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River bores

The river bore

A bore is a transition between two uniform flows in a river, usually
caused by tidal forces.

Schematic of a possible two-dimensional bore profile:




River bores

Turbulent bore

China Daily, 9/19/2005:

Huge tide expected in Qiantang this month

Hangzhou: A powerful, massive tide is expected to sweep over the
Qiantang River in Hangzhou, capital city of East China’s Zhejiang
Province, later this month, posing a potential danger to people
outside the designated tide-watching areas, experts said yesterday.
The tidal waves are likely to reach a height of 2.5 metres, much
higher than that of past years, said Bao Yuepeng, director ...




River bores

Shallow-water approximation: h—; <1

Assumptions:
°p=(n-2)g
o u=u(x,t)

Shallow-water equations:

I
o

Nt + houy + (nuU)x
Ut + an + UUX = O

An exact weak solution:




River bores

Shallow-water approximation

Control volume:

L

X

Let h(x, t) = hy + n(x, 1)

Conservation of mass:

X2
G bty = putx. 0h(x. 0 — pule, D0 1)
X1



River bores

Shallow-water approximation

Control volume:

L

X

X X2

Conservation of momentum:

X2
o | o ohGn de = U0 006 ) — o, DG

X1

+ g gh?(x, t)h(x1, t) — ggh2(x2, Hh(xe, 1)



River bores

Shallow-water approximation

Control volume:

1

X

Jump conditions:
—U[h];2 + [uh];2 =0

—U[uhl + [u2h+ ;ghﬂ =0

X1



River bores

Shallow-water approximation

Jump conditions:
—U[h]f + [uh]j;2 =0

X2
—U[uhl + [u2h+ ;ghz} -0

X1

= U and uy are given in terms of ay and hg



River bores

Shallow-water approximation: Energy loss

X X2

Mechanical energy is given by

p [*

Eow =12 {u2(x, tyh(x, t) + gh?(x, t)} dx

Energy flux is given by

(Ge)1 = 2uB(xi, )h(xi, t) + pgu(xi, )HP(x1, 1)

N

(Ge)2 = SU°(x2, )h(x2, ) + pgu(Xe, )P (X2, t)

NI



River bores

Shallow-water approximation: Energy loss

Lord Rayleigh, 1876
Loss of energy:

dEsw a3
- ol [(QE)1 —(qE)g] = 4(_)0\/1g3 (hlo+m)




River bores

Bore types

Bore types:
° Z—g < 0.28 = undular bore

@ 0.28 < Z—g < 0.75 = undular bore, some waves are breaking
° ﬁ—g > 0.75 = turbulent bore

Folklore: Energy loss in undular bore is due to oscillations
Energy loss in turbulent bore is due to turbulent dissipation



Surface gravity waves



Surface waves

Surface gravity waves

Assumptions:
@ incompressible
@ inviscid
@ two-dimensional
@ irrotational
@ unit density

n(x.t)




Surface waves

Surface gravity waves

Long wavelength: ™ < 1

Small amplitude: 2 < 1




Surface waves

Surface gravity waves

C Long wavelength: % <1 )

Small amplitude: £ < 1




Surface waves

Surface gravity waves

C Long wavelength: ™ < 1 ) — Shallow water

Small amplitude: 2 < 1




Surface waves

Shallow-water equations:

n+ houx +(nu)xy = 0
Ut + gnx + Ul =0
Assumptions:
@ p=(n—2z)g (hydrostatic)
o u=u(x,t) ( no vertical acceleration)
Associated balance laws:
—M + 0 —qu =0 (mass balance)
ot ox
%/ + 2q/ = (momentum balance)
= ho+n
au = hou+nu
I = hyu+nu
a = (ho+n)u?+ 39(ho +1n)?



Surface waves

Assumptions:
e p=(n—2z)g (hydrostatic)
o u=u(x,t) ( no vertical acceleration)

Associated balance laws:

0 0
aM + X = 0 (mass balance)
3} 0
5/ + XA = 0 (momentum balance)
M = h+n
Qu = hou+nu
I = hyu+nu
a = (ho+mu?+ 3g(ho+n)?
0 E+ qu =0 (energy balance)

ot ox



Surface waves

Associated balance laws:

0 0
0 0
M
au =
I =
q =
0] 0
aEJr@inE_
E =
ge =

1
2
1
2

(mass balance)

(momentum balance)

ho +n

hou +nu

hou + nu

(ho +m)u? + 3g(ho +n)?

0

(energy balance)

(ho +n)u? + 9(ho +1)?
(ho +n)u® + g(ho +n)?u



Surface waves

Long wavelength: % <1

C Small amplitude: 2 <1 )




Surface waves

Long wavelength: % <1

C Small amplitude: 2 <1 ):> Airy theory

A




Surface waves

Dispersion relation:
n = Acos(kx —wt)
¢ = Z(z)sin(kx —wt)
—  w? = gktanh (hok)

Linear phase velocity:

c(k) = % = /¢ tanh (hok),

for waves propagating to the right.

Group velocity:

dw 1 2kho
% = g — 2°(K) <1 * Sinn 2kho)



Surface waves

Flow field:

Aw cosh k(z+hy)

snh kA, COS (kx — wt)

V= AwSEEE) sin (kx — wi)

p= QA%W cos (kx — wt) — gz

Energy density of (linear) progressive wave:
E= 1 A2

Energy flux:

e = {29/‘ } 8 [2 (1 * sinhzkhoﬂ =Exq



Boussinesq models

Boussinesg models

C Long wavelength: % « 1 )
C Small amplitude: 2 < 1 )

Boussinesq scaling:



Boussinesq models

General system:

1 1 1 1
77{+h0Wx+('l’]W)x+§ (92 - 3> )\hSWXXX—E <92 — 3) (1 _)\)hgnxxt = 0,

1 1
W+ grix + W + 5 (1 = 6%) nghgnx — > (1= 6%) (1 — p) MWyt = 0.

Horizontal velocity is represented at 6hy, where 0 < 6 < 1
Additional modeling parameters: A and p



Boussinesq models

Special cases

Classical Boussinesq system with 6% = % and . =0,
Nt + howy + (nw)x = 0

2
Wi + gnx + WWy — §0Wxxt =0

Kaup System with 02 =1, A =1,

h3
nt + howy + (nW)x — §0Wxxx =0
Wi+ gnx + wwy, =0

KdV-KdV system with 2 = 2, A =1 and = 1
1
6
1

Wt + gnx + WWy + éghgnxxx =0

e + howy + (nW)x + hgwxxx =0



Boussinesq models

Derivation of evolution equations

Non-dimensional variables

Velocity potential
o = f- %27)?)?5 +4 82+ O(8°%)
Substitute ¢ into the free-surface boundary conditions
i+ 5 — Sha + 57 = O(aB, 5%),

Evolution equations:

where v = f;, the non-dimensional horizontal velocity at the bottom.



Boussinesq models

Non-dimensional variables
o X N_Z—l—ho . N < v~ _ G
X=5 Z= R 1= t= 7 ¢—ga£¢,

Velocity potential
6 = F-LhaB+ Lhaab? + O(°)
Substitute ¢ into the free-surface boundary conditions
ii+k— Sk + 7 = O(aB, 7,

Evolution equations:

=
<
+
=
|
=
™
2
5»‘1
+ o=
Q
o
1
>
Il
S
Q
Jl\)
Q
&
=
NS

where V = f;, the non-dimensional horizontal velocity at the bottom.
Horizontal velocity at non-dimensional height 6 is

Ox|s_y =W =17V~ &5+ O(52)



Velocity potential
fezzz 32 + O(8°)

¢ = F— %27%(5-1- % sk
Substitute ¢ into the free-surface boundary conditions
i+ 5 — sha + 55 = O(aB, 5%),

Evolution equations:

iy + Vx + a(fiV)x — 5
il + Vs — 3BV + ally = O(a?, af, 5%)
where v = f;, the non-dimensional horizontal velocity at the bottom
Horizontal velocity at non-dimensional height 6 is

9z |2:

New system:
5 (67 — 3) Bigzs =
)



Boussinesq models

it + Wy + a(fiW)sz + 3 (07 — §) Bitgsx = O(a®, a8, 5°)
W + fig + aWiy + 38 (62 — 1)

Note the first-order relations

Differentiate first one:
tXX + WXXX - O( 6)
New system:

it + Wy + a(iiW)z + 3 (02 — 3) Biiggs = O(?, a3, %)
W + fig + aWily + 38 (02 — 1) Wygg = O(a?, aB, %)



Boussinesq models

How to find associated densities and fluxes?



Boussinesq models

Mass conservation

Consider the total mass in a control volume, given by

X2 n
M= / / adzdx
Xq 7h0

:/ (ho +n) dx

X1

\Lg n(x.H




Boussinesq models

Mass conservation

Consider the total mass in a control volume, given by

X2 n
M= / dzadx
X1 —hg

Xo
= / (ho + 7]) ax
X1
Mass flux is given by
n
au(x) = ox(Xx,2) dz
—ho
\Lg e

ho




Boussinesq models

Mass conservation

Consider the total mass in a control volume, given by

Xo n
M = / dzdx
X1 —hg

X2
= / (ho + 77) ax
J x4
Mass flux is given by
n
au(x) = ox(x,2) dz
—ho
Mass conservation:
d X
EM = [Qm} x;



Boussinesq models

Mass conservation

Mass conservation:

In non-dimensional form:

g [/t pited T+ai x1/2
a / / dzdx = a[ / Gu(%.2) dé}
dt Jx e Jo 0 X2/t

Integrate with respect to Z:

5?/):;:6(1 + aff) dx = o{/owm7 {V* %253?)? JFO(ﬂZ)} dé}



Boussinesq models

Mass conservation

Take average over interval:

1 Xg/e 1
— FrdX =——— W+ aWi — (62 — Dy +0(aB, B2
Xo/l—Xx1 /0 /)(1/677? Xo/l—X1 /0 i —3( 3) Wsx e (a3, B%)
In the limit:

it + W + a(Wif)z — 5(0% — §)Weax = O(aB, 5?)

= mass density and flux are given in dimensional form by

M = h() +n,
and

m/. 1
QM:hOW+77W+E 0 ~3 Wiy



Boussinesq models

Momentum conservation

Pressure is given by
P=Paum+9(n—2)+ %((z + ho)? — h(z)) Wit

Change of momentum / is equal to
@ net influx of momentum through the boundaries
@ plus net force on the boundary

—T = [qy+ pressure force |,




Boussinesq models

Momentum conservation

Then the momentum balance is

0~ 0
7~I TN = 2 2 .
5t axd O(a®, a3, B%)

Dimensional forms of momentum density and momentum flux are

1 1
I=(ho+mw + 5 (92 - 3> h3 Wi

and 1o
qi = how? + g(ho +n)? - §0Wxt~



Boussinesq models

Energy conservation

Change of energy E is equal to
@ net influx of energy through the boundaries
@ plus net work done on the boundary

%g = [q + work done by pressure force ]2,

d [ [
*/ / {31Vl +g(z + ho) } dzax =
dt sy Jon

Un {31V + g(z + ho) } bx dz + ! ¢Xsz]1
—ho

—ho X2



Boussinesq models

Energy conservation

Then the energy balance is

Op 0. 2 2
ﬁE—’— EQE—O(a ,af3, B%).

The dimensional forms of the energy density and energy flux are
given by
E = 1g(ho +n)? + Show?

and
ge = g(M + 2hon)w + 1 (67 — 1) cBh3wiy.



Application to bores



Application to bores

Previous work on undular bore

Favre, Ondes des translation, Dunod, Paris, 1935:
Careful experiments.

Classification of bores into undular, undular with breaking, and
turbulent.



Application to bores

Previous work on undular bore

Lemoine, La Houille Blanche, 1948:
Comparison of energy loss with linear energy flux.

Linear




Application to bores

Previous work on undular bore

Benjamin, Lighthill, Proc. Roy. Soc. London A 1954.:

"A cnoidal wave-train can be present behind the bore provided that
some quanitity of energy intermediate between zero and the classical
value is dissipated by friction at the bore itself."

cnoidal




Application to bores

Previous work on undular bore

Benjamin, Lighthill, Proc. Roy. Soc. London A 1954:

"A cnoidal wave-train can be present behind the bore provided that
some quantity of energy intermediate between zero and the classical
value is dissipated by friction at the bore itself."”

KdV equation:
Ut+UX+UUX+UXXX:O

Normalization:

1 5 (dn 2 3 2 2
3Q (dx) +9n° — 2R +25n - Q=0

@ Qis volume flow rate
@ Ris energy per unit mass
@ Sis momentum flow rate



Application to bores

Previous work on undular bore

Sturtevant, Phys. Fluids 1965 :
"the calculations show that there is actually an increase at the front of
the bore of both momentum and energy."

Computations based on Favre’s data show that there is a loss of both
momentum and energy in the inertial frame of reference.

— Excess energy is dissipated by bottom boundary layer.



Application to bores

New results

We use the KdV-KdV system

n + hOWX + (Wn)x + %h(?)) Wxxx =
Wi + gnx + WWy + %th Thxxx —

(Undular Bore Surface n)

Development of an undular bore with initial amplitude ay = 0.1m



Application to bores

New results

KdV-KdV system

e + howy + (wn)x + %hg’ Wox = 0
Wt 4 g nx + WWy + %th NMxxx =

Momentum and energy are

Xo 3
I:/ {(ho—i—n)w—i—%wxx} ax
X

1

1 [
5:5/ [how? + g(FE + 2hory + 12)} dx
X1



Application to bores

New results

BBM-BBM system

ne + howyx + (wn)x — %hg Nxxt =
Wt + gnx + WWy — %h(z) Wxxt =

Momentum and energy are

Xo 3
I:/ {(ho—i—n)w—i—%wxx} ax
X

1

1 [
5:5/ [how? + g(FE + 2hory + 12)} dx
X1



Application to bores

New results: Energy conservation

11.65
[o]
>
2
o 116F 9
=4
[
£
13 Net energy flux
c
R N Shallow-water energy change
[5} . .
5 o Dispersive energy change
% 11551 g
o
1s . . . . . . . . .

Comparison of the rate of change of energy vs. the net energy flux.
The initial bore amplitude was ag = 0.25m



Application to bores

New results: Energy conservation

a Fi—F Eew 9 diff.
0.1 3.64 3635 0.2
0.2 8.58 8.53 0.6
0.3 15.07 14.88 1.3
0.4 23.35 22.90 1.9
0.5 33.69 32.81 2.6
0.6 46.35 44.86 3.2
0.7 61.63 59.29 3.8
0.8 79.82 76.36 4.3
0.9 101.24 96.35 4.8

1.0 126.20 119.55 5.3

Column 1 shows bore amplitude ag,

Column 2 shows net energy flux.

Column 3 shows rate of change of energy in shallow-water theory.
Column 4 shows the percentage difference.



Application to bores

New results: Energy conservation

o F-F B 9% diff. Taw 94 diff.
0.1 3.64 3.635 0.2 3.64 0.00
0.2 8.58 853 06 8.58  0.00
0.3 15.07 14.88 1.3 15.08  0.06
0.4 23.35 22.90 1.9 23.36 0.04
0.5 33.69 32.81 2.6 33.69 0.00
0.6 46.35 44.86 3.2 46.35 0.00
0.7 61.63 59.29 3.8 61.63 0.00
0.8 79.82 76.36 4.3 79.84  0.03
09 10124 96.35 4.8 101.30  0.06
1.0 126.20 119.55 5.3 126.28 0.06

Column 1 shows bore amplitude ap, note that hy = 1.

Column 2 shows net energy flux.

Column 3 shows rate of change of energy in shallow-water theory.
Column 4 shows percentage difference.

Column 5 shows rate of change of energy in dispersive theory.



Application to bores

1

New results: backward velocity case u, = —2ms™—

Rate of energy change in the the shallow water model compared to
the net energy flux.

2 F-F GEsw  diff.
kgm/s® kgm/s® %
0.1 0.84 0.83 0.90
02 219 213 267
0.3 4.20 4.01 4.64
0.4 7.04 6.58 6.46
0.5 10.87 9.99 8.05
0.6 15.88 14.38  9.41

0.7 22.26 19.92 10.53




Application to bores

1

New results: backward velocity case u, = —2ms™—

Rate of energy change in dispersive model compared to the net

energy flux.
2 FR-FR GEsy  diff. 3 Egisp  diff.
kgm/s® kgm/s® % kgm/s® %
0.1 0.84 0.83 0.90 0.84 0.00
0.2 219 213 2.67 219 0.01
0.3 4.20 4.01 4.64 420 0.02
04 7.04 6.58 6.46 7.04 0.03
0.5 10.87 9.99 8.05 10.87 0.04
0.6 15.88 1438 9.41 15.88 0.05

0.7 22.26 19.92 10.53 2227 0.05




Application to bores

New results: conservation of momentum

Numerical experiments show that change in momentum is equal to
the net influx.

2 Net Mom flux &M
kgms—2 kgms—2
0.1 1.13 1.13
0.2 2.59 2.59
0.3 4.40 4.40
0.4 6.59 6.59
0.5 9.19 9.19
0.6 12.23 12.23

0.7 15.74 15.74




Applications to KdV equation



KdV equation

KdV equation in dimensional form

2
Nt + Conx + %%‘;ﬂnx + CUTOUXXX =0

Mass density:
M= hy + n

Mass flux: p
WZ%@+%¥+%M)

Momentum density:
h2
/:%@+ﬁﬁ+€w)
Momentum flux:

2
qr = C(2) (% +n+ 27?;70772 + @077xx>



KdV equation

KdV equation in dimensional form

Energy density:
E=c (% +n+ir)
Energy flux:
2
ge = Cg (77 + 4%70772 + %nxx)
Total head:

2
H = +9g(ho +n)



KdV equation

04

-

03

0.2)

o1

S

Mass flux & density

-0

10 20 30

e
&
8

B0 20 0 0 10 20 30 R
x[m] x[m]

®
b
g
am

n
g‘
Energy flux & density
8 &

Momentum flux & density
&

10 20
5| 10 -

30 20 10 0 10 20 30 30 20 -10 0 10 20 30
x{m] x{m]

Cnoidal wave ((x) = ¢ + (¢t — ¢2)en? ( Ao-Gly, m)

ho = 1.0631, ¢; = 0.4369, (» = —0.1631, and (3 = —0.1731



KdV equation

Steady KdV equation in traveling reference frame:

2
(f($>A+mf—2Rﬁ+23n—QZ:0

w|—=

o p
© wf @ - - .mean(q), (@ « R
4.5]

s

Mass flux

...................

Total head

20 40

(b) mass flux gu vs. Q

(¢) momentum flux gy vs. S

(d) total head Hvs. R
ho=1.1,¢;=0.3,( =-0.1and (3 = —0.15



KdV equation

0.09 Ot 09l
e

008 g a0 08
e

007 S 007

00602407 008

- s’m =

S 004
T

0.03] %5, 70, 0.03|

oof O0s, S\ 0.2

oot N oot

R ¥ RT3

(@) lam — Q|

Errors in the approximation of Q, R, S in terms of « and



Integrable models



Integrable models

Integrable models

Kaup system:

h3
Nt + howy + (77W)x + = 3 Wxxx =0,

Wi + gnx + wwy = 0,

Hamiltonian:

o 3
HKaup:/ {%772+1§(h0+77)W2—%Wx2}dX

—00

KdV equation:

h2
nt + CoMx + %%7777)( + COTOUXXX =0

Hamiltonian:
3
Hkav —/ {3ho77x 7’} dx



Integrable models

Energy conservation

Different normalization of potential energy:

...a particle located at the level of the undisturbed free surface has
zero potential energy, and the total potential energy is zero when no
wave motion is present ...

nex.n

d X2 n
—/ / {3IVe? + gz} dzdx =
at Xy J—hg

n n
[/ {;|V¢|2+gz}¢xdz+/ qSXsz]
7h0 7h0

X1

X2



Integrable models

Energy conservation for Kaup system

Then the energy balance is

0 2 9 . _ 2 2
EE—’_ ﬁqE*O(a aaﬂaﬂ )

The dimensional forms of the energy density and energy flux are
given by
3 3
E= p{%n2 + 3(ho + n)w? + L wwsy + %sz}
and " "
9e =p {%W?’ +gnw(ho +n) + Wi — §0WWxt}

We have o
HKaup: / E(X, t) dX



Breaking criterion for undular
bores in Boussinesq theory



Breaking criterion

Velocity profile

u(x,z,t) = ¢x(x,z, 1) = w(x, t) + 5 ((ho8)? — 2%) wyx(x, 1)

" U
i u(:)/‘
/\/ 77777
ag
ho _

the bottom, yields
oo 22m 92m Fis F)



References

Breaking criterion

A wave solution (w(x, t),n(x, t)) starts to break if

w(x, 1) + 3 {h§92 — (o + n(x, t))z} W (X, £) > U.

« Computed critical points
0.4{{ - - - Slope: a=0.379 .
—— Slope: 0=0.28 s

0 0.2 0.4 0. 0.8 1 1.2 1.4

.6
i
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