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The problem of steady gravity waves with vorticity

Find a 2π/k-periodic curve S in the (X,Y )-plane, and a
2π/k-periodic function ψ in the domain Ω between S and the
real axis B = {(X, 0) : X ∈ R}, such that

S

Ω −∆ψ = γ(ψ) in Ω,

ψ = −m on B,

ψ = 0 on S,

|∇ψ|2 + 2gY = Q on S, (Bernoulli cond.)
B

where g and k are positive constants, m, Q are real constants, γ
is a (given) function on the interval between −m and 0.
We assume for most of the talk that γ ≡ constant.



Aims of the talk

Reformulate the problem of periodic steady gravity waves with
constant vorticity γ in water of finite depth as: find a 2π-periodic
function v, with [v] = h, such that
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where the wave has period 2π/k, (conformal) mean depth h, flux m,
vorticity γ, Bernoulli constant Q,
Ckh is the 2π-periodic Hilbert transform associated to a strip of depth kh,
and [...] denotes average on a period.
Variational structure of the above equation
Bifurcation theory



Motivation: some interesting types of waves (with
constant vorticity)

We are interested in the existence of the following types of waves:

with overhanging profiles,
with critical layers.

It is known that

these waves cannot exist for γ = 0: Spielvogel(1973),
Toland(2002), Shargorodsky&Toland (2008), V(2008);
their existence is indicated by numerical computations for
constant γ 6= 0: Simmen&Saffman(1985), Peregrine&Teles da
Silva(1988), Vanden-Broeck(1994–1996),
Okamoto&Shoji(2001), Ko&Strauss(2008–2009).

The existence of waves with constant vorticiy which have critical
layers was conjectured by Kelvin(1880).



Fixed-domain reformulations

Nekrasov’s formulation: restricted to irrotational waves, very
special, messy;
Babenko’s formulation: restricted to irrotational waves;
advantages: involves a function of one variable (and the Hilbert
transform), variational structure;

(1− 2gv){v′2 + (1 + Cv′)2} = 1, (†)

C((1− 2µv)v′) + (1− 2µv)(1 + Cv′) = 1. (∗)

(∗) is the Euler-Lagrange equation for

J(v) =

∫ π

−π

vCv′ − µv2(1 + Cv′) dx.

Dubreil-Jacotin formulation: valid for a general vorticity
function γ; disadvantage: cannot handle either critical layers or
overhanging profiles;
‘flattening transformation’ formulation: valid for a general
vorticity function γ; disadvantages: messy, cannot handle
overhanging profiles, never been used successfully used in global
bifurcation;
Dirichlet-Neumann operator formulation: restricted to
irrotational waves; disadvantage: never been used successfully in
global bifurcation.



Waves with constant vorticity: generalization of (†)

Theorem (Constantin&V(2011))

Let (Ω, ψ) be a 2π/k-periodic water wave of class C1,α. Then there
exists a constant h > 0, a function v ∈ C1,α

2π and a constant a ∈ R

such that [v] = h,
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Conversely, let h > 0 and v ∈ C1,α
2π be such that the above equations

hold, and let a ∈ R be arbitrary. Under the assumption that

R ∋ x 7→
(x

k
+ Ckh(v − h)(x), v(x)

)

is injective,

let S be defined as above, and let Ω be the domain whose boundary
consists of S and the real axis B. Then there exists a function ψ in
Ω such that (Ω, ψ) is a 2π/k-periodic water wave of class C1,α.



The new formulation: idea

Idea: regard the unknown fluid domain as the conformal image of a
strip.
For any d > 0, let Rd be the strip

Rd = {(x, y) ∈ R
2 : −d < y < 0}.

For any domain Ω whose boundary consists of B and a L-periodic
curve S, we define its conformal mean depth as the unique positive
constant h such that there exists a conformal mapping U + iV from the
strip Rh onto Ω (which extends as a homeomorphism between the
closures of these domains), such that

U(x+ L, y) = U(x, y) + L, V (x+ L, y) = V (x, y), (x, y) ∈ Rh.

If Ω has conformal mean depth h, and we write L = 2π/k, then one
can regard Ω as the conformal image, through a mapping U + iV , of
the strip Rkh, where

U(x+ 2π, y) = U(x, y) +
2π

k
, V (x+ 2π, y) = V (x, y), (x, y) ∈ Rkh.



Equation ∆ψ = −γ in Ω is equivalent to

(X,Y ) 7→ ψ(X,Y ) +
γ

2
Y 2 is a harmonic function in Ω.

Let ζ : Rkh → R be given by

ζ(x, y) := ψ(U(x, y), V (x, y)) +
γ

2
V 2(x, y) +m.
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The periodic Hilbert transform for a strip

Let Rd = {(x, y) : x ∈ R,−d < y < 0}. Let w be 2π-periodic and of
zero mean, and let W : Rd → R be the unique solution of

∆W = 0 in Rd,W (x,−d) = 0, x ∈ R,W (x, 0) = w(x), x ∈ R.

Let Z be such that Z + iW is holomorphic in Rd (and Z is
2π-periodic). We define the Hilbert transform Cd(w) by:
Cd(w)(x) := Z(x, 0), x ∈ R, (normalized: of zero mean.)
Then Cd is a linear operator satisfying, for all n ∈ N,

Cd(cos(nx)) = coth(nd) sin(nx), Cd(sin(nx)) = − coth(nd) cos(nx).

Formally, for d = ∞, we get the standard Hilbert transform

C(w)(t) =
1

2π

∫ π

−π

cot((t− s)/2)w(s) ds.

The Cauchy-Riemann equations show that the
Dirichlet-Neumann operator of a periodic function is

w 7→
[w]

d
+ Cd(w

′).



The new formulation: revisited

Let (Ω, ψ) be a 2π/k-periodic water wave, and let h be the
conformal mean depth of Ω. Recall that

U(x+2π, y) = U(x, y)+
2π

k
, V (x+2π, y) = V (x, y), (x, y) ∈ Rkh,

and

∆ζ = 0 in Rkh,

ζ(x,−kh) = 0 for all x ∈ R,
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Local bifurcation

Theorem (Constantin&V(2011))

Given h > 0, k > 0 and γ ∈ R, for any m ∈ R there exists a laminar flow with a flat
free surface in water of depth h, of constant vorticity γ and relative mass flux m.
Moreover, the values m± of the flux given by
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trigger the appearance of steady periodic waves (symmetric and monotone) of small
amplitude, with period 2π/k and conformal mean depth h. The laminar flows of flux
m± are exactly those with horizontal speeds at the flat free surface λ± given by

λ± = −
γ tanh(kh)
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k
.

The above dispersion relation was obtained by formal arguments by Thompson
(1949), Biesel (1950). A rigorous proof of existence of these small-amplitude
nonlinear waves was first obtained by Wahlén (2009). Our own proof relies, in the
usual way, on Crandall-Rabinowitz local bifurcation theorem.



Local bifurcation

For γ 6= 0, some of these bifurcation-inducing laminar flows
have a line of stagnation points (never at the free surface).
The corresponding bifurcating waves have critical layers.

flat  bed

free  surface

Figure  3 .  Flow  pattern  (streamlines)  with  stagnation  points :



Global bifurcation

Theorem (Rabinowitz global bifurcation theorem, (1973))

Let X be a Banach space and F ∈ C1(R×X,X). Suppose that
F (λ, u) = u−G(λ, u) where G : R×X → X is a nonlinear compact
operator, G(λ, 0) = 0 for all λ ∈ R, and G(λ, u) = λLu+H(λ, u),
where H(λ, u) = o(||u||) for u near 0 uniformly on bounded λ intervals,
and L is a compact linear operator on X.
Suppose also that λ∗ is a characteristic value of L (i.e. there exists
u∗ ∈ X \ {0} such that u∗ = λ∗Lu∗) of odd multiplicity.
Then the set of nontrivial solutions of F (λ, u) = 0 has a connected
component M which contains λ∗ in its closure, and either
(I) is unbounded in R×X, or
(II) contains in its closure a point (µ∗, 0), where µ∗ 6= λ∗ is another
characteristic value of L.

Remark. If F is as above, but defined only on an open set O of
R×X, then a similar conclusion holds, except that now a third
alternative may hold for M:
(III) M contains a sequence (λn, un) approaching the boundary of O.



The new formulation

Theorem (Constantin&Strauss&V(2012))

The previous equation can be equivalently rewritten as: [v] = h and
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We have a proof of this result using Riemann-Hilbert theory.
For γ = 0 and h = ∞: Babenko(1987), Buffoni, Dancer&
Toland(2000), Shargorodsky&Toland(2003–2008).



Variational formulation in the physical plane

Consider the functional

L(Ω, ψ) =

∫∫

Ω†

{

|∇ψ|2 − 2γψ +Q− 2gY
}

dX.

The domain of definition of L is the space

A := {(Ω, ψ) : Ω bounded below by the real axis B

and above by a (smooth) Jordan curve S

that is 2π/k-periodic in the horizontal direction,

ψ : Ω → R satisfies ψ = 0 on S and ψ = −m on B.}

Here Ω† denotes a period of Ω, and X = (X,Y ).

Theorem (?? Friedrichs(1933))

Any critical point (Ω, ψ) of the functional L over the space A is
a solution to the steady water wave problem.

A similar result is valid, with appropriate modifications, for any
vorticity function γ.



Variational formulation in the physical plane

Standard variations of ψ, with Ω fixed:

d

dε
L(Ω, ψ + εφ) = 0 for all φ ∈ C1

0 (Ω) ⇒ ∆ψ = −γ.

Inner variations: Take Φε(X) = X+ εΦ(X), where
Φ ∈ C1
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2) (in fact, periodic in the horizontal direction,
and with support which is bounded in the vertical direction).
For ε sufficiently small, Φε is a diffeomorphism between Ω and a
domain Ωε = Φε(Ω) bounded by B and a periodic curve Sε. In
Ωε define a function ψε by ψε = ψ(Φ−1

ε ). Then (Ωε, ψε) ∈ A,
and
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implies the Bernoulli condition |∇ψ|2 + 2gY = Q.



Variational formulation in the conformal plane

For any Ω, let ψΩ be the unique solution of

ψ = 0 on S, ψ = −m on B, ∆ψ = −γ in Ω.

Let U + iV be the conformal mapping from Rkh to Ω, so that
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Variational formulation in the conformal plane

Theorem (Constantin&Strauss&V(2012))

Any critical point v with [v] = h of the functional Λ on the previous
slide satisfies
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The proof is a 4 page calculation. We write v = w + h, where [w] = 0.
In the proof we make use of d

dh
Λ(w + h) = 0, which requires the nice

and unexpected identity (for any 2π-periodic function f)
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Global bifurcation: compactness

The first equation can be rearranged as:

(Q− 2gv)Ckh(v
′) = (g − γ2v)(Ckh(vv

′)− vCkh(v
′))

+
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Commutator estimates: v ∈ Cn,α
2π implies that

Ckh(vv
′)− vCkh(v

′), Ckh(v
2v′)− v2Ckh(v

′) ∈ Cn,δ
2π for all δ ∈ (0, α)

(and not merely ∈ Cn−1,α
2π ).

Applicability of Rabinowitz Theorem: The commutator estimates
imply that, upon dividing by Q− 2gv, adding v to both sides, and
inverting the operator v 7→ v + Ckh(v

′), the equation can be put in
the form v = A(m,Q, v), where A is a nonlinear compact operator
on Cn,α

2π for any n ≥ 1 and α ∈ (0, 1).

Regularity: A byproduct of the above ideas is that v ∈ C1,α
2π and

Q− 2gv > 0 (no stagnation points) implies v ∈ C∞
2π.



Global bifurcation

Rabinowitz Theorem gives the existence of a connected set of solutions
extending the local bifurcation curve and containing a sequence
(mn, Qn, vn) such that either:

(mn, Qn, vn) → ∞ in R× R×C1,α
2π ,

min{Qn − 2gvn(x) : x ∈ R} → 0 as n→ ∞ (stagnation at the
crest).

(A third possible alternative, that the set of solutions returns to the
line of trivial solutions (flat laminar flows) is ruled out in the standard
way, using preservation of the nodal pattern along the continuum: v is
even, v′ < 0 on (0, π), v′′(0) < 0 < v′′(π).)
The solutions that we construct give rise to water waves if and only if

the curve S =
{(x

k
+ Ckh(v − h)(x), v(x)

)
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}

is non-self-intersecting.

So, it is possible in principle that at some point along our solution set,
the non-self-intersection property fails.



Global bifurcation: conjectures

We expect that the connected set of solutions can be continued until one of
the following situations is reached:

extreme waves with stagnation points and corners of 120◦ at the crests,
whose profile is either a graph or overhanging;
overhanging waves with self-intersections: two possible situations.



Thank you for your attention!


