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Basics of Fock spaces and their (Toeplitz) operators

QHA in the Fock space setting

How does the theory of Toeplitz operators benefit from QHA?

How does QHA benefit from the theory of Toeplitz operators?
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The basics of Fock spaces

Let µt , t > 0, be the family of Gaussian measures on Cn:

dµt(z) =
1

(πt)n
e−
|z|2
t dz .

For p ∈ (1,∞) set
Lpt := Lp(Cn, µ2t/p).

The Fock spaces are defined as F p
t := Lpt ∩Hol(Cn), that is f ∈ Hol(Cn) is

in F p
t iff

fe−
|·|2
2t ∈ Lp(Cn).
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Fock spaces: The standard reference

The standard reference on Fock
spaces (and operator theory on them) is:
Kehe Zhu: Analysis
on Fock spaces, 2012, Springer Verlag.

3



The basics of Fock spaces

F p
t is a closed subspace of Lpt
 Consequence of Cauchy’s integral formula

 Cauchy’s integral formula actually gives a stronger implication,
which we defer for a moment.

F 2
t is a Hilbert space with the inner product

〈f , g〉t =

∫
Cn

f (z)g(z) dµt(z).

(F p
t )′ ∼= F q

t under the above inner product (with equivalent norms),
where 1

p + 1
q = 1.
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The standard basis

For α ∈ Nn
0 set

etα(z) =
1√
α!t |α|

zα, z ∈ Cn.

Then, {etα; α ∈ Nn
0} is a Schauder basis for F p

t , being orthonormal in F 2
t .

In particular, P[z1, . . . , zm] is dense in F p
t .
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The reproducing kernel structure

Let f ∈ Hol(Cn) and r > 0. Then, Cauchy’s integral formula yields

f (z) =
1

(πr2)n

∫
P(z,r)

f (w) dw , every z ∈ Cn.

Here, P(z , r) := D(z , r)× · · · × D(z , r) is the polydisc. Thus,

|f (z)| .
∫
P(z,r)

|f (w)| dw

.
∫
P(z,r)

|f (w)|e−
|w|2
2t dw

≤
(∫

Cn

|f (w)|pe−
p|w|2
2t dw

)1/p
(∫

P(z,r)
e−

q|w|2
2t dw

)1/q

. ‖f ‖F p
t
.
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The reproducing kernel structure

This shows that point evaluation are continuous linear functionals on F p
t .

In particular, F 2
t is a reproducing kernel Hilbert space:

By Riesz’
representation theorem, there exist K t

z ∈ F 2
t such that

f (z) = 〈f ,K t
z 〉t , z ∈ Cn.

One can show that the reproducing kernel functions K t
z are given by

K t
z (w) = e

w·z
t .

Explicit computations show that K t
z ∈ F p

t for any p. In particular,

f (z) = 〈f ,K t
z 〉t

extends to any f ∈ F p
t .
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The reproducing kernel structure

A neat thing to know is the following: Every A ∈ L(F p
t ) is actually an

integral operator:

Af (z) = 〈Af ,K t
z 〉t = 〈f ,A∗K t

z 〉t

=

∫
Cn

f (w)A∗K t
z (w) dµt(w)

=

∫
Cn

f (w)〈A∗K t
z ,K

t
w 〉t dµt(w)

=

∫
Cn

f (w)〈AK t
w ,K

t
z 〉t dµt(w).

This will turn out useful later!
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Intermezzo: The Bargmann transform

The Bargmann transform is the isometric isomorphism Bt : L2(Rn)→ F 2
t

given by

Bt f (z) =

(
2

πt

)n/4 ∫
Rn

f (x)e2
x·z
t
− x·x

t
− z·z

t dx .

The inverse can be explicitly written as

B−1t g(x) =

(
2

πt

)n/4 ∫
Cn

g(z)e2
x·z
t
− x·x

t
− z·z

2t dµt(z).

How do the F p
t spaces transform under B−1t ?

Theorem (Bargmann, Feichtinger, Gröchenig, Toft)

B−1t is an isometric isomorphism from F p
t to the modulation space Mp,p.
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B−1t is an isometric isomorphism from F p
t to the modulation space Mp,p.

9



Operators on Fock spaces

The orthogonal projection Pt : L2t → F 2
t is given by

Pt f (z) = 〈Pt f ,K
t
z 〉t = 〈f ,PtK

t
z 〉t

= 〈f ,K t
z 〉t

=

∫
Cn

f (w)e
z·w
t dµt(w).

Theorem

Pt , considered as the above integral operator, gives a bounded projection
from Lpt onto F p

t .
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Operators on Fock spaces

For appropriate f : Cn → C, say f ∈ L∞(Cn), the Toeplitz operator
T t
f ∈ L(F p

t ) is given by

T t
f g = Pt(fg).

We will also encounter the Berezin transform: For A ∈ L(F p
t ), set

Ã(z) := 〈Aktz , ktz 〉t .

Here, ktz is the normalized reproducing kernel:

ktz (w) =
K t
z (w)

‖K t
z ‖

= e
w·z
t
− |z|

2

2t .

A 7→ Ã is injective!
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Operators on Fock spaces

The Weyl operators W t
z (z ∈ Cn) are given by

W t
z g(w) = ktz (w)g(w − z).

They are isometric on F p
t and satisfy (W t

z )∗ = W t
−z and

W t
zW

t
w = e−

i Im(z·w)
t W t

z+w .

Finally, we will encounter the parity operator Uf (z) = f (−z).
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The group actions

On the classical side, QHA in the Fock space picture works completely
analogous on L1(Cn) = L1(R2n) and L∞(Cn) = L∞(R2n), respectively.

On the “quantum side”, we will use the group action of Cn on L(F p
t ) by

αz(A) = W t
z AW

t
−z .
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Nuclear operators

An operator A ∈ L(F p
t ) is called nuclear, write A ∈ N (F p

t ), if there are
fj ∈ F p

t , gj ∈ F q
t such that

∞∑
j=1

‖fj‖F p
t
‖gj‖F q

t
<∞ (1)

and

Ah =
∞∑
j=1

〈h, gj〉t fj . (2)

N (F p
t ) is a normed ideal in L(F p

t ) under the norm

‖A‖N := inf{(1); fj , gj satisfy (2)}.
N (F p

t ) comes with the nuclear trace:

tr(A) =
∞∑
j=1

〈fj , gj〉t .
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QHA on the Fock space

The standard operations of QHA are now defined similarly to what we
already know: For f , g ∈ L1(Cn) and A,B ∈ N (F p

t ) we set

f ∗ g(z) :=

∫
Cn

f (w)g(z − w) dw ,

f ∗ A :=

∫
Cn

f (w)αw (A) dw ,

A ∗ f := f ∗ A,
A ∗ B(z) := tr(AW t

zUBUW
t
−z).
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QHA on the Fock space

On this level, all the properties of QHA we have encountered in the
Schrödinger picture carry over. Almost all properties follow the same
proof.

One notable exception: The properties of A ∗ B,

‖A ∗ B‖L1 ≤ (πt)n‖A‖N ‖B‖N ,∫
Cn

A ∗ B(z) dz = (πt)ntr(A)tr(B),

need a new proof (unless p = 2, then the same proof can be utilized).
Idea: Verify the identity by direct computations for A = f1 ⊗ g1 and
B = f2 ⊗ g2, where fj , gj ∈ P[z1, . . . , zn]. This is done by somewhat
lengthy computations involving the reproducing kernel structure. Then,
use that finite rank operators are dense in N (F p

t ) and polynomials are
dense in F p

t .
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QHA on the Fock space

Since F p
t is reflexive, we can identify N (F p

t )′ ∼= L(F p
t ) under the trace

duality:

Given A ∈ L(F p
t ),

B 7→ tr(AB)

is a bounded linear functional on N (F p
t ), and this is all of N (F p

t )′.
In particular, we can continue the convolution operators of QHA to one
factor being in L∞(Cn) or L(F p

t ) by the same duality arguments.
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QHA on the Fock space

As in the Schrödinger picture, we consider the strongly continuous
elements of the group actions:

C0 : = {f ∈ L∞(Cn); z 7→ αz(f ) is ‖ · ‖∞-cont.}
= BUC(Cn)

Cp,t1 : = {A ∈ L(F p
t ); z 7→ αz(A) is ‖ · ‖op-cont.}
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Correspondence Theory

Let D0 ⊂ L∞(Cn) and D1 ⊂ L(F p
t ) be α-invariant. (D0,D1) is said to be

a pair of Corresponding Spaces if:

N (F p
t ) ∗ D0 ⊂ D1, N (F p

t ) ∗ D1 ⊂ D0.

Besides some general properties of such pairs, R. F. Werner proved that
there is a 1:1 correspondence between certain spaces on the classical and
operator side in the above sense. For this, recall that A ∈ N (F p

t ) is called
a regular operator if span{αz(A); z ∈ Cn} is dense in N (F p

t ).
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The Correspondence Theorem

Theorem (R.F. Werner, 1984)

If D0 ⊂ BUC(Cn) is a closed and α-invariant subspace, then there is
exactly one closed, α-invariant subspace D1 ⊂ Cp,t1 such that D0 and
D1 are corresponding spaces.

If D1 ⊂ Cp,t1 is a closed and α-invariant subspace, then there is
exactly one closed, α-invariant subspace D0 ⊂ BUC(Cn) such that D0

and D1 are corresponding spaces.

Let A be a regular operator. Then, the corresponding spaces above
are given by

D1 = A ∗ D0, D0 = A ∗ D1

Let A be a regular operator, D0, D1 as above and f ∈ BUC(Cn),
B ∈ Cp,t1 . Then, we have:

f ∈ D0 ⇔ A ∗ f ∈ D1, B ∈ D1 ⇔ B ∗ A ∈ D0.
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Toeplitz operators and QHA

The connection between Toeplitz operators and QHA is now given as
follows: For f ∈ L∞(Cn) it is:

(1⊗ 1) ∗ f = (πt)nT t
f .

In particular, T t
f ∈ C

p,t
1 ! Further, for A ∈ L(F p

t ):

(1⊗ 1) ∗ A = Ã.

Since the Berezin transform

L(F p
t )→ L∞(Cn)

A 7→ Ã = (1⊗ 1) ∗ A

is injective, its pre-dual

L1(Cn)→ N (F p
t )

f 7→ (1⊗ 1) ∗ f

has dense range.

21



Toeplitz operators and QHA

The connection between Toeplitz operators and QHA is now given as
follows: For f ∈ L∞(Cn) it is:

(1⊗ 1) ∗ f = (πt)nT t
f .

In particular, T t
f ∈ C

p,t
1 !

Further, for A ∈ L(F p
t ):

(1⊗ 1) ∗ A = Ã.
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Toeplitz operators and QHA

It is not hard to see that

{(1⊗ 1) ∗ f ; f ∈ L1(Cn)} ⊂ span{αz(1⊗ 1); z ∈ Cn}.

Hence, the operator 1⊗ 1 is regular. This shows the Toeplitz version of
the Correspondence Theorem:

Theorem (Correspondence Theorem - Toeplitz operator version)

Let A ∈ Cp,t1 and D0 ⊂ BUC(Cn) an α-invariant and closed subspace.
Then,

A ∈ T p,t
lin (D0)⇔ Ã ∈ D0.

Here, we used the notation

T p,t
lin (D0) := {T t

f ∈ L(F p
t ); f ∈ D0}.

Let us give some simple applications of QHA to the theory of Toeplitz
operators!
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Toeplitz operators and QHA

We set T p,t := Alg{T t
f ∈ L(F p

t ); f ∈ L∞(Cn)} ⊂ Cp,t1 .

Theorem (J. Xia ’15, RF ’20)

It is

T p,t = T p,t
lin (BUC(Cn)).

Proof.

Let A ∈ T p,t . Then, Ã = (1⊗ 1) ∗ A ∈ BUC(Cn), hence
A ∈ T p,t

lin (BUC(Cn)).

The initial proof by Xia only worked for p = 2 and filled a somewhat
lengthy, very technical paper1
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1J. Xia: Localization and the Toeplitz algebra on the Bergman space, 2015, J. Funct. Anal. 269:781-814
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Toeplitz operators and QHA

Note that the previous result implies that T p,t = Cp,t1 !

Theorem (W. Bauer, J. Isralowitz ’12)

Let A ∈ L(F p
t ). Then,

A ∈ K(F p
t )⇔ A ∈ T p,t and Ã ∈ C0(Cn).
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Proof.

QHA shows that T t
f ∈ K(F p

t ) whenever f ∈ Cc(Cn).

Hence, we obtain

T p,t
lin (C0(Cn)) ⊂ K(F p

t ).

Further, Ã ∈ C0(Cn) whenever A ∈ K(F p
t ): This is because ktz

w−→ 0 as
|z | → ∞. Since K(F p

t ) ⊂ Cp,t1 , we obtain that

K(F p
t ) = T p,t

lin (C0(Cn)).

Now, apply the Correspondence Theorem to finish the proof.
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QHA and Toeplitz operators

There are several other things QHA can contribute to the theory of
Toeplitz operators. Now we want to ask: What can Toeplitz operators
provide to the theory of QHA?

There are several simple properties that “go through the correspondence”:
If D0 ⊂ BUC(Cn), D1 ⊂ Cp,t1 closed, α-invariant corresponding spaces,
then:

D0 is U-invariant iff D1 is U-invariant;

D0 is self-adjoint iff D1 is self-adjoint (p = 2);

D0 contains 1 iff D1 contains 1;

. . .

Werner’s original paper contains a long list off properties that are
“correspondence invariant”. Nevertheless, he struggled with one particular
property:

It would be particularly interesting with what qualifications (if any)
“a C ∗-algebra” can be added to the above list.
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QHA and Toeplitz operators

Theorem (RF ’20, S. Wu - X. Zhao ’21)

Let D0 ⊂ BUC(Cn) be closed and α-invariant. Then, the following are
equivalent:

D0 is a Banach algebra;

T p,t
lin (D0) is a Banach algebra for all p and all t > 0;

T 2,t
lin (D0) is a Banach algebra for all t > 0.
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QHA and Toeplitz operators

Theorem (RF ’20, S. Wu - X. Zhao ’21)

Let D0 ⊂ BUC(Cn) be closed and α-invariant subalgebra. Further, let
I0 ⊂ D0 be closed and α-invariant. Then, the following are equivalent:

I0 is an ideal in D0;

T p,t
lin (I0) is a left- or right-ideal in T p,t

lin (D0) for all p and all t > 0;

T 2,t
lin (I0) is a left- or right-ideal in T 2,t

lin (D0) for all t > 0;

For an improvement of the theorem, we introduce the following group
action of R+ on L∞(Cn):

δλf (z) = f (λz), λ > 0.

We say that a subspace D0 ⊂ L∞(Cn) is δ-invariant if δλf ∈ D0 whenever
f ∈ D0, λ > 0.
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QHA and Toeplitz operators

Theorem (RF ’21)

Let D0 ⊂ BUC(Cn) be closed and both α- and δ-invariant. Then, TFAE:

D0 is a Banach algebra;

T 2,t0
lin (D0) is a Banach algebra for one t0 > 0.

T p,t
lin (D0) is a Banach algebra for all p and all t > 0

If further I0 ⊂ D0 is closed and both α- and δ-invariant, then TFAE:

I0 is an ideal in D0;

T 2,t0
lin (I0) is an ideal (left or right) in T 2,t0

lin (D0) for one t0 > 0;

T p,t
lin (I0) is an ideal in T p,t

lin (D0) for all p and all t > 0;
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QHA and Toeplitz operators

Theorem (RF ’20, S. Wu - X. Zhao ’21)

Let D0 ⊂ BUC(Cn) be closed and α-invariant. Then, the following are
equivalent:

D0 is a Banach algebra;

T p,t
lin (D0) is a Banach algebra for any p and all t > 0;

T 2,t
lin (D0) is a Banach algebra for all t > 0.
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QHA and Toeplitz operators

Let us sketch the proof of one of the statements. We want to show that if
D0 is an α-invariant closed subalgebra of BUC(Cn), then T p,t

lin (D0) is a
Banach algebra.

We present the proof of Wu and Zhao3 in the context of QHA.
Recall that each A ∈ L(F p

t ) is an integral operator:

Af (z) =

∫
Cn

f (w)〈AK t
w ,K

t
z 〉t dµt(w).

There is a well-known formula on the kernel for the product of integral
operators:

kAB(w , z) =

∫
Cn

kA(w , ξ)kB(ξ, z) dµt(ξ).
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3S. Wu and X. Zhao: Toeplitz algebras over Fock and Bergman spaces, arXiv:2105.03950
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QHA and Toeplitz operators

Hence, for A,B ∈ L(F p
t ), AB is given as an integral operator with integral

kernel

kAB(w , z) =

∫
Cn

〈AK t
w ,K

t
ξ 〉t〈BK t

ξ ,K
t
z 〉t dµt(ξ).

Comparing this expression with the Berezin transform of AB, it is not hard
to see that the Berezin transform of AB can be computed as

ÃB(z) =
1

(πt)n

∫
Cn

〈Aktz , ktξ 〉t〈Bktξ , ktz 〉t dξ.
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to see that the Berezin transform of AB can be computed as

ÃB(z) =
1

(πt)n

∫
Cn

〈Aktz , ktξ 〉t〈Bktξ , ktz 〉t dξ.
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QHA and Toeplitz operators

Now, for A ∈ T p,t
lin (D0) and f ∈ D0:

ÃT t
f (z)

∼=
∫
Cn

〈Aktz , ktξ 〉t〈T t
f k

t
ξ , k

t
z 〉t dξ

=

∫
Cn

〈Aktz , ktξ+z〉t〈T t
f k

t
ξ+z , k

t
z 〉t dξ

=

∫
Cn

〈AW t
z 1,W t

z k
t
ξ 〉t〈T t

f W
t
z k

t
ξ ,W

t
z 1〉t dξ

Observe that

〈AW t
z k

t
v ,W

t
z k

t
w 〉t = A ∗ (kt−v ⊗ kt−w )(z)

(and similarly for the other inner product), hence

〈AW t
(·)1,W

t
(·)k

t
ξ 〉t , 〈T t

f W
t
(·)k

t
ξ ,W

t
(·)1〉t ∈ D0.
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ÃT t
f (z) ∼=

∫
Cn

〈Aktz , ktξ 〉t〈T t
f k

t
ξ , k

t
z 〉t dξ

=

∫
Cn

〈Aktz , ktξ+z〉t〈T t
f k

t
ξ+z , k

t
z 〉t dξ

=

∫
Cn

〈AW t
z 1,W t

z k
t
ξ 〉t〈T t

f W
t
z k

t
ξ ,W

t
z 1〉t dξ

Observe that

〈AW t
z k

t
v ,W

t
z k

t
w 〉t = A ∗ (kt−v ⊗ kt−w )(z)

(and similarly for the other inner product), hence

〈AW t
(·)1,W

t
(·)k

t
ξ 〉t , 〈T t

f W
t
(·)k

t
ξ ,W

t
(·)1〉t ∈ D0.

33



QHA and Toeplitz operators

Since we assumed that D0 is an algebra,

〈AW t
(·)1,W

t
(·)k

t
ξ 〉t · 〈T t

f W
t
(·)k

t
ξ ,W

t
(·)1〉t ∈ D0

Further, we have the estimate

|〈AW t
z 1,W t

z k
t
ξ 〉t · 〈T t

f W
t
z k

t
ξ ,W

t
z 1〉t | . ‖A‖op|〈Tα−z (f )k

t
ξ , 1〉t |

= ‖A‖op|〈α−z(f )ktξ , 1〉t |

= ‖A‖op|
∫
Cn

α−z f (w)e
w·ξ
t dµt(w)|e−

|ξ|2
2t

≤ ‖A‖op‖f ‖∞
∫
Cn

e
Re(w·ξ)

t dµt(w)e−
|ξ|2
2t

= ‖A‖op‖f ‖∞〈K t
ξ/2,K

t
ξ/2〉te

− |ξ|
2

2t

= ‖A‖op‖f ‖∞e−
|ξ|2
4t .
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QHA and Toeplitz operators

We therefore obtain

ÃT t
f =

∫
Cn

〈AW t
(·)1,W

t
(·)k

t
ξ 〉t〈T t

f W
t
(·)k

t
ξ ,W

t
(·)1〉t dξ

and the right-hand side exists as a Bochner integral in D0.

Hence, by the
Correspondence Theorem, AT t

f ∈ T
p,t
lin (D0). Analogously, one can show

that T t
f A ∈ T

p,t
lin (D0). Therefore, T p,t

lin (D0) is an algebra.
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Thank you for your attention!

36



37



38



39


