimes 1) * A
\end{aligned}
$$

is injective, its pre-dual

$$
\begin{array}{r}
L^{1}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{N}\left(F_{t}^{p}\right) \\
\quad f \mapsto(1 \otimes 1) * f
\end{array}
$$

has dense range.

Toeplitz operators and QHA

It is not hard to see that

$$
\left\{(1 \otimes 1) * f ; f \in L^{1}\left(\mathbb{C}^{n}\right)\right\} \subset \overline{\operatorname{span}}\left\{\alpha_{z}(1 \otimes 1) ; z \in \mathbb{C}^{n}\right\}
$$

Toeplitz operators and QHA

It is not hard to see that

$$
\left\{(1 \otimes 1) * f ; f \in L^{1}\left(\mathbb{C}^{n}\right)\right\} \subset \overline{\operatorname{span}}\left\{\alpha_{z}(1 \otimes 1) ; z \in \mathbb{C}^{n}\right\}
$$

Hence, the operator $1 \otimes 1$ is regular. This shows the Toeplitz version of the Correspondence Theorem:

Toeplitz operators and QHA

It is not hard to see that

$$
\left\{(1 \otimes 1) * f ; f \in L^{1}\left(\mathbb{C}^{n}\right)\right\} \subset \overline{\operatorname{span}}\left\{\alpha_{z}(1 \otimes 1) ; z \in \mathbb{C}^{n}\right\}
$$

Hence, the operator $1 \otimes 1$ is regular. This shows the Toeplitz version of the Correspondence Theorem:

Theorem (Correspondence Theorem - Toeplitz operator version) Let $A \in \mathcal{C}_{1}^{p, t}$ and $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ an α-invariant and closed subspace. Then,

$$
A \in \mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right) \Leftrightarrow \widetilde{A} \in \mathcal{D}_{0}
$$

Toeplitz operators and QHA

It is not hard to see that

$$
\left\{(1 \otimes 1) * f ; f \in L^{1}\left(\mathbb{C}^{n}\right)\right\} \subset \overline{\operatorname{span}}\left\{\alpha_{z}(1 \otimes 1) ; z \in \mathbb{C}^{n}\right\}
$$

Hence, the operator $1 \otimes 1$ is regular. This shows the Toeplitz version of the Correspondence Theorem:

Theorem (Correspondence Theorem - Toeplitz operator version)
Let $A \in \mathcal{C}_{1}^{p, t}$ and $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ an α-invariant and closed subspace. Then,

$$
A \in \mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right) \Leftrightarrow \widetilde{A} \in \mathcal{D}_{0}
$$

Here, we used the notation

$$
\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right):=\overline{\left\{T_{f}^{t} \in \mathcal{L}\left(F_{t}^{p}\right) ; f \in \mathcal{D}_{0}\right\}}
$$

Toeplitz operators and QHA

It is not hard to see that

$$
\left\{(1 \otimes 1) * f ; f \in L^{1}\left(\mathbb{C}^{n}\right)\right\} \subset \overline{\operatorname{span}}\left\{\alpha_{z}(1 \otimes 1) ; z \in \mathbb{C}^{n}\right\}
$$

Hence, the operator $1 \otimes 1$ is regular. This shows the Toeplitz version of the Correspondence Theorem:

Theorem (Correspondence Theorem - Toeplitz operator version)
Let $A \in \mathcal{C}_{1}^{p, t}$ and $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ an α-invariant and closed subspace. Then,

$$
A \in \mathcal{T}_{l i n}^{p, t}\left(\mathcal{D}_{0}\right) \Leftrightarrow \widetilde{A} \in \mathcal{D}_{0}
$$

Here, we used the notation

$$
\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right):=\overline{\left\{T_{f}^{t} \in \mathcal{L}\left(F_{t}^{p}\right) ; f \in \mathcal{D}_{0}\right\}}
$$

Let us give some simple applications of QHA to the theory of Toeplitz operators!

Toeplitz operators and QHA

We set $\mathcal{T}^{p, t}:=\overline{\operatorname{Alg}}\left\{T_{f}^{t} \in \mathcal{L}\left(F_{t}^{p}\right) ; f \in L^{\infty}\left(\mathbb{C}^{n}\right)\right\} \subset \mathcal{C}_{1}^{p, t}$.

Toeplitz operators and QHA

We set $\mathcal{T}^{p, t}:=\overline{\operatorname{Alg}}\left\{T_{f}^{t} \in \mathcal{L}\left(F_{t}^{p}\right) ; f \in L^{\infty}\left(\mathbb{C}^{n}\right)\right\} \subset \mathcal{C}_{1}^{p, t}$.
Theorem (J. Xia '15, RF '20)
It is

$$
\mathcal{T}^{p, t}=\mathcal{T}_{\text {lin }}^{p, t}\left(\mathrm{BUC}\left(\mathbb{C}^{n}\right)\right)
$$

Toeplitz operators and QHA

We set $\mathcal{T}^{p, t}:=\overline{\operatorname{Alg}}\left\{T_{f}^{t} \in \mathcal{L}\left(F_{t}^{p}\right) ; f \in L^{\infty}\left(\mathbb{C}^{n}\right)\right\} \subset \mathcal{C}_{1}^{p, t}$.
Theorem (J. Xia '15, RF '20)
It is

$$
\mathcal{T}^{p, t}=\mathcal{T}_{\text {lin }}^{p, t}\left(\mathrm{BUC}\left(\mathbb{C}^{n}\right)\right) .
$$

Proof.
Let $A \in \mathcal{T}^{p, t}$. Then, $\widetilde{A}=(1 \otimes 1) * A \in B \cup C\left(\mathbb{C}^{n}\right)$, hence $A \in \mathcal{T}_{\text {lin }}^{p, t}\left(B \cup C\left(\mathbb{C}^{n}\right)\right)$.

Toeplitz operators and QHA

We set $\mathcal{T}^{p, t}:=\overline{\operatorname{Alg}}\left\{T_{f}^{t} \in \mathcal{L}\left(F_{t}^{p}\right) ; f \in L^{\infty}\left(\mathbb{C}^{n}\right)\right\} \subset \mathcal{C}_{1}^{p, t}$.
Theorem (J. Xia '15, RF '20)
It is

$$
\mathcal{T}^{p, t}=\mathcal{T}_{\text {lin }}^{p, t}\left(\mathrm{BUC}\left(\mathbb{C}^{n}\right)\right)
$$

Proof.
Let $A \in \mathcal{T}^{p, t}$. Then, $\widetilde{A}=(1 \otimes 1) * A \in \operatorname{BUC}\left(\mathbb{C}^{n}\right)$, hence $A \in \mathcal{T}_{\text {lin }}^{p, t}\left(\operatorname{BUC}\left(\mathbb{C}^{n}\right)\right)$.

The initial proof by Xia only worked for $p=2$ and filled a somewhat lengthy, very technical paper ${ }^{1}$

[^0]
Toeplitz operators and QHA

Note that the previous result implies that $\mathcal{T}^{p, t}=\mathcal{C}_{1}^{p, t}$!

Toeplitz operators and QHA

Note that the previous result implies that $\mathcal{T}^{p, t}=\mathcal{C}_{1}^{p, t}$!
Theorem (W. Bauer, J. Isralowitz '12)
Let $A \in \mathcal{L}\left(F_{t}^{p}\right)$. Then,

$$
A \in \mathcal{K}\left(F_{t}^{p}\right) \Leftrightarrow A \in \mathcal{T}^{p, t} \text { and } \widetilde{A} \in C_{0}\left(\mathbb{C}^{n}\right)
$$

```
Proof.
QHA shows that \(T_{f}^{t} \in \mathcal{K}\left(F_{t}^{p}\right)\) whenever \(f \in C_{c}\left(\mathbb{C}^{n}\right)\).
```

Proof.
QHA shows that $T_{f}^{t} \in \mathcal{K}\left(F_{t}^{p}\right)$ whenever $f \in C_{c}\left(\mathbb{C}^{n}\right)$. Hence, we obtain

$$
\mathcal{T}_{\text {lin }}^{p, t}\left(C_{0}\left(\mathbb{C}^{n}\right)\right) \subset \mathcal{K}\left(F_{t}^{p}\right)
$$

Proof.
QHA shows that $T_{f}^{t} \in \mathcal{K}\left(F_{t}^{p}\right)$ whenever $f \in C_{c}\left(\mathbb{C}^{n}\right)$. Hence, we obtain

$$
\mathcal{T}_{\text {lin }}^{p, t}\left(C_{0}\left(\mathbb{C}^{n}\right)\right) \subset \mathcal{K}\left(F_{t}^{p}\right)
$$

Further, $\widetilde{A} \in C_{0}\left(\mathbb{C}^{n}\right)$ whenever $A \in \mathcal{K}\left(F_{t}^{p}\right)$: This is because $k_{z}^{t} \xrightarrow{w} 0$ as $|z| \rightarrow \infty$.

Proof.
QHA shows that $T_{f}^{t} \in \mathcal{K}\left(F_{t}^{p}\right)$ whenever $f \in C_{c}\left(\mathbb{C}^{n}\right)$. Hence, we obtain

$$
\mathcal{T}_{\text {lin }}^{p, t}\left(C_{0}\left(\mathbb{C}^{n}\right)\right) \subset \mathcal{K}\left(F_{t}^{p}\right)
$$

Further, $\widetilde{A} \in C_{0}\left(\mathbb{C}^{n}\right)$ whenever $A \in \mathcal{K}\left(F_{t}^{p}\right)$: This is because $k_{z}^{t} \xrightarrow{w} 0$ as $|z| \rightarrow \infty$. Since $\mathcal{K}\left(F_{t}^{p}\right) \subset \mathcal{C}_{1}^{p, t}$,

Proof.
QHA shows that $T_{f}^{t} \in \mathcal{K}\left(F_{t}^{p}\right)$ whenever $f \in C_{c}\left(\mathbb{C}^{n}\right)$. Hence, we obtain

$$
\mathcal{T}_{\text {lin }}^{p, t}\left(C_{0}\left(\mathbb{C}^{n}\right)\right) \subset \mathcal{K}\left(F_{t}^{p}\right)
$$

Further, $\widetilde{A} \in C_{0}\left(\mathbb{C}^{n}\right)$ whenever $A \in \mathcal{K}\left(F_{t}^{p}\right)$: This is because $k_{z}^{t} \xrightarrow{w} 0$ as $|z| \rightarrow \infty$. Since $\mathcal{K}\left(F_{t}^{p}\right) \subset \mathcal{C}_{1}^{p, t}$, we obtain that

$$
\mathcal{K}\left(F_{t}^{p}\right)=\mathcal{T}_{\text {lin }}^{p, t}\left(C_{0}\left(\mathbb{C}^{n}\right)\right)
$$

Proof.
QHA shows that $T_{f}^{t} \in \mathcal{K}\left(F_{t}^{p}\right)$ whenever $f \in C_{c}\left(\mathbb{C}^{n}\right)$. Hence, we obtain

$$
\mathcal{T}_{\text {lin }}^{p, t}\left(C_{0}\left(\mathbb{C}^{n}\right)\right) \subset \mathcal{K}\left(F_{t}^{p}\right)
$$

Further, $\widetilde{A} \in C_{0}\left(\mathbb{C}^{n}\right)$ whenever $A \in \mathcal{K}\left(F_{t}^{p}\right)$: This is because $k_{z}^{t} \xrightarrow{w} 0$ as $|z| \rightarrow \infty$. Since $\mathcal{K}\left(F_{t}^{p}\right) \subset \mathcal{C}_{1}^{p, t}$, we obtain that

$$
\mathcal{K}\left(F_{t}^{p}\right)=\mathcal{T}_{l i n}^{p, t}\left(C_{0}\left(\mathbb{C}^{n}\right)\right)
$$

Now, apply the Correspondence Theorem to finish the proof.

Proof.
QHA shows that $T_{f}^{t} \in \mathcal{K}\left(F_{t}^{p}\right)$ whenever $f \in C_{c}\left(\mathbb{C}^{n}\right)$. Hence, we obtain

$$
\mathcal{T}_{\text {lin }}^{p, t}\left(C_{0}\left(\mathbb{C}^{n}\right)\right) \subset \mathcal{K}\left(F_{t}^{p}\right)
$$

Further, $\widetilde{A} \in C_{0}\left(\mathbb{C}^{n}\right)$ whenever $A \in \mathcal{K}\left(F_{t}^{p}\right)$: This is because $k_{z}^{t} \xrightarrow{w} 0$ as $|z| \rightarrow \infty$. Since $\mathcal{K}\left(F_{t}^{p}\right) \subset \mathcal{C}_{1}^{p, t}$, we obtain that

$$
\mathcal{K}\left(F_{t}^{p}\right)=\mathcal{T}_{l i n}^{p, t}\left(C_{0}\left(\mathbb{C}^{n}\right)\right)
$$

Now, apply the Correspondence Theorem to finish the proof.
Note that this argument involving the Correspondence Theorem is also significantly shorter than the original proof ${ }^{2}$

[^1]
QHA and Toeplitz operators

There are several other things QHA can contribute to the theory of Toeplitz operators. Now we want to ask: What can Toeplitz operators provide to the theory of QHA?

QHA and Toeplitz operators

There are several other things QHA can contribute to the theory of Toeplitz operators. Now we want to ask: What can Toeplitz operators provide to the theory of QHA?
There are several simple properties that "go through the correspondence":
If $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right), \mathcal{D}_{1} \subset \mathcal{C}_{1}^{p, t}$ closed, α-invariant corresponding spaces, then:

QHA and Toeplitz operators

There are several other things QHA can contribute to the theory of Toeplitz operators. Now we want to ask: What can Toeplitz operators provide to the theory of QHA?
There are several simple properties that "go through the correspondence": If $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right), \mathcal{D}_{1} \subset \mathcal{C}_{1}^{p, t}$ closed, α-invariant corresponding spaces, then:

- \mathcal{D}_{0} is U-invariant iff \mathcal{D}_{1} is U-invariant;

QHA and Toeplitz operators

There are several other things QHA can contribute to the theory of Toeplitz operators. Now we want to ask: What can Toeplitz operators provide to the theory of QHA?
There are several simple properties that "go through the correspondence": If $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right), \mathcal{D}_{1} \subset \mathcal{C}_{1}^{p, t}$ closed, α-invariant corresponding spaces, then:

- \mathcal{D}_{0} is U-invariant iff \mathcal{D}_{1} is U-invariant;
- \mathcal{D}_{0} is self-adjoint iff \mathcal{D}_{1} is self-adjoint $(p=2)$;

QHA and Toeplitz operators

There are several other things QHA can contribute to the theory of Toeplitz operators. Now we want to ask: What can Toeplitz operators provide to the theory of QHA?
There are several simple properties that "go through the correspondence": If $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right), \mathcal{D}_{1} \subset \mathcal{C}_{1}^{p, t}$ closed, α-invariant corresponding spaces, then:

- \mathcal{D}_{0} is U-invariant iff \mathcal{D}_{1} is U-invariant;
- \mathcal{D}_{0} is self-adjoint iff \mathcal{D}_{1} is self-adjoint $(p=2)$;
- \mathcal{D}_{0} contains 1 iff \mathcal{D}_{1} contains 1 ;
- ...

QHA and Toeplitz operators

There are several other things QHA can contribute to the theory of Toeplitz operators. Now we want to ask: What can Toeplitz operators provide to the theory of QHA?
There are several simple properties that "go through the correspondence": If $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right), \mathcal{D}_{1} \subset \mathcal{C}_{1}^{p, t}$ closed, α-invariant corresponding spaces, then:

- \mathcal{D}_{0} is U-invariant iff \mathcal{D}_{1} is U-invariant;
- \mathcal{D}_{0} is self-adjoint iff \mathcal{D}_{1} is self-adjoint $(p=2)$;
- \mathcal{D}_{0} contains 1 iff \mathcal{D}_{1} contains 1 ;
- ...

Werner's original paper contains a long list off properties that are "correspondence invariant". Nevertheless, he struggled with one particular property:

QHA and Toeplitz operators

There are several other things QHA can contribute to the theory of Toeplitz operators. Now we want to ask: What can Toeplitz operators provide to the theory of QHA?
There are several simple properties that "go through the correspondence": If $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right), \mathcal{D}_{1} \subset \mathcal{C}_{1}^{p, t}$ closed, α-invariant corresponding spaces, then:

- \mathcal{D}_{0} is U-invariant iff \mathcal{D}_{1} is U-invariant;
- \mathcal{D}_{0} is self-adjoint iff \mathcal{D}_{1} is self-adjoint $(p=2)$;
- \mathcal{D}_{0} contains 1 iff \mathcal{D}_{1} contains 1 ;

Werner's original paper contains a long list off properties that are "correspondence invariant". Nevertheless, he struggled with one particular property:

It would be particularly interesting with what qualifications (if any)
"a C*-algebra" can be added to the above list.

QHA and Toeplitz operators

Theorem (RF '20, S. Wu - X. Zhao '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and α-invariant. Then, the following are equivalent:

QHA and Toeplitz operators

Theorem (RF '20, S. Wu - X. Zhao '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and α-invariant. Then, the following are equivalent:

- \mathcal{D}_{0} is a Banach algebra;

QHA and Toeplitz operators

Theorem (RF '20, S. Wu - X. Zhao '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and α-invariant. Then, the following are equivalent:

- \mathcal{D}_{0} is a Banach algebra;
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for all p and all $t>0$;

QHA and Toeplitz operators

Theorem (RF '20, S. Wu - X. Zhao '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and α-invariant. Then, the following are equivalent:

- \mathcal{D}_{0} is a Banach algebra;
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for all p and all $t>0$;
- $\mathcal{T}_{\text {lin }}^{2, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for all $t>0$.

QHA and Toeplitz operators

Theorem (RF '20, S. Wu - X. Zhao '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and α-invariant subalgebra. Further, let $\mathcal{I}_{0} \subset \mathcal{D}_{0}$ be closed and α-invariant. Then, the following are equivalent:

QHA and Toeplitz operators

Theorem (RF '20, S. Wu - X. Zhao '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and α-invariant subalgebra. Further, let $\mathcal{I}_{0} \subset \mathcal{D}_{0}$ be closed and α-invariant. Then, the following are equivalent:

- \mathcal{I}_{0} is an ideal in \mathcal{D}_{0};

QHA and Toeplitz operators

Theorem (RF '20, S. Wu - X. Zhao '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and α-invariant subalgebra. Further, let $\mathcal{I}_{0} \subset \mathcal{D}_{0}$ be closed and α-invariant. Then, the following are equivalent:

- \mathcal{I}_{0} is an ideal in \mathcal{D}_{0};
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{I}_{0}\right)$ is a left- or right-ideal in $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ for all p and all $t>0$;

QHA and Toeplitz operators

Theorem (RF '20, S. Wu - X. Zhao '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and α-invariant subalgebra. Further, let $\mathcal{I}_{0} \subset \mathcal{D}_{0}$ be closed and α-invariant. Then, the following are equivalent:

- \mathcal{I}_{0} is an ideal in \mathcal{D}_{0};
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{I}_{0}\right)$ is a left- or right-ideal in $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ for all p and all $t>0$;
- $\mathcal{T}_{\text {lin }}^{2, t}\left(\mathcal{I}_{0}\right)$ is a left- or right-ideal in $\mathcal{T}_{\text {lin }}^{2, t}\left(\mathcal{D}_{0}\right)$ for all $t>0$;

QHA and Toeplitz operators

Theorem (RF '20, S. Wu - X. Zhao '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and α-invariant subalgebra. Further, let $\mathcal{I}_{0} \subset \mathcal{D}_{0}$ be closed and α-invariant. Then, the following are equivalent:

- \mathcal{I}_{0} is an ideal in \mathcal{D}_{0};
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{I}_{0}\right)$ is a left- or right-ideal in $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ for all p and all $t>0$;
- $\mathcal{T}_{\text {lin }}^{2, t}\left(\mathcal{I}_{0}\right)$ is a left- or right-ideal in $\mathcal{T}_{\text {lin }}^{2, t}\left(\mathcal{D}_{0}\right)$ for all $t>0$;

For an improvement of the theorem, we introduce the following group action of \mathbb{R}_{+}on $L^{\infty}\left(\mathbb{C}^{n}\right)$:

$$
\delta_{\lambda} f(z)=f(\lambda z), \quad \lambda>0
$$

QHA and Toeplitz operators

Theorem (RF '20, S. Wu - X. Zhao '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and α-invariant subalgebra. Further, let $\mathcal{I}_{0} \subset \mathcal{D}_{0}$ be closed and α-invariant. Then, the following are equivalent:

- \mathcal{I}_{0} is an ideal in \mathcal{D}_{0};
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{I}_{0}\right)$ is a left- or right-ideal in $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ for all p and all $t>0$;
- $\mathcal{T}_{\text {lin }}^{2, t}\left(\mathcal{I}_{0}\right)$ is a left- or right-ideal in $\mathcal{T}_{\text {lin }}^{2, t}\left(\mathcal{D}_{0}\right)$ for all $t>0$;

For an improvement of the theorem, we introduce the following group action of \mathbb{R}_{+}on $L^{\infty}\left(\mathbb{C}^{n}\right)$:

$$
\delta_{\lambda} f(z)=f(\lambda z), \quad \lambda>0
$$

We say that a subspace $\mathcal{D}_{0} \subset L^{\infty}\left(\mathbb{C}^{n}\right)$ is δ-invariant if $\delta_{\lambda} f \in \mathcal{D}_{0}$ whenever $f \in \mathcal{D}_{0}, \lambda>0$.

QHA and Toeplitz operators

Theorem (RF '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and both α - and δ-invariant. Then, TFAE:

QHA and Toeplitz operators

Theorem (RF '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and both α - and δ-invariant. Then, TFAE:

- \mathcal{D}_{0} is a Banach algebra;

QHA and Toeplitz operators

Theorem (RF '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and both α - and δ-invariant. Then, TFAE:

- \mathcal{D}_{0} is a Banach algebra;
- $\mathcal{T}_{\text {lin }}^{2, t_{0}}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for one $t_{0}>0$.

QHA and Toeplitz operators

Theorem (RF '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and both α - and δ-invariant. Then, TFAE:

- \mathcal{D}_{0} is a Banach algebra;
- $\mathcal{T}_{\text {lin }}^{2, t_{0}}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for one $t_{0}>0$.
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for all p and all $t>0$

QHA and Toeplitz operators

Theorem (RF '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and both α - and δ-invariant. Then, TFAE:

- \mathcal{D}_{0} is a Banach algebra;
- $\mathcal{T}_{\text {lin }}^{2, t_{0}}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for one $t_{0}>0$.
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for all p and all $t>0$

If further $\mathcal{I}_{0} \subset \mathcal{D}_{0}$ is closed and both α - and δ-invariant, then TFAE:

QHA and Toeplitz operators

Theorem (RF '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and both α - and δ-invariant. Then, TFAE:

- \mathcal{D}_{0} is a Banach algebra;
- $\mathcal{T}_{\text {lin }}^{2, t_{0}}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for one $t_{0}>0$.
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for all p and all $t>0$

If further $\mathcal{I}_{0} \subset \mathcal{D}_{0}$ is closed and both α - and δ-invariant, then TFAE:

- \mathcal{I}_{0} is an ideal in \mathcal{D}_{0};

QHA and Toeplitz operators

Theorem (RF '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and both α - and δ-invariant. Then, TFAE:

- \mathcal{D}_{0} is a Banach algebra;
- $\mathcal{T}_{\text {lin }}^{2, t_{0}}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for one $t_{0}>0$.
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for all p and all $t>0$

If further $\mathcal{I}_{0} \subset \mathcal{D}_{0}$ is closed and both α - and δ-invariant, then TFAE:

- \mathcal{I}_{0} is an ideal in \mathcal{D}_{0};
- $\mathcal{T}_{\text {lin }}^{2, t_{0}}\left(\mathcal{I}_{0}\right)$ is an ideal (left or right) in $\mathcal{T}_{\text {lin }}^{2, t_{0}}\left(\mathcal{D}_{0}\right)$ for one $t_{0}>0$;

QHA and Toeplitz operators

Theorem (RF '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and both α - and δ-invariant. Then, TFAE:

- \mathcal{D}_{0} is a Banach algebra;
- $\mathcal{T}_{\text {lin }}^{2, t_{0}}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for one $t_{0}>0$.
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for all p and all $t>0$

If further $\mathcal{I}_{0} \subset \mathcal{D}_{0}$ is closed and both α - and δ-invariant, then TFAE:

- \mathcal{I}_{0} is an ideal in \mathcal{D}_{0};
- $\mathcal{T}_{\text {lin }}^{2, t_{0}}\left(\mathcal{I}_{0}\right)$ is an ideal (left or right) in $\mathcal{T}_{\text {lin }}^{2, t_{0}}\left(\mathcal{D}_{0}\right)$ for one $t_{0}>0$;
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{I}_{0}\right)$ is an ideal in $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ for all p and all $t>0$;

QHA and Toeplitz operators

Theorem (RF '20, S. Wu - X. Zhao '21)
Let $\mathcal{D}_{0} \subset \operatorname{BUC}\left(\mathbb{C}^{n}\right)$ be closed and α-invariant. Then, the following are equivalent:

- \mathcal{D}_{0} is a Banach algebra;
- $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for any p and all $t>0$;
- $\mathcal{T}_{\text {lin }}^{2, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra for all $t>0$.

QHA and Toeplitz operators

Let us sketch the proof of one of the statements. We want to show that if \mathcal{D}_{0} is an α-invariant closed subalgebra of $\operatorname{BUC}\left(\mathbb{C}^{n}\right)$, then $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra.

QHA and Toeplitz operators

Let us sketch the proof of one of the statements. We want to show that if \mathcal{D}_{0} is an α-invariant closed subalgebra of $\operatorname{BUC}\left(\mathbb{C}^{n}\right)$, then $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra.
We present the proof of Wu and Zhao^{3} in the context of QHA.

[^2]
QHA and Toeplitz operators

Let us sketch the proof of one of the statements. We want to show that if \mathcal{D}_{0} is an α-invariant closed subalgebra of $\operatorname{BUC}\left(\mathbb{C}^{n}\right)$, then $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra.
We present the proof of Wu and Zhao^{3} in the context of QHA. Recall that each $A \in \mathcal{L}\left(F_{t}^{p}\right)$ is an integral operator:

$$
A f(z)=\int_{\mathbb{C}^{n}} f(w)\left\langle A K_{w}^{t}, K_{z}^{t}\right\rangle_{t} d \mu_{t}(w)
$$

[^3]
QHA and Toeplitz operators

Let us sketch the proof of one of the statements. We want to show that if \mathcal{D}_{0} is an α-invariant closed subalgebra of $\operatorname{BUC}\left(\mathbb{C}^{n}\right)$, then $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is a Banach algebra.
We present the proof of Wu and Zhao^{3} in the context of QHA. Recall that each $A \in \mathcal{L}\left(F_{t}^{p}\right)$ is an integral operator:

$$
A f(z)=\int_{\mathbb{C}^{n}} f(w)\left\langle A K_{w}^{t}, K_{z}^{t}\right\rangle_{t} d \mu_{t}(w)
$$

There is a well-known formula on the kernel for the product of integral operators:

$$
k_{A B}(w, z)=\int_{\mathbb{C}^{n}} k_{A}(w, \xi) k_{B}(\xi, z) d \mu_{t}(\xi)
$$

[^4]
QHA and Toeplitz operators

Hence, for $A, B \in \mathcal{L}\left(F_{t}^{p}\right), A B$ is given as an integral operator with integral kernel

$$
k_{A B}(w, z)=\int_{\mathbb{C}^{n}}\left\langle A K_{w}^{t}, K_{\xi}^{t}\right\rangle_{t}\left\langle B K_{\xi}^{t}, K_{z}^{t}\right\rangle_{t} d \mu_{t}(\xi)
$$

QHA and Toeplitz operators

Hence, for $A, B \in \mathcal{L}\left(F_{t}^{p}\right), A B$ is given as an integral operator with integral kernel

$$
k_{A B}(w, z)=\int_{\mathbb{C}^{n}}\left\langle A K_{w}^{t}, K_{\xi}^{t}\right\rangle_{t}\left\langle B K_{\xi}^{t}, K_{z}^{t}\right\rangle_{t} d \mu_{t}(\xi)
$$

Comparing this expression with the Berezin transform of $A B$, it is not hard to see that the Berezin transform of $A B$ can be computed as

QHA and Toeplitz operators

Hence, for $A, B \in \mathcal{L}\left(F_{t}^{p}\right), A B$ is given as an integral operator with integral kernel

$$
k_{A B}(w, z)=\int_{\mathbb{C}^{n}}\left\langle A K_{w}^{t}, K_{\xi}^{t}\right\rangle_{t}\left\langle B K_{\xi}^{t}, K_{z}^{t}\right\rangle_{t} d \mu_{t}(\xi)
$$

Comparing this expression with the Berezin transform of $A B$, it is not hard to see that the Berezin transform of $A B$ can be computed as

$$
\widetilde{A B}(z)=\frac{1}{(\pi t)^{n}} \int_{\mathbb{C}^{n}}\left\langle A k_{z}^{t}, k_{\xi}^{t}\right\rangle_{t}\left\langle B k_{\xi}^{t}, k_{z}^{t}\right\rangle_{t} d \xi
$$

QHA and Toeplitz operators

Now, for $A \in \mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ and $f \in \mathcal{D}_{0}$:
$\widetilde{A T_{f}^{t}}(z)$

QHA and Toeplitz operators

Now, for $A \in \mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ and $f \in \mathcal{D}_{0}$:

$$
\widetilde{A T_{f}^{t}}(z) \cong \int_{\mathbb{C}^{n}}\left\langle A k_{z}^{t}, k_{\xi}^{t}\right\rangle_{t}\left\langle T_{f}^{t} k_{\xi}^{t}, k_{z}^{t}\right\rangle_{t} d \xi
$$

QHA and Toeplitz operators

Now, for $A \in \mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ and $f \in \mathcal{D}_{0}$:

$$
\begin{aligned}
\widetilde{A T_{f}^{t}}(z) & \cong \int_{\mathbb{C}^{n}}\left\langle A k_{z}^{t}, k_{\xi}^{t}\right\rangle_{t}\left\langle T_{f}^{t} k_{\xi}^{t}, k_{z}^{t}\right\rangle_{t} d \xi \\
& =\int_{\mathbb{C}^{n}}\left\langle A k_{z}^{t}, k_{\xi+z}^{t}\right\rangle_{t}\left\langle T_{f}^{t} k_{\xi+z}^{t}, k_{z}^{t}\right\rangle_{t} d \xi
\end{aligned}
$$

QHA and Toeplitz operators

Now, for $A \in \mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ and $f \in \mathcal{D}_{0}$:

$$
\begin{aligned}
\widetilde{A T_{f}^{t}}(z) & \cong \int_{\mathbb{C}^{n}}\left\langle A k_{z}^{t}, k_{\xi}^{t}\right\rangle_{t}\left\langle T_{f}^{t} k_{\xi}^{t}, k_{z}^{t}\right\rangle_{t} d \xi \\
& =\int_{\mathbb{C}^{n}}\left\langle A k_{z}^{t}, k_{\xi+z}^{t}\right\rangle_{t}\left\langle T_{f}^{t} k_{\xi+z}^{t}, k_{z}^{t}\right\rangle_{t} d \xi \\
& =\int_{\mathbb{C}^{n}}\left\langle A W_{z}^{t} 1, W_{z}^{t} k_{\xi}^{t}\right\rangle_{t}\left\langle T_{f}^{t} W_{z}^{t} k_{\xi}^{t}, W_{z}^{t} 1\right\rangle_{t} d \xi
\end{aligned}
$$

QHA and Toeplitz operators

Now, for $A \in \mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ and $f \in \mathcal{D}_{0}$:

$$
\begin{aligned}
\widetilde{A T_{f}^{t}}(z) & \cong \int_{\mathbb{C}^{n}}\left\langle A k_{z}^{t}, k_{\xi}^{t}\right\rangle_{t}\left\langle T_{f}^{t} k_{\xi}^{t}, k_{z}^{t}\right\rangle_{t} d \xi \\
& =\int_{\mathbb{C}^{n}}\left\langle A k_{z}^{t}, k_{\xi+z}^{t}\right\rangle_{t}\left\langle T_{f}^{t} k_{\xi+z}^{t}, k_{z}^{t}\right\rangle_{t} d \xi \\
& =\int_{\mathbb{C}^{n}}\left\langle A W_{z}^{t} 1, W_{z}^{t} k_{\xi}^{t}\right\rangle_{t}\left\langle T_{f}^{t} W_{z}^{t} k_{\xi}^{t}, W_{z}^{t} 1\right\rangle_{t} d \xi
\end{aligned}
$$

Observe that

$$
\left\langle A W_{z}^{t} k_{v}^{t}, W_{z}^{t} k_{w}^{t}\right\rangle_{t}=A *\left(k_{-v}^{t} \otimes k_{-w}^{t}\right)(z)
$$

QHA and Toeplitz operators

Now, for $A \in \mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ and $f \in \mathcal{D}_{0}$:

$$
\begin{aligned}
\widetilde{A T_{f}^{t}}(z) & \cong \int_{\mathbb{C}^{n}}\left\langle A k_{z}^{t}, k_{\xi}^{t}\right\rangle_{t}\left\langle T_{f}^{t} k_{\xi}^{t}, k_{z}^{t}\right\rangle_{t} d \xi \\
& =\int_{\mathbb{C}^{n}}\left\langle A k_{z}^{t}, k_{\xi+z}^{t}\right\rangle_{t}\left\langle T_{f}^{t} k_{\xi+z}^{t}, k_{z}^{t}\right\rangle_{t} d \xi \\
& =\int_{\mathbb{C}^{n}}\left\langle A W_{z}^{t} 1, W_{z}^{t} k_{\xi}^{t}\right\rangle_{t}\left\langle T_{f}^{t} W_{z}^{t} k_{\xi}^{t}, W_{z}^{t} 1\right\rangle_{t} d \xi
\end{aligned}
$$

Observe that

$$
\left\langle A W_{z}^{t} k_{v}^{t}, W_{z}^{t} k_{w}^{t}\right\rangle_{t}=A *\left(k_{-v}^{t} \otimes k_{-w}^{t}\right)(z)
$$

(and similarly for the other inner product), hence

$$
\left\langle A W_{(\cdot)}^{t} 1, W_{(\cdot)}^{t} k_{\xi}^{t}\right\rangle_{t},\left\langle T_{f}^{t} W_{(\cdot)}^{t} k_{\xi}^{t}, W_{(\cdot)}^{t} 1\right\rangle_{t} \in \mathcal{D}_{0}
$$

QHA and Toeplitz operators

Since we assumed that \mathcal{D}_{0} is an algebra,

$$
\left\langle A W_{(\cdot)}^{t} 1, W_{(\cdot)}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{(\cdot)}^{t} k_{\xi}^{t}, W_{(\cdot)}^{t} 1\right\rangle_{t} \in \mathcal{D}_{0}
$$

QHA and Toeplitz operators

Since we assumed that \mathcal{D}_{0} is an algebra,

$$
\left\langle A W_{(\cdot)}^{t} 1, W_{(\cdot)}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{(\cdot)}^{t} k_{\xi}^{t}, W_{(\cdot)}^{t} 1\right\rangle_{t} \in \mathcal{D}_{0}
$$

Further, we have the estimate

$$
\left|\left\langle A W_{z}^{t} 1, W_{z}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{z}^{t} k_{\xi}^{t}, W_{z}^{t} 1\right\rangle_{t}\right| \lesssim\|A\|_{o p}\left|\left\langle T_{\alpha_{-z}(f)} k_{\xi}^{t}, 1\right\rangle_{t}\right|
$$

QHA and Toeplitz operators

Since we assumed that \mathcal{D}_{0} is an algebra,

$$
\left\langle A W_{(\cdot)}^{t} 1, W_{(\cdot)}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{(\cdot)}^{t} k_{\xi}^{t}, W_{(\cdot)}^{t} 1\right\rangle_{t} \in \mathcal{D}_{0}
$$

Further, we have the estimate

$$
\begin{aligned}
& \left|\left\langle A W_{z}^{t} 1, W_{z}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{z}^{t} k_{\xi}^{t}, W_{z}^{t} 1\right\rangle_{t}\right| \lesssim\|A\|_{o p}\left|\left\langle T_{\alpha_{-z}(f)} k_{\xi}^{t}, 1\right\rangle_{t}\right| \\
& \quad=\|A\|_{o p}\left|\left\langle\alpha_{-z}(f) k_{\xi}^{t}, 1\right\rangle_{t}\right|
\end{aligned}
$$

QHA and Toeplitz operators

Since we assumed that \mathcal{D}_{0} is an algebra,

$$
\left\langle A W_{(\cdot)}^{t} 1, W_{(\cdot)}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{(\cdot)}^{t} k_{\xi}^{t}, W_{(\cdot)}^{t} 1\right\rangle_{t} \in \mathcal{D}_{0}
$$

Further, we have the estimate

$$
\begin{aligned}
& \left|\left\langle A W_{z}^{t} 1, W_{z}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{z}^{t} k_{\xi}^{t}, W_{z}^{t} 1\right\rangle_{t}\right| \lesssim\|A\|_{o p}\left|\left\langle T_{\alpha_{-z}(f)} k_{\xi}^{t}, 1\right\rangle_{t}\right| \\
& \quad=\|A\|_{o p}\left|\left\langle\alpha_{-z}(f) k_{\xi}^{t}, 1\right\rangle_{t}\right| \\
& \quad=\|A\|_{o p}\left|\int_{\mathbb{C}^{n}} \alpha_{-z} f(w) e^{\frac{w \cdot \bar{\xi}}{t}} d \mu_{t}(w)\right| e^{-\frac{|\xi|^{2}}{2 t}}
\end{aligned}
$$

QHA and Toeplitz operators

Since we assumed that \mathcal{D}_{0} is an algebra,

$$
\left\langle A W_{(\cdot)}^{t} 1, W_{(\cdot)}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{(\cdot)}^{t} k_{\xi}^{t}, W_{(\cdot)}^{t} 1\right\rangle_{t} \in \mathcal{D}_{0}
$$

Further, we have the estimate

$$
\begin{aligned}
& \left|\left\langle A W_{z}^{t} 1, W_{z}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{z}^{t} k_{\xi}^{t}, W_{z}^{t} 1\right\rangle_{t}\right| \lesssim\|A\|_{o p}\left|\left\langle T_{\alpha_{-z}(f)} k_{\xi}^{t}, 1\right\rangle_{t}\right| \\
& \quad=\|A\|_{o p}\left|\left\langle\alpha_{-z}(f) k_{\xi}^{t}, 1\right\rangle_{t}\right| \\
& \quad=\|A\|_{o p}\left|\int_{\mathbb{C}^{n}} \alpha_{-z} f(w) e^{\frac{w \cdot \bar{\xi}}{t}} d \mu_{t}(w)\right| e^{-\frac{|\xi|^{2}}{2 t}} \\
& \quad \leq\|A\|_{o p}\|f\|_{\infty} \int_{\mathbb{C}^{n}} e^{\frac{\operatorname{Re}(w \cdot \bar{\xi})}{t}} d \mu_{t}(w) e^{-\frac{|\xi|^{2}}{2 t}}
\end{aligned}
$$

QHA and Toeplitz operators

Since we assumed that \mathcal{D}_{0} is an algebra,

$$
\left\langle A W_{(\cdot)}^{t} 1, W_{(\cdot)}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{(\cdot)}^{t} k_{\xi}^{t}, W_{(\cdot)}^{t} 1\right\rangle_{t} \in \mathcal{D}_{0}
$$

Further, we have the estimate

$$
\begin{aligned}
& \left|\left\langle A W_{z}^{t} 1, W_{z}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{z}^{t} k_{\xi}^{t}, W_{z}^{t} 1\right\rangle_{t}\right| \lesssim\|A\|_{o p}\left|\left\langle T_{\alpha_{-z}(f)} k_{\xi}^{t}, 1\right\rangle_{t}\right| \\
& \quad=\|A\|_{o p}\left|\left\langle\alpha_{-z}(f) k_{\xi}^{t}, 1\right\rangle_{t}\right| \\
& \quad=\|A\|_{o p}\left|\int_{\mathbb{C}^{n}} \alpha_{-z} f(w) e^{\frac{w \cdot \bar{\xi}}{t}} d \mu_{t}(w)\right| e^{-\frac{|\xi|^{2}}{2 t}} \\
& \quad \leq\|A\|_{o p}\|f\|_{\infty} \int_{\mathbb{C}^{n}} e^{\frac{\operatorname{Re}(w \cdot \bar{\xi})}{t}} d \mu_{t}(w) e^{-\frac{|\xi|^{2}}{2 t}} \\
& \quad=\|A\|_{o p}\|f\|_{\infty}\left\langle K_{\xi / 2}^{t}, K_{\xi / 2}^{t}\right\rangle_{t} e^{-\frac{|\xi|^{2}}{2 t}}
\end{aligned}
$$

QHA and Toeplitz operators

Since we assumed that \mathcal{D}_{0} is an algebra,

$$
\left\langle A W_{(\cdot)}^{t} 1, W_{(\cdot)}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{(\cdot)}^{t} k_{\xi}^{t}, W_{(\cdot)}^{t} 1\right\rangle_{t} \in \mathcal{D}_{0}
$$

Further, we have the estimate

$$
\begin{aligned}
& \left|\left\langle A W_{z}^{t} 1, W_{z}^{t} k_{\xi}^{t}\right\rangle_{t} \cdot\left\langle T_{f}^{t} W_{z}^{t} k_{\xi}^{t}, W_{z}^{t} 1\right\rangle_{t}\right| \lesssim\|A\|_{o p}\left|\left\langle T_{\alpha_{-z}(f)} k_{\xi}^{t}, 1\right\rangle_{t}\right| \\
& \quad=\|A\|_{o p}\left|\left\langle\alpha_{-z}(f) k_{\xi}^{t}, 1\right\rangle_{t}\right| \\
& \quad=\|A\|_{o p}\left|\int_{\mathbb{C}^{n}} \alpha_{-z} f(w) e^{\frac{w \cdot \bar{\xi}}{t}} d \mu_{t}(w)\right| e^{-\frac{|\xi|^{2}}{2 t}} \\
& \quad \leq\|A\|_{o p}\|f\|_{\infty} \int_{\mathbb{C}^{n}} e^{\frac{\operatorname{Re}(w \cdot \bar{\xi})}{t}} d \mu_{t}(w) e^{-\frac{|\xi|^{2}}{2 t}} \\
& \quad=\|A\|_{o p}\|f\|_{\infty}\left\langle K_{\xi / 2}^{t}, K_{\xi / 2}^{t}\right\rangle_{t} e^{-\frac{|\xi|^{2}}{2 t}} \\
& \quad=\|A\|_{o p}\|f\|_{\infty} e^{-\frac{|\xi|^{2}}{4 t}}
\end{aligned}
$$

QHA and Toeplitz operators

We therefore obtain

$$
\widetilde{A T_{f}^{t}}=\int_{\mathbb{C}^{n}}\left\langle A W_{(\cdot)}^{t} 1, W_{(\cdot)}^{t} k_{\xi}^{t}\right\rangle_{t}\left\langle T_{f}^{t} W_{(\cdot)}^{t} k_{\xi}^{t}, W_{(\cdot)}^{t} 1\right\rangle_{t} d \xi
$$

and the right-hand side exists as a Bochner integral in \mathcal{D}_{0}.

QHA and Toeplitz operators

We therefore obtain

$$
\widetilde{A T_{f}^{t}}=\int_{\mathbb{C}^{n}}\left\langle A W_{(\cdot)}^{t} 1, W_{(\cdot)}^{t} k_{\xi}^{t}\right\rangle_{t}\left\langle T_{f}^{t} W_{(\cdot)}^{t} k_{\xi}^{t}, W_{(\cdot)}^{t} 1\right\rangle_{t} d \xi
$$

and the right-hand side exists as a Bochner integral in \mathcal{D}_{0}. Hence, by the Correspondence Theorem, $A T_{f}^{t} \in \mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$. Analogously, one can show that $T_{f}^{t} A \in \mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$. Therefore, $\mathcal{T}_{\text {lin }}^{p, t}\left(\mathcal{D}_{0}\right)$ is an algebra.

Thank you for your attention!

[^0]: ${ }^{1}$ J. Xia: Localization and the Toeplitz algebra on the Bergman space, 2015, J. Funct. Anal. 269:781-814

[^1]: ${ }^{2}$ W. Bauer, J. Isralowitz: Compactness characterization of operators in the Toeplitz algebra of the Fock space F ${ }_{\alpha}^{p}$, 2012, J. Funct. Anal. 263:1323-1355

[^2]: ${ }^{3}$ S. Wu and X. Zhao: Toeplitz algebras over Fock and Bergman spaces, arXiv:2105.03950

[^3]: ${ }^{3}$ S. Wu and X. Zhao: Toeplitz algebras over Fock and Bergman spaces, arXiv:2105.03950

[^4]: ${ }^{3}$ S. Wu and X. Zhao: Toeplitz algebras over Fock and Bergman spaces, arXiv:2105.03950

