Abel–Jacobi maps and homotopy theory

Nordic Topology Meeting 2014

Gereon Quick

joint work with Michael J. Hopkins
Parametrizing the circle:

Consider the unit circle $S: x^2 + y^2 = 1$ with $O=(1,0)$.

\[\text{Diagram showing a circle with center } O \text{ and a point } P. \]
Parametrizing the circle:

Consider the unit circle $S: x^2 + y^2 = 1$ with $O=(1,0)$.

We can parametrize points on S by the arclength a.
Parametrizing the circle:

Consider the unit circle \(S: \ x^2 + y^2 = 1 \) with \(O=(1,0) \).

We can parametrize points on \(S \) by the arclength \(a \).

To calculate \(a \) we need to evaluate the integral

\[
I(y) := \int_0^y \frac{1}{\sqrt{1-t^2}} \, dt.
\]
From Weierstrass to Riemann:
From Weierstrass to Riemann:

Taking the square root $\sqrt{(1-y^2)}$ is not a single-valued function.
From Weierstrass to Riemann:

Taking the square root $\sqrt{1-y^2}$ is not a single-valued function.

Weierstrass: Multi-valued functions.
From Weierstrass to Riemann:

Taking the square root $\sqrt{1-y^2}$ is not a single-valued function.

Weierstrass: Multi-valued functions.

Riemann: We should use a different type of domain, Riemann surfaces.
The complex circle:
The complex circle:

We should consider \[S(C) = \{(x,y) \in C^2 \mid x^2 + y^2 = 1\} \]

with differential \(\omega = dy/x \).
The complex circle:

We should consider \(S(C) = \{(x,y) \in C^2| x^2 + y^2 = 1\} \)

with differential \(\omega = dy/x. \)

The integral becomes \(I(P) = \int_{0}^{p} \omega. \)
The complex circle:

We should consider $S(C) = \{(x, y) \in C^2 | x^2 + y^2 = 1\}$

with differential $\omega = dy/x$.

The integral becomes $I(P) = \int_0^P \omega$.

We obtain a well-defined holomorphic and bijective function

$$S(C) \rightarrow C/2\pi\mathbb{Z}$$

$$P \mapsto \int_0^P \omega \mod 2\pi\mathbb{Z}.$$
The complex circle:

We should consider \(S(C) = \{(x,y) \in \mathbb{C}^2 | x^2 + y^2 = 1\} \)

with differential \(\omega = \frac{dy}{x} \).

The integral becomes \(I(P) = \int_0^P \omega \).

We obtain a well-defined holomorphic and bijective function

\[
S(C) \rightarrow \mathbb{C}/2\pi\mathbb{Z}
\]

\[
P \mapsto \int_0^P \omega \mod 2\pi\mathbb{Z}.
\]

2\(\pi\) is the period of the circle.
Euler, Abel and Jacobi:
Euler, Abel and Jacobi:

Let \(f(x) \) be a polynomial of degree 3 with simple roots.
Euler, Abel and Jacobi:

Let $f(x)$ be a polynomial of degree 3 with simple roots.

We would like to evaluate the integral

$$I(t):= \int_0^t \frac{1}{\sqrt{f(x)}} \, dx.$$
Reformulation in modern terms:
Reformulation in modern terms:

Set $y^2 = f(x)$ and consider the space $E(C)$ of complex solutions. Set $\omega = \frac{dx}{y}$.
Reformulation in modern terms:
Set \(y^2 = f(x) \) and consider the space \(E(C) \) of complex solutions. Set \(\omega = \frac{dx}{y} \).

Then \(I(t) = \int_0^P \omega \) for some point \(P \) on \(E(C) \).
Reformulation in modern terms:
Set \(y^2 = f(x) \) and consider the space \(E(C) \) of complex solutions. Set \(\omega = \frac{dx}{y} \).

Then \(I(t) = \int_0^P \omega \) for some point \(P \) on \(E(C) \).

Euler's addition formula:
\[
\int_0^P \omega + \int_0^Q \omega = \int_0^{P+Q} \omega
\]
where \(P+Q \) refers to the group structure on the "elliptic curve" \(y^2 = f(x) \).
Calculating $I(P) := \int_{0}^{P} \omega \ "on \ y^2 = f(x)\ "$:
Calculating \(I(P) := \int_0^P \omega \) “on \(y^2 = f(x) \)”:

Calculating the integral depends on the choice of a homotopy class of paths from \(0 \) to \(P \).
Calculating $I(P) := \int_0^P \omega$ “on $y^2 = f(x)$”:

Calculating the integral depends on the choice of a homotopy class of paths from 0 to P.

Hence $P \mapsto I(P)$ is really a function on the universal cover $E(C)$ of $E(C)$:

$$
\begin{array}{ccc}
E(C) & \rightarrow & C \\
\downarrow & & \downarrow \\
E(C) & \rightarrow & C \\
\end{array}
$$

Euler: this is a group homomorphism.
The Jacobian of $E(C)$ and the Abel-Jacobi map:
The Jacobian of $E(C)$ and the Abel–Jacobi map:

Choose two closed loops γ_1 and γ_2 which form a basis of $H_1(E(C);\mathbb{Z}) \approx H_1(S^1 \times S^1;\mathbb{Z}) \approx \mathbb{Z} \times \mathbb{Z}$.
Choose two closed loops γ_1 and γ_2 which form a basis of $H_1(E(C);\mathbb{Z}) \approx H_1(S^1 \times S^1;\mathbb{Z}) \approx \mathbb{Z} \times \mathbb{Z}$.

Let $\omega_1 = \int_{\gamma_1} \omega$ and $\omega_2 = \int_{\gamma_2} \omega$ be the periods of ω.

The Jacobian of $E(C)$ and the Abel-Jacobi map:
The Jacobian of $E(C)$ and the Abel–Jacobi map:

Choose two closed loops γ_1 and γ_2 which form a basis of $H_1(E(C);\mathbb{Z}) \approx H_1(S^1 \times S^1;\mathbb{Z}) \approx \mathbb{Z} \times \mathbb{Z}$.

Let $\omega_1 = \int_{\gamma_1} \omega$ and $\omega_2 = \int_{\gamma_2} \omega$ be the periods of ω.

The map $P \mapsto \int_0^P \omega$ defines an isomorphism

$$E(C) \rightarrow \mathbb{C}/(\mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2) \approx \text{Jac}(E).$$
The Abel–Jacobi Theorem:
Let S be a compact Riemann surface of genus g.
The Abel-Jacobi Theorem:

Let S be a compact Riemann surface of genus g.

Let $\omega_1, \ldots, \omega_g$ be a basis of $H^0(S; \Omega^1_{\text{hol}})$.
The Abel–Jacobi Theorem:

Let S be a compact Riemann surface of genus g.

Let $\omega_1, \ldots, \omega_g$ be a basis of $H^0(S; \Omega^1_{\text{hol}})$.

Picking a basepoint $P_0 \in S$ yields a map

$$
\mu: P \mapsto \left(\int_{P_0}^P \omega_1, \ldots, \int_{P_0}^P \omega_g \right)
$$
The Abel–Jacobi Theorem:

Let S be a compact Riemann surface of genus g.

Let $\omega_1, \ldots, \omega_g$ be a basis of $H^0(S; \Omega^1_{\text{hol}})$.

Picking a basepoint $P_0 \in S$ yields a map

$$\mu: P \mapsto \left(\int_{P_0}^P \omega_1, \ldots, \int_{P_0}^P \omega_g \right)$$

Abel–Jacobi Theorem: The induced map

$$\mu: \text{Div}^0(S)/\sim \to \mathbb{C}^g/\Lambda \approx \text{Jac}(S)$$

is an isomorphism.
Griffiths: Use Hodge theory in higher dimensions
Griffiths: Use Hodge theory in higher dimensions

\(X \) a compact complex Kähler manifold with \(\dim X = n \).
Griffiths: Use Hodge theory in higher dimensions

X a compact complex Kähler manifold with $\dim X = n$.

$Z \subset X$ a cycle of codimension p which is the boundary of a differentiable chain Γ, i.e. $\partial \Gamma = Z$.
Griffiths: Use Hodge theory in higher dimensions

X a compact complex Kähler manifold with $\dim X = n$.

$Z \subset X$ a cycle of codimension p which is the boundary of a differentiable chain Γ, i.e. $\partial \Gamma = Z$.

Then $\left(\omega \mapsto \int_{\Gamma} \omega \right) \in F^{n-p+1}H^{2n-2p+1}(X;\mathbb{C})^*$.
Griffiths: Use Hodge theory in higher dimensions

X a compact complex Kähler manifold with $\dim X = n$.

$Z \subset X$ a cycle of codimension p which is the boundary of a differentiable chain Γ, i.e. $\partial \Gamma = Z$.

Then

$$\left(\omega \mapsto \int_{\Gamma} \omega \right) \in F^{n-p+1}H^{2n-2p+1}(X;\mathbb{C})^*.$$

But the value depends on the choice of Γ.
The intermediate Jacobian of Griffiths and the Abel-Jacobi map:
The intermediate Jacobian of Griffiths and the Abel-Jacobi map:

We obtain a well-defined map

\[\mu : Z^p_h(X) \rightarrow J^{2p-1}(X) = F^{n-p+1}H^{2n-2p+1}(X;\mathbb{C})^*/H_{2n-2p+1}(X;\mathbb{Z}) \]

\[\approx H^{2p-1}(X;\mathbb{C})/(F^pH^{2p-1}(X)+H^{2p-1}(X;\mathbb{Z})) \]
The intermediate Jacobian of Griffiths and the Abel-Jacobi map:

We obtain a well-defined map

\[Z \rightarrow \int_{\Gamma} \Gamma \] for some \(\Gamma \) with \(Z = \partial \Gamma \)

\[\mu : Z^p_h(X) \rightarrow J^{2p-1}(X) = F^{n-p+1}H^{2n-2p+1}(X;C)/H_{2n-2p+1}(X;Z) \]

\[\cong H^{2p-1}(X;C)/(FpH^{2p-1}(X)+H^{2p-1}(X;Z)) \]

\(J^{2p-1}(X) \) is a complex torus and is called Griffiths' intermediate Jacobian.
Hodge classes and Deligne cohomology:
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.

$\text{CH}^p(X)$

$\mathcal{J}^{2p-1}(X)$
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.

$\text{CH}^p(X)$

$\mathcal{J}^{2p-1}(X)$ $\text{Hdg}^{2p}(X)$
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.

$\mathcal{J}^{2p-1}(X)$ $\mathbb{Z} \subset X$

$\text{CH}^p(X) \quad \text{Hdg}^{2p}(X)$
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.

\[\text{CH}^p(X) \ni Z \subseteq X \]

\[\mathcal{J}^{2p-1}(X) \quad \text{Hdg}^{2p}(X) \]

\[[Z_{sm}]_{\text{fund}} \]
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.

Kernel of $\text{cl}_H \subset CH^p(X)$ \quad $Z \subset X$

$\mathcal{J}^{2p-1}(X)$ \quad $\text{Hdg}^{2p}(X)$
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.

Kernel of $\text{cl}_H \subset \text{CH}^p(X)$ $\mathbb{Z} \subset X$

Abel–Jacobi map μ

$J^{2p-1}(X)$

cl_H $[Z_{\text{sm}}]_{\text{fund}}$

$\text{Hdg}^{2p}(X)$
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.

$\text{Kernel of } \text{cl}_H \subset \text{CH}^p(X) \quad Z \subset X$

Abel–Jacobi map μ

$\mathcal{J}^{2p-1}(X) \to H_D^{2p}(X; \mathbb{Z}(p)) \to \text{Hdg}^{2p}(X)$
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.

$$0 \rightarrow J^{2p-1}(X) \rightarrow H^{2p}_D(X; \mathbb{Z}(p)) \rightarrow \text{Hdg}^{2p}(X)$$
Hodge classes and Deligne cohomology:
Let X be a smooth projective complex variety.

Kernel of $cl_H \subset CH^p(X)$ \ $Z \subset X$

Abel–Jacobi map μ

$0 \to J^{2p-1}(X) \to H^2_D(X;\mathbb{Z}(p)) \to Hdg^{2p}(X) \to 0$
Hodge classes and Deligne cohomology:

Let X be a smooth projective complex variety.

\[0 \to J^{2p-1}(X) \to H^{2p}_D(X;\mathbb{Z}(p)) \to \text{Hdg}^{2p}(X) \to 0 \]

Kernel of $cl_H \subset CH^p(X)$, $Z \subset X$
Hodge classes and Deligne cohomology: Let X be a smooth projective complex variety.

Kernel of $\text{cl}_H \subset \text{CH}^p(X)$ \quad $Z \subset X$

Abel–Jacobi map μ \quad cl_{HD} \quad cl_H \quad $[Z_{sm}]_{\text{fund}}$

$0 \to J^{2p-1}(X) \to H_D^{2p}(X;\mathbb{Z}(p)) \to \text{Hdg}^{2p}(X) \to 0$

“Deligne cohomology sees everything.”
Some more motivation: Totaro's factorization
Some more motivation: Totaro’s factorization

\[\text{CH}^p(X) \xrightarrow{\text{cl}_H} H^{2p}(X;\mathbb{Z}) \]
Some more motivation: Totaro’s factorization

$\text{CH}^p(X) \xrightarrow{\text{cl}_H} H^{2p}(X;\mathbb{Z})$
Some more motivation: Totaro’s factorization

\[\text{CH}^p(X) \xrightarrow{\text{cl}_H} H^{2p}(X;\mathbb{Z}) \]

\[\mathbb{Z} \subset X \]

\[[\mathbb{Z}_{\text{sm}}]_H \text{-fund. class} \]
Some more motivation: Totaro’s factorization

\[\text{CH}^p(X) \xrightarrow{\text{cl}_H} \text{H}^{2p}(X;\mathbb{Z}) \]

\[\mathbb{Z} \subset X \]

\[[\mathbb{Z}_{\text{sm}}]_{\text{H-fund. class}} \]

\[[\mathbb{Z}_{\text{sm}}]_{\text{MU-fund. class}} \]
Some more motivation: Totaro’s factorization

\[\text{CH}^p(X) \xrightarrow{\text{cl}_H} H^{2p}(X;\mathbb{Z}) \]

\[\mathbb{Z} \subset X \]

\[\text{[Z_{sm}]_{H-fund. class}} \]

\[\text{[Z_{sm}]_{MU-fund. class}} \]
Some more motivation: Totaro's factorization

\[\text{CH}^p(X) \xrightarrow{\text{cl}_H} H^{2p}(X;\mathbb{Z}) \]

\[\mathbb{Z} \subset X \]

\[[\mathbb{Z}_{sm}]_{\text{MU-fund. class}} \]

\[[\mathbb{Z}_{sm}]_{\text{H-fund. class}} \]
Some more motivation: Totaro's factorization

\[\text{CH}^p(X) \xrightarrow{\text{cl}_H} \text{H}^{2p}(X;\mathbb{Z}) \]

\[\mathbb{Z} \subset X \]

\[\xrightarrow{\text{cl}_{\text{MU}}} \]

\[\text{MU}^{2p}(X) \]

\[\xrightarrow{\varnothing} [\mathbb{Z}_{\text{sm}}]_{\text{H-fund. class}} \]

\[\xrightarrow{\text{cl}_{\text{MU}}} [\mathbb{Z}_{\text{sm}}]_{\text{MU-fund. class}} \]
Some more motivation: Totaro's factorization

\[\text{CH}^p(X) \xrightarrow{\text{cl}_H} H^{2p}(X;\mathbb{Z}) \]

\[\mathbb{Z} \subset X \xrightarrow{\text{cl}_{\text{MU}}} \text{MU}^{2p}(X) \otimes_{\text{MU}^*} \mathbb{Z} \]

\[\{Z_{\text{sm}}\}_{\text{H-fund. class}} \]
Some more motivation: Totaro’s factorization

\[\text{CH}^p(X) \xrightarrow{\text{cl}_H} H^{2p}(X;\mathbb{Z}) \]

\[\mathbb{Z} \subset X \]

\[\text{cl}_{\text{MU}} \]

\[\text{MU}^{2p}(X) \otimes_{\text{MU}^*} \mathbb{Z} \]

\[[\mathbb{Z}_{\text{sm}}]_{\text{MU-fund. class}} \]

\[[\mathbb{Z}_{\text{sm}}]_{H\text{-fund. class}} \]

This is very useful!
Consequences:

\[\text{CH}^p(X) \xrightarrow{\text{cl}_H} H^{2p}(X;\mathbb{Z}) \]

\[\text{cl}_{\text{MU}} \quad \text{MU}^{2p}(X) \otimes_{\text{MU}^*} \mathbb{Z} \]
Consequences:

- A topological obstruction on the image of \(\text{cl}_H \): the image of \(\text{cl}_H \) is contained in the image of \(\vartheta \).
Consequences:

- A topological obstruction on the image of cl_H: the image of cl_H is contained in the image of ϑ.
- We can study the kernel of cl_H.

Totaro’s strategy: find elements in the kernel of ϑ that are in the image of cl_H.

\[
\begin{array}{c}
\text{CH}^p(X) \\ \downarrow \text{cl}_H \\
H^{2p}(X; \mathbb{Z}) \\
\downarrow \vartheta \\
MU^{2p}(X) \otimes_{MU^*} \mathbb{Z}
\end{array}
\]
Consequences:

- A topological obstruction on the image of cl_H: the image of cl_H is contained in the image of ϑ.
- We can study the kernel of cl_H.

Totaro's strategy: find elements in the kernel of ϑ that are in the image of cl_{MU}.

\[
\begin{align*}
\text{CH}^p(X) & \xrightarrow{\text{cl}_H} H^{2p}(X;\mathbb{Z}) \\
\text{cl}_{MU} & \downarrow \\
\text{MU}^{2p}(X) \otimes_{MU^*} \mathbb{Z} & \xrightarrow{\vartheta} \\
\end{align*}
\]
Generalized Hodge filtered cohomology theories (joint work with Michael J. Hopkins):
Generalized Hodge filtered cohomology theories (joint work with Michael J. Hopkins):
Our goal is to define:
Generalized Hodge filtered cohomology theories (joint work with Michael J. Hopkins):

Our goal is to define:

- New Jacobians which combine
Generalized Hodge filtered cohomology theories (joint work with Michael J. Hopkins):

Our goal is to define:

- New Jacobians which combine
- Hodge theoretical information and
Generalized Hodge filtered cohomology theories (joint work with Michael J. Hopkins):
Our goal is to define:

• New Jacobians which combine
 – Hodge theoretical information and
 – topological information of generalized cohomology theories, e.g., complex cobordism.
Generalized Hodge filtered cohomology theories (joint work with Michael J. Hopkins):
Our goal is to define:

- New Jacobians which combine
 - Hodge theoretical information and
 - topological information of generalized cohomology theories, e.g., complex cobordism.
- Invariant for the algebraic part in the intermediate Jacobian of Griffiths.
Generalized Hodge filtered cohomology theories (joint work with Michael J. Hopkins):

Our goal is to define:

- New Jacobians which combine
 - Hodge theoretical information and
 - topological information of generalized cohomology theories, e.g., complex cobordism.
- Invariant for the algebraic part in the intermediate Jacobian of Griffiths.
- Invariant for algebraic cobordism classes.
Generalized Hodge filtered cohomology theories (joint work with Michael J. Hopkins):

Our goal is to define:

- New Jacobians which combine
 - Hodge theoretical information and
 - topological information of generalized cohomology theories, e.g., complex cobordism.
- Invariant for the algebraic part in the intermediate Jacobian of Griffiths.
- Invariant for algebraic cobordism classes.

\[
0 \rightarrow J^{2p-1}(X) \rightarrow H_D^{2p}(X; \mathbb{Z}(p)) \rightarrow \text{Hdg}^{2p}(X) \rightarrow 0
\]
Deligne cohomology:
Deligne cohomology: Given an integer $p \geq 0$.
Deligne cohomology: Given an integer $p \geq 0$. The Deligne complex of sheaves $\mathbb{Z}_D(p)$ on the complex manifold X is defined by
Deligne cohomology: Given an integer $p \geq 0$. The Deligne complex of sheaves $\mathbb{Z}_D(p)$ on the complex manifold X is defined by

a homotopy cartesian square of sheaves of complexes.
Deligne cohomology: Given an integer $p \geq 0$.

The Deligne complex of sheaves $\mathbb{Z}_D(p)$ on the complex manifold X is defined by

\[
\mathbb{Z} \quad \text{a homotopy cartesian square of sheaves of complexes.}
\]
Deligne cohomology: Given an integer $p \geq 0$.

The Deligne complex of sheaves $\mathbb{Z}_D(p)$ on the complex manifold X is defined by

\[
\begin{array}{c}
\mathbb{Z} \\
\Omega^*_\text{hol}
\end{array}
\]

a homotopy cartesian square of sheaves of complexes.
Deligne cohomology: Given an integer \(p \geq 0 \).

The Deligne complex of sheaves \(\mathbb{Z}_D(p) \) on the complex manifold \(X \) is defined by

\[
\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{	ext{a homotopy cartesian square}} & \text{of sheaves of complexes.} \\
\Omega_{\text{hol}}^* & \downarrow & \\
\end{array}
\]
Deligne cohomology: Given an integer $p \geq 0$.

The Deligne complex of sheaves $\mathbb{Z}_D(p)$ on the complex manifold X is defined by

\[
\begin{array}{ccc}
\Omega^*_{\text{hol}} & \longrightarrow & \mathbb{Z} \\
\downarrow & & \downarrow \\
\Omega^*_{\text{hol}} & \longrightarrow & \text{a homotopy cartesian square of sheaves of complexes.}
\end{array}
\]
Deligne cohomology: Given an integer $p \geq 0$.

The Deligne complex of sheaves $Z_D(p)$ on the complex manifold X is defined by

$$\Omega^{\bullet \geq p}_{\text{hol}} \xrightarrow{Z} \Omega^\bullet_{\text{hol}}$$

a homotopy cartesian square of sheaves of complexes.
Deligne cohomology: Given an integer \(p \geq 0 \).

The Deligne complex of sheaves \(Z_{D}(p) \) on the complex manifold \(X \) is defined by

\[
\begin{array}{ccc}
Z_{D}(p) & \to & Z \\
\downarrow & & \downarrow \\
\Omega_{\text{hol}}^{\geq p} & \to & \Omega_{\text{hol}}^{\ast}
\end{array}
\]

a homotopy cartesian square of sheaves of complexes.
Deligne cohomology: Given an integer \(p \geq 0 \).

The Deligne complex of sheaves \(Z_D(p) \) on the complex manifold \(X \) is defined by

\[
\begin{array}{ccc}
Z_D(p) & \rightarrow & Z \\
\downarrow & & \downarrow \\
\Omega^{* \geq p}_{hol} & \rightarrow & \Omega^{*}_{hol}
\end{array}
\]

a homotopy cartesian square of sheaves of complexes.

Deligne cohomology is the hypercohomology of this complex, i.e.,
\[
H^n_D(X; Z(p)) = H^n(X; Z_D(p)).
\]
The construction: A homotopy cartesian square of sheaves of complexes

$$Z_D(p) \rightarrow Z$$

$$\Omega_{\text{hol}}^{* \geq p} \rightarrow \Omega_{\text{hol}}^*$$
The construction: A homotopy cartesian square of presheaves of complexes.
The construction: A homotopy cartesian square of presheaves of

\[\Omega_{\text{hol}}^* \geq p \]

\[Z_{D(p)} \rightarrow \rightarrow Z \]

\[\Omega_{\text{hol}}^* \rightarrow \rightarrow \Omega_{\text{hol}}^* \]
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds.
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds.
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[\Omega_{hol}^{* \geq p} \rightarrow \Omega_{hol}^* \]

\[Z \rightarrow H = \text{Eilenberg-MacLane spectrum functor for complexes} \]
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[\Omega_{\text{hol}}^* \geq p \quad \rightarrow \quad \Omega_{\text{hol}}^* \]

\[HZ \quad \downarrow \quad H^* \equiv \text{Eilenberg-MacLane spectrum functor for complexes} \]
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds.

\[\Omega_{\text{hol}}^{* \geq p} \rightarrow H \Omega_{\text{hol}}^{*} \]

\[H = \text{Eilenberg-MacLane spectrum functor for complexes} \]
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds.

\[H \Omega_{\text{hol}}^* \geq \text{p} \rightarrow H \Omega_{\text{hol}}^* \]

\[H = \text{Eilenberg-MacLane spectrum functor for complexes} \]
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[
\begin{array}{ccc}
HZ_D(p) & \longrightarrow & HZ \\
\downarrow & & \downarrow \\
H\Omega_{\text{hol}}^{* \geq p} & \longrightarrow & H\Omega_{\text{hol}}^*
\end{array}
\]

\(H = \text{Eilenberg-MacLane spectrum functor for complexes}\)
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[\begin{array}{ccc}
HZ_D(p) & \longrightarrow & HZ \\
\downarrow & & \downarrow \\
H\Omega_{\text{hol}}^{\geq p} & \longrightarrow & H\Omega_{\text{hol}}^* \\
\end{array} \]

\(H = \text{Eilenberg-MacLane spectrum functor for complexes} \)

\(HZ_D(p) \) represents Deligne cohomology in the homotopy category of presheaves of spectra.
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[\begin{array}{ccc}
 HZ_D(p) & \longrightarrow & H \\
 \downarrow & & \downarrow \\
 H \Omega_{hol}^{* \geq p} & \longrightarrow & H \Omega_{hol}^{*}
\end{array} \]

\(H = \text{Eilenberg-MacLane spectrum functor for complexes} \)

\(HZ_D(p) \) represents Deligne cohomology in the homotopy category of presheaves of spectra.
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

![Diagram](image)

$HZ_{D}(p)$ represents Deligne cohomology in the homotopy category of presheaves of spectra.

$H=\text{Eilenberg-MacLane spectrum functor for complexes}$
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[
\begin{align*}
\text{HZ}_D(p) & \quad \rightarrow \quad \text{MU} \\
\downarrow & \quad \downarrow \\
H\Omega_{\text{hol}}^{* \geq p} & \quad \rightarrow \quad H\Omega_{\text{hol}}^*
\end{align*}
\]

\(\text{HZ}_D(p)\) represents Deligne cohomology in the homotopy category of presheaves of spectra.

\(\text{H} = \text{Eilenberg-MacLane} \) spectrum functor for complexes
The construction: A homotopy cartesian square of \textit{presheaves of spectra on the site of complex manifolds}

\[
\begin{array}{ccc}
HZ_D(p) & \longrightarrow & MU \\
\downarrow & & \downarrow \\
H\Omega_{hol}^{* \geq p} & \longrightarrow & H
\end{array}
\]

\(HZ_D(p)\) represents Deligne cohomology in the homotopy category of presheaves of spectra.
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[
\begin{array}{ccc}
HZ_D(p) & \rightarrow & MU \\
\downarrow & & \downarrow \\
H \Omega_{\text{hol}}^{* \geq p} & \rightarrow & H \Omega_{\text{hol}}^{*}(MU_C^{2*})
\end{array}
\]

\(HZ_D(p)\) represents Deligne cohomology in the homotopy category of presheaves of spectra.
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[\Omega_{\text{hol}}^{*} \geq p \rightarrow H \Omega_{\text{hol}}^{*}(\text{MU}_C^{2*}) \]

\[\text{HZ}_D(p) \rightarrow \text{MU} \]

\[H=\text{Eilenberg-MacLane spectrum functor for complexes} \]

\[\text{HZ}_D(p) \text{ represents Deligne cohomology in the homotopy category of presheaves of spectra.} \]
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[\text{HZ}_D(p) \to \text{MU} \]

\[\downarrow \quad \downarrow \]

\[\to H\Omega_{\text{hol}}^*(\text{MC}^{2*}) \]

\[H = \text{Eilenberg-MacLane spectrum functor for complexes} \]

\[\text{HZ}_D(p) \text{ represents Deligne cohomology in the homotopy category of presheaves of spectra.} \]
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[\text{HZ}_D(p) \rightarrow \text{MU} \quad \text{H=} \text{Eilenberg-MacLane spectrum functor for complexes} \]

\[\text{H}_\Omega_{\text{hol}}^{*\geq p}(\text{MU}_C^{2*}) \rightarrow \text{H}_\Omega_{\text{hol}}^{*}(\text{MU}_C^{2*}) \]

\text{HZ}_D(p) \text{ represents Deligne cohomology in the homotopy category of presheaves of spectra.}
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[\text{HZ}_D(p) \text{ represents Deligne cohomology in the homotopy category of presheaves of spectra.} \]
The construction: A homotopy cartesian square of presheaves of spectra on the site of complex manifolds

\[\begin{array}{c}
\mathcal{H} \Omega_{\text{hol}}^{*,p}(\mathcal{MC}^{2*}) \\
\downarrow \\
\mathcal{H} \Omega_{\text{hol}}^{*}(\mathcal{MC}^{2*})
\end{array} \]

\[\begin{array}{c}
\mathcal{MU}_D(p) \\
\downarrow \\
\mathcal{MU}
\end{array} \]

\[\begin{array}{c}
\mathcal{H} = \text{Eilenberg-MacLane spectrum functor for complexes}
\end{array} \]

\[\mathcal{H} \mathcal{Z}_D(p) \text{ represents Deligne cohomology in the homotopy category of presheaves of spectra.} \]
Hodge filtered complex bordism:

$\text{MU}_D(p) \to \text{MU}

\Omega^* \geq_p \Omega^*(\text{MU}_C^{2*}) \to \Omega^*(\text{MU}_C^{2*})$
Hodge filtered complex bordism:

\[\text{MU}_D(p) \rightarrow \text{MU} \]

\[H\Omega^{\geq p}(\text{MU}_C^{2*}) \rightarrow H\Omega^{*}(\text{MU}_C^{2*}) \]

\(X \) a complex manifold, and \(n, p \) integers
Hodge filtered complex bordism:

\[\text{MU}_D(p) \rightarrow \text{MU} \]

\[\Omega^{\geq p}(\text{MU}_C^{2*}) \rightarrow \Omega^*(\text{MU}_C^{2*}) \]

\(X \) a complex manifold, and \(n, p \) integers

We define:

\[\text{MU}_D^n(p)(X) := \text{Hom}_{\text{HoPre}}(\Sigma^\infty(X_+), \Sigma^n\text{MU}_D(p)) \]
Hodge filtered complex bordism:

\[\text{MU}_D(p) \longrightarrow \text{MU} \]

\[H\Omega^{* \geq p}(\text{MU}_C^{2\ast}) \longrightarrow H\Omega^{*}(\text{MU}_C^{2\ast}) \]

\(X \) a complex manifold, and \(n, p \) integers

We define:

\[\text{MU}^n_D(p)(X) := \text{Hom}_{\text{HoPre}}(\Sigma^\infty(X_+), \Sigma^n\text{MU}_D(p)) \]

“HFC bordism” groups sit in long exact sequences.
A diagram of short exact sequences
(a compact complex Kähler manifold):
A diagram of short exact sequences
(X a compact complex Kähler manifold):

\[0 \rightarrow J^{2p-1}(X) \rightarrow H_{D}^{2p}(X;\mathbb{Z}(p)) \rightarrow Hdg^{2p}(X) \rightarrow 0 \]
A diagram of short exact sequences
(X a compact complex Kähler manifold):

\[0 \rightarrow J_{\text{MU}}^{2p-1}(X) \rightarrow \text{MU}_D^{2p}(p)(X) \rightarrow \text{Hdg}_{\text{MU}}^{2p}(X) \rightarrow 0 \]

\[0 \rightarrow J^{2p-1}(X) \rightarrow H_D^{2p}(X;\mathbb{Z}(p)) \rightarrow \text{Hdg}^{2p}(X) \rightarrow 0 \]
A diagram of short exact sequences
(X a compact complex Kähler manifold):

\[
0 \to J^{2p-1}_{MU}(X) \to MU^{2p}(p)(X) \to Hdg^{2p}_{MU}(X) \to 0
\]

\[
0 \to J^{2p-1}(X) \to H^{2p}_D(X; \mathbb{Z}(p)) \to Hdg^{2p}(X) \to 0
\]
A diagram of short exact sequences (\(X\) a compact complex Kähler manifold):

\[
\begin{align*}
0 & \to J^{2p-1}_{M\mathbb{U}}(X) \to M\mathbb{U}^{2p}_D(p)(X) \to Hdg^{2p}_{M\mathbb{U}}(X) \to 0 \\
0 & \to J^{2p-1}(X) \to H^{2p}_D(X;\mathbb{Z}(p)) \to Hdg^{2p}(X) \to 0
\end{align*}
\]

\(J^{2p-1}_{M\mathbb{U}}(X)\) is a complex torus which we think of as a “generalized Jacobian”.
A diagram of short exact sequences
(X a compact complex Kähler manifold):

\[0 \rightarrow \mathcal{J}_{\text{MU}}^{2p-1}(X) \rightarrow \text{MU}_D^{2p}(p)(X) \rightarrow \text{Hdg}_{\text{MU}}^{2p}(X) \rightarrow 0 \]

\[0 \rightarrow \mathcal{J}^{2p-1}(X) \rightarrow \text{H}^{2p}_D(X;\mathbb{Z}(p)) \rightarrow \text{Hdg}^{2p}(X) \rightarrow 0 \]

\(\mathcal{J}_{\text{MU}}^{2p-1}(X)\) is a complex torus which we think of as a
“generalized Jacobian”.

As a real Lie group it is \(\cong \text{MU}^{2p-1}(X) \otimes \mathbb{R}/\mathbb{Z}\).
There is an improved version for complex algebraic varieties:
There is an improved version for complex algebraic varieties:

- Work on the Nisnevich site on Sm_C
There is an improved version for complex algebraic varieties:

- Work on the Nisnevich site on Sm_C
- It remedies the defects of non-compactness.
There is an improved version for complex algebraic varieties:

- Work on the Nisnevich site on Sm_C
- It remedies the defects of non-compactness.
- Motivic ring spectrum
There is an improved version for complex algebraic varieties:

- Work on the Nisnevich site on Sm_C
- It remedies the defects of non-compactness.
- Motivic ring spectrum
- Projective bundle formula
There is an improved version for complex algebraic varieties:

- Work on the Nisnevich site on Sm_C
- It remedies the defects of non-compactness.
- Motivic ring spectrum
- Projective bundle formula
- Transfers: a projective morphism induces a push-forward homomorphism.
Interesting maps for smooth complex varieties:
Interesting maps for smooth complex varieties:

$$
\Phi_D : \Omega^*(X) \to MU^*_D(*) = \bigoplus_p MU^*_{D\mathcal{O}}(p)(X)
$$
Interesting maps for smooth complex varieties:

\[\Phi_D : \Omega^*(X) \to MU_D^{2*}(\ast)(X) = \bigoplus_p MU_D^{2p}(p)(X) \]

This induces a natural homomorphism:
Interesting maps for smooth complex varieties:

\[\Phi_D : \Omega^*(X) \to MU_D^{2*}(\ast)(X) = \bigoplus_p MU_D^{2p}(p)(X) \]

This induces a natural homomorphism:

\[cl_{MU_D} : CH^*(X) \to MU_D^{2*}(\ast)(X) \otimes_{MU^*} \mathbb{Z} \]
A new Abel–Jacobi map:
Let X be a smooth projective complex variety.
A new Abel–Jacobi map:
Let X be a smooth projective complex variety.

$$0 \rightarrow J^{2p-1}_{MU}(X) \rightarrow \text{MU}^{2p}_D(p)(X) \rightarrow \text{Hdg}^{2p}_{MU}(X) \rightarrow 0$$
A new Abel–Jacobi map:

Let X be a smooth projective complex variety.

\[0 \rightarrow J_{MU}^{2p-1}(X) \rightarrow MU_D^{2p}(p)(X) \rightarrow \text{Hdg}_{MU}^{2p}(X) \rightarrow 0 \]
A new Abel–Jacobi map:

Let X be a smooth projective complex variety.

\[
\Omega^p(X)
\xrightarrow{\Phi} \text{Hdg}_{MU}^{2p}(X) \rightarrow 0
\]

\[
0 \rightarrow J_{MU}^{2p-1}(X) \rightarrow MU_D^{2p}(p)(X) \rightarrow \text{Hdg}_{MU}^{2p}(X) \rightarrow 0
\]
A new Abel–Jacobi map:
Let X be a smooth projective complex variety.

\[
\begin{align*}
\Omega^p(X) & \to [Y \to X] \\
& \downarrow \Phi \\
0 & \to J_{MU}^{2p-1}(X) \to MU_D^{2p}(p)(X) \to \text{Hdg}_{MU}^{2p}(X) \to 0
\end{align*}
\]
A new Abel–Jacobi map:

Let X be a smooth projective complex variety.

$$
\Omega^p(X) \xrightarrow{[Y \to X]} [Y(C) \to X(C)]
$$

$$
0 \to J_{MU}^{2p-1}(X) \to MU_D^{2p}(p)(X) \to \text{Hdg}_{MU}^{2p}(X) \to 0
$$
A new Abel–Jacobi map:

Let X be a smooth projective complex variety.

$$0 \rightarrow J_{\text{MU}}^{2p-1}(X) \rightarrow MU_D^{2p}(p)(X) \rightarrow \text{Hdg}_{\text{MU}}^{2p}(X) \rightarrow 0$$
A new Abel-Jacobi map:
Let X be a smooth projective complex variety.

$$0 \to J_{MU}^{2p-1}(X) \to MU_D^{2p}(p)(X) \to \text{Hdg}_{MU}^{2p}(X) \to 0$$
A new Abel–Jacobi map:
Let X be a smooth projective complex variety.
An Abel–Jacobi map: \(n = \dim X \)
An Abel–Jacobi map: \(n = \text{dim } X \)

Given \([Y \to X] \in \Omega^p(X)\) such that \(Y(C)\) is the boundary of a weakly-complex manifold \(W\).
An Abel-Jacobi map: \(n = \text{dim } X \)
Given \([Y \to X] \in \Omega^p(X)\) such that \(Y(C)\) is the boundary of a weakly-complex manifold \(W\).
Then \(W\) defines a “current” via integrals over chains in
\[
\bigoplus_{j \geq 0} \bigwedge^{n-p-j+1} H^{2n-2p-2j+1}(X;C)^* \otimes \pi_{2j} MU
\]
An Abel–Jacobi map: \(n = \dim X \)

Given \([Y \to X] \in \Omega^p(X)\) such that \(Y(C)\) is the boundary of a weakly-complex manifold \(W\).

Then \(W\) defines a “current” via integrals over chains in

\[\bigoplus_{j \geq 0} F^{n-p-j+1} H^{2n-2p-2j+1}(X;C)^* \otimes \pi_{2j} \mathbf{MU} \]

This depends on the choice of \(W\), but it becomes well-defined modulo \(\mathbf{MU}_{2n-2p+1}(X)\):
An Abel–Jacobi map: \(n = \dim X \)

Given \([Y \to X] \in \Omega^p(X)\) such that \(Y(C)\) is the boundary of a weakly-complex manifold \(W\).

Then \(W\) defines a “current” via integrals over chains in

\[
\bigoplus_{j \geq 0} F^{n-p-j+1}H^{2n-2p-2j+1}(X;C)^* \otimes \pi_{2j}MU
\]

This depends on the choice of \(W\), but it becomes well-defined modulo \(MU_{2n-2p+1}(X)\):

\[
\ker(\Phi) \to F^{n-p+*+1}H^{2n-2p+2*+1}(X)^* \otimes \pi_{2*}MU / MU_{2n-2p+1}(X)
\]

\[
\approx J^{2p-1}_{MU}(X)
\]
Examples:

We check that HFC bordism is able to detect interesting algebraic cobordism classes:

\[\Omega^p(X) \]

\[\Phi_D \]

\[\Phi \]

\[\text{CH}^p(X) \]

\[\text{MU}^{2p}_D(p)(X) \]

\[\text{MU}^{2p}(X) \]
Examples:

We check that HFC bordism is able to detect interesting algebraic cobordism classes:

\[\exists \alpha \in \Omega^p(X) \]

\[\begin{align*}
\text{CH}^p(X) & \quad \Phi_D \\
\text{MU}_D^{2p}(p)(X) & \quad \Phi \\
\text{MU}^{2p}(X) &
\end{align*} \]
Examples:

We check that HFC bordism is able to detect interesting algebraic cobordism classes:

$$\exists \alpha \in \Omega^p(X)$$

Diagram:

- 0 \(\xrightarrow{\Phi_D}\) \(\xrightarrow{\Phi}\) $\text{MU}^{2p}(X)$
- $\text{CH}^p(X)$
- $\text{MU}_{D}^{2p}(p)(X)$

Where Φ_D and Φ are the appropriate maps.
Examples:

We check that HFC bordism is able to detect interesting algebraic cobordism classes:

$$\exists \alpha \in \Omega^p(X)$$

\[
\begin{array}{ccc}
0 & \overset{\Phi_D}{\rightarrow} & \text{MU}_{D}^{2p}(p)(X) \\
\text{CH}^p(X) & \rightarrow & \Phi \\
\end{array}
\]

$$\rightarrow 0$$

\[
\begin{array}{ccc}
\Phi & \rightarrow & 0 \\
\text{MU}^{2p}(X) & \rightarrow & 0 \\
\end{array}
\]
Examples:

We check that HFC bordism is able to detect interesting algebraic cobordism classes:

\[
\exists \alpha \in \Omega^p(X)
\]

\[
\begin{array}{ccc}
0 & \not\equiv & 0 \\
CH^p(X) & \Phi_D & \Phi \\
\neq & MU_D^{2p}(p)(X) & MU^{2p}(X)
\end{array}
\]
Examples:

We check that HFC bordism is able to detect interesting algebraic cobordism classes:

\[\exists \alpha \in \Omega^p(X) \]

where \(\Phi_D(\alpha) = 0 \) means that \(\alpha \) is detected by the new Jacobian \(J_{MU}^{2p-1}(X) \).
Wilson splittings for Hodge filtered BP-theory:
Wilson splittings for Hodge filtered BP-theory:
We can also construct Hodge-filtered spaces corresponding to any CW-complex.
Wilson splittings for Hodge filtered BP-theory: We can also construct Hodge-filtered spaces corresponding to any CW-complex.

Examples: $BP_k(q)$ and $BP\langle n \rangle_k(q)$ for a prime p.
Wilson splittings for Hodge filtered BP-theory:
We can also construct Hodge-filtered spaces corresponding to any CW-complex.

Examples: $BP_k(q)$ and $BP\langle n \rangle_k(q)$ for a prime p.

Let X be a complex manifold and k an integer with $k \leq 2(p^n + ... + p + 1)$.
Wilson splittings for Hodge filtered BP-theory:
We can also construct Hodge-filtered spaces corresponding to any CW-complex.

Examples: $BP_k(q)$ and $BP\langle n \rangle_k(q)$ for a prime p.

Let X be a complex manifold and k an integer with $k \leq 2(p^n + \ldots + p + 1)$.

Then the canonical map $BP^k(q)(X) \to BP\langle n \rangle^k(q)(X)$ is surjective.
Wilson splittings for Hodge filtered BP-theory:
We can also construct Hodge-filtered spaces corresponding to any CW-complex.

Examples: $BP_k(q)$ and $BP^{\langle n \rangle}_k(q)$ for a prime p.

Let X be a complex manifold and k an integer with $k \leq 2(p^n + \ldots + p + 1)$.

Then the canonical map $BP^k(q)(X) \to BP^{\langle n \rangle}^k(q)(X)$ is surjective.

This is very useful for analyzing the kernel of the canonical map $BP^k(q)(X) \otimes_{BP^*Z} \to H^{\langle n \rangle}_D^k(X;Z(q))$.
Thank you!