4c) Vi lar \(x \) og \(y \) representere hvor høns og kyr.
Vi skriver opp en ligning som balanserer antallet hoder, og en for antallet ben:</p><table><thead><tr><th>\(x \)</th><th>\(y \)</th></tr></thead><tbody><tr><td>1 \times \text{ hoder fra høns}</td><td>1 \times \text{ hoder fra kyr}</td></tr><tr><td>2 \times \text{ ben fra høns}</td><td>4 \times \text{ ben fra kyr}</td></tr></tbody></table>

Hoder: \(x + y = 141 \)
Ben: \(2x + 4y = 382 \)

Ben - 2 hoder:
\[
2x + 4y - 2(x+y) = 382 - 2 \times 141
\]
\[
2y = 100
\]
\[
y = 50
\]

\[
\frac{x + 50}{141}
\]
\[
x = 91
\]

Ove har altså 91 høns og 50 kyr.
4d) Vi tenner sløy som i forgige oppgave:

Vinger: \[2x = 196\]
Bøn: \[2x + 4y + 2z = 416\]
Høder: \[x + y + z = 155\]

Det er ene bedt om å løse lighningssettet.
Vingeligningen gjør det lett å finne \(x\).
Innssetting av \(x\)-verdien i de to andre
ligningene gjør dette til samme type
oppgave som 4c.

Svar uten utregning:
Ove har 98 høns og 253 kyr. Det
bør 4 mennesker på gården.

4e) \(x\) er barn, \(y\) er voksne;

plasser: \(x + y = 4800\)
Billettkommente: \(120x + 200y = 820\ 080\)

\[80y = 820\ 080 - 120 \cdot 4800\]
\[y = 3051\]

\[x = 4800 - 3051 = 1749\]
5a) \[x^2 + 9 = 25 \]
\[x^2 = 25 - 9 = 16 \]
\[x = \pm \sqrt{16} = \pm 4 \]

b) \[x^2 = 2x + 8 \]
\[x^2 - 2x = 8 \]
\[x^2 - 2x + 1 = 9 \]
\[(x - 1)^2 = 9 \]
\[x - 1 = \pm 3 \]
\[x = 4, \quad x = -2 \]

c) \[2x^2 + 12x = 32 \]
\[x^2 + 6x = 16 \]
\[x^2 + 6x + 9 = 25 \]
\[(x + 3)^2 = 5^2 \]
\[x + 3 = \pm 5 \]
\[x = 2, \quad x = -8 \]
5d) \[x - 1 = \frac{1}{x} \] (Når vi gårner med \(x\) kan \(x^2 - x = 1\) \(x = 0\) oppføre seg godt i ligningen.
\[x^2 - x - 1 = 0 \] Her er det lett å se at \(x = 0\) ikke er en løsning.

Denne løsningen kan løses med annengradsfomelen:

\[x = \frac{1 \pm \sqrt{1 - 4(-1)}}{2} = \frac{1}{2} \left(1 \pm \sqrt{5} \right) \]

5e) \(\sqrt{-2x - 4} = x + 2 \) \(\text{(1)}\)
\(-2x - 4 = x^2 + 4x + 4 \) \(\text{(2)}\)
\(0 = x^2 + 6x + 8 \)
\(0 = (x + 4)(x + 2) \) Her har jeg faktorisert i hødet. Bruk evn. annen-
gradsfomelen.

\[x = -4, \quad x = -2 \]

f) Når du målere fra \(\text{(1)} \rightarrow \text{(2)}\) blir plutselig
f.eks. \(x = 0\) meningstegnt, mens det i \(\text{(1)}\) ville

gitt \(\sqrt{-4} = \sqrt{-4}\) som ikke er et reell tall.
Løsningene må derfor være gale. Vi forsøker å

Sette inn forslagene vare til løsninger i \(\text{(1)}\)

\[x = -4: \quad \text{V.S.} \quad \sqrt{-2 \cdot -4 - 4} = \sqrt{8 - 4} = \sqrt{4} = 2 \]
\[\text{H.S.} \quad -4 + 2 = -2 \]

\[x = -2: \quad \text{V.S.} \quad \sqrt{-2 \cdot -2 - 4} = \sqrt{0} = 0 \]
\[\text{H.S.} \quad -2 + 2 = 0 \]

Kan \(x = -2\) er en funktion løsning.
5f.) Det som har sjukeid er at $x = -4$ gir

$2 = -2$ i \(\text{\textcircled{1}} \).
Men etter kvadreringen,
$4 = 4$ i \(\text{\textcircled{2}} \).
Altså lager kvadreringen "ekstra" gale løsninger.

6a) Her er det gitt steg-før-steg framgangsmåte

i oppgavetekesten:

$$(x + D)^2 = (x + D)(x + D) = x^2 + Dx + Dx + D^2 = x^2 + 2Dx + D^2$$

b) $$(x + \frac{b}{2a})^2 = x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}$$

Det inninnerde leddet kansellerer mot leddet som subtraheres i oppg. tekesten.

c) Dette følger ved divisjon med a og å

øse likheten med (6b). Merk at $a \neq 0$

når du deler med a.

d) Felles brøksstrom på høyre side. Rotutregning

som gir absoluttverdtegn.

e) $1 \cdot 1 = 7$ gir løsninger $x = \pm 7$.

f) Trenn over $\frac{b}{2a}$.