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The river bore

A bore is a transition between two uniform flows in a river, usually
caused by tidal forces.

Schematic of a possible two-dimensional bore profile:
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Turbulent bore

China Daily, 9/19/2005:

Huge tide expected in Qiantang this month
Hangzhou: A powerful, massive tide is expected to sweep over the
Qiantang River in Hangzhou, capital city of East China’s Zhejiang
Province, later this month, posing a potential danger to people
outside the designated tide-watching areas, experts said yesterday.
The tidal waves are likely to reach a height of 2.5 metres, much
higher than that of past years, said Bao Yuepeng, director ...
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Shallow-water approximation: h0
λ

� 1

Assumptions:
p = (η − z)g
u = u(x , t)

Shallow-water equations:

ηt + h0ux + (ηu)x = 0
ut + gηx + uux = 0

An exact weak solution:

river bed

h0u = u0 u = 0

U

x

a0
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Shallow-water approximation

Control volume:

x
1

x
2

U

x

z

h
0

Let h(x , t) = h0 + η(x , t)

Conservation of mass:

d
dt

∫ x2

x1

ρh(x , t)dx = ρu(x1, t)h(x1, t)− ρu(x2, t)h(x2, t)
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Shallow-water approximation

Control volume:

x
1

x
2

U

x

z

h
0

Conservation of momentum:

d
dt

∫ x2

x1

ρu(x , t)h(x , t)dx = ρu2(x1, t)h(x1, t)− ρu2(x2, t)h(x2, t)

+
ρ

2
gh2(x1, t)h(x1, t)−

ρ

2
gh2(x2, t)h(x2, t)
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Shallow-water approximation

Control volume:

x
1

x
2

U

x

z

h
0

Jump conditions:
−U [h]x2

x1
+ [uh]x2

x1
= 0

−U [uh]x2
x1
+

[
u2h +

1
2

gh2
]x2

x1

= 0
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Shallow-water approximation

river bed

h0u = u0 u = 0

U

x

a0

Jump conditions:
−U [h]x2

x1
+ [uh]x2

x1
= 0

−U [uh]x2
x1
+

[
u2h +

1
2

gh2
]x2

x1

= 0

=⇒ U and u0 are given in terms of a0 and h0
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Shallow-water approximation: Energy loss

x
1

x
2

U

x

z

h
0

Mechanical energy is given by

Esw =
ρ

2

∫ x2

x1

{
u2(x , t)h(x , t) + gh2(x , t)

}
dx

Energy flux is given by

(qE)1 =
ρ

2
u3(x1, t)h(x1, t) + ρgu(x1, t)h2(x1, t)

(qE)2 =
ρ

2
u3(x2, t)h(x2, t) + ρgu(x2, t)h2(x2, t)
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Shallow-water approximation: Energy loss

river bed

h0u = u0 u = 0

U

x

a0

Lord Rayleigh, 1876

Loss of energy:

−dEsw

dt
+
[
(qE)1 − (qE)2

]
=

a3
0

4
ρ

√
1
2 g3

(
1
h0

+ 1
a0+h0

)
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Bore types

river bed

h0u = u0 u = 0

U

x

a0

Bore types:
a0
h0
< 0.28 =⇒ undular bore

0.28 < a0
h0
< 0.75 =⇒ undular bore, some waves are breaking

a0
h0
> 0.75 =⇒ turbulent bore

Folklore: Energy loss in undular bore is due to oscillations
Energy loss in turbulent bore is due to turbulent dissipation
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Surface gravity waves
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Surface gravity waves

river bed

h0

η( x,t)g

x

z

Assumptions:
incompressible
inviscid
two-dimensional
irrotational
unit density
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Surface gravity waves

Long wavelength: h0
λ � 1

Small amplitude: a
h0
� 1

river bed

h0

λ

a

x

z
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Surface gravity waves

Long wavelength: h0
λ � 1

Small amplitude: a
h0
� 1

�� �


river bed

h0

λ

a

x

z
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Surface gravity waves

Long wavelength: h0
λ � 1 =⇒ Shallow water

Small amplitude: a
h0
� 1

�� �


river bed

h0

λ

a

x

z
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Shallow-water equations:

ηt + h0ux + (ηu)x = 0
ut + gηx + uux = 0

Assumptions:

p = (η − z)g
(

hydrostatic
)

u = u(x , t)
(

no vertical acceleration
)

Associated balance laws:

∂

∂t
M +

∂

∂x
qM = 0 (mass balance)

∂

∂t
I +

∂

∂x
qI = 0 (momentum balance)

M = h0 + η

qM = h0u + ηu
I = h0u + ηu

qI = (h0 + η)u2 + 1
2 g(h0 + η)2
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Assumptions:
p = (η − z)g

(
hydrostatic

)

u = u(x , t)
(

no vertical acceleration
)

Associated balance laws:

∂

∂t
M +

∂

∂x
qM = 0 (mass balance)

∂

∂t
I +

∂

∂x
qI = 0 (momentum balance)

M = h0 + η

qM = h0u + ηu
I = h0u + ηu

qI = (h0 + η)u2 + 1
2 g(h0 + η)2

∂

∂t
E +

∂

∂x
qE = 0 (energy balance)
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Associated balance laws:

∂

∂t
M +

∂

∂x
qM = 0 (mass balance)

∂

∂t
I +

∂

∂x
qI = 0 (momentum balance)

M = h0 + η

qM = h0u + ηu
I = h0u + ηu

qI = (h0 + η)u2 + 1
2 g(h0 + η)2

∂

∂t
E +

∂

∂x
qE = 0 (energy balance)

E = 1
2 (h0 + η)u2 + 1

2 g(h0 + η)2

qE = 1
2 (h0 + η)u3 + g(h0 + η)2u
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Long wavelength: h0
λ � 1

Small amplitude: a
h0
� 1

�� �


river bed

h0

λ

a

x

y
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Long wavelength: h0
λ � 1

Small amplitude: a
h0
� 1 =⇒ Airy theory

�� �


river bed

h0

λ

a

x

z
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Dispersion relation:
η = A cos (kx − ωt)
φ = Z (z) sin (kx − ωt)

=⇒ ω2 = gk tanh (h0k)

Linear phase velocity:

c(k) =
ω

k
=
√

g
k tanh (h0k),

for waves propagating to the right.

Group velocity:

cg =
dω
dk

=
1
2

c(k)
(

1 +
2kh0

sinh 2kh0

)
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Flow field:

u = Aω cosh k(z+h0)
sinh kh0

cos (kx − ωt)

v = Aω sinh k(z+h0)
sinh kh0

sin (kx − ωt)

p = gA cosh k(z+h0)
cosh kh0

cos (kx − ωt)− gz

Energy density of (linear) progressive wave:

E =
1
2

gA2

Energy flux:

qE =

[
1
2

gA2
]
×
[

c
2

(
1 +

2kh0

sinh 2kh0

)]
= E × cg
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Boussinesq models

Long wavelength: h0
λ � 1

Small amplitude: a
h0
� 1

�� �
�� �

Boussinesq scaling:

α =
a
h0
∼ h2

0

λ2 = β
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General system:

ηt+h0wx+(ηw)x+
1
2

(
θ2 − 1

3

)
λh3

0wxxx−
1
2

(
θ2 − 1

3

)
(1−λ)h2

0ηxxt = 0,

wt + gηx + wwx +
1
2
(
1− θ2)µgh2

0ηxxx −
1
2
(
1− θ2) (1− µ)h2

0wxxt = 0.

river bed

h
0

λ

a

x

z

θh0

w(x, t)

Horizontal velocity is represented at θh0, where 0 ≤ θ ≤ 1
Additional modeling parameters: λ and µ
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Special cases

Classical Boussinesq system with θ2 = 1
3 and µ = 0,

ηt + h0wx + (ηw)x = 0

wt + gηx + wwx − h2
0

3 wxxt = 0

Kaup System with θ2 = 1, λ = 1,

ηt + h0wx + (ηw)x − h3
0

3 wxxx = 0
wt + gηx + wwx = 0

KdV-KdV system with θ2 = 2
3 , λ = 1 and µ = 1

ηt + h0wx + (ηw)x +
1
6

h3
0wxxx = 0

wt + gηx + wwx +
1
6

gh2
0ηxxx = 0
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Derivation of evolution equations

Non-dimensional variables

x̃ =
x
`
, z̃ =

z + h0

h0
, η̃ =

η

a
, t̃ =

c0t
`
, φ̃ =

c0

ga`
φ,

Velocity potential

φ̃ = f̃ − z̃2

2 f̃x̃ x̃β + z̃4

24 f̃x̃ x̃ x̃ x̃β
2 +O(β3)

Substitute φ̃ into the free-surface boundary conditions

η̃ + f̃̃t − β
2 f̃x̃ x̃ t̃ +

α
2 f̃ 2

x̃ = O(αβ, β2),

Evolution equations:

η̃t̃ + ṽx̃ + α(η̃ṽ)x̃ − 1
6βṽx̃ x̃ x̃ = O(α2, αβ, β2)

η̃x̃ + ṽt̃ − 1
2βṽx̃ x̃ t̃ + αṽ ṽx̃ = O(α2, αβ, β2)

where ṽ = fx̃ , the non-dimensional horizontal velocity at the bottom.
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Non-dimensional variables

x̃ =
x
`
, z̃ =

z + h0

h0
, η̃ =

η

a
, t̃ =

c0t
`
, φ̃ =

c0

ga`
φ,

Velocity potential

φ̃ = f̃ − z̃2

2 f̃x̃ x̃β + z̃4

24 f̃x̃ x̃ x̃ x̃β
2 +O(β3)

Substitute φ̃ into the free-surface boundary conditions

η̃ + f̃̃t − β
2 f̃x̃ x̃ t̃ +

α
2 f̃ 2

x̃ = O(αβ, β2),

Evolution equations:

η̃t̃ + ṽx̃ + α(η̃ṽ)x̃ − 1
6βṽx̃ x̃ x̃ = O(α2, αβ, β2)

η̃x̃ + ṽt̃ − 1
2βṽx̃ x̃ t̃ + αṽ ṽx̃ = O(α2, αβ, β2)

where ṽ = fx̃ , the non-dimensional horizontal velocity at the bottom.
Horizontal velocity at non-dimensional height θ is

φ̃x̃
∣∣
z̃=θ = w̃ = ṽ − θ2

2 ṽx̃ x̃β +O(β2)
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Velocity potential

φ̃ = f̃ − z̃2

2 f̃x̃ x̃β + z̃4

24 f̃x̃ x̃ x̃ x̃β
2 +O(β3)

Substitute φ̃ into the free-surface boundary conditions

η̃ + f̃̃t − β
2 f̃x̃ x̃ t̃ +

α
2 f̃ 2

x̃ = O(αβ, β2),

Evolution equations:

η̃t̃ + ṽx̃ + α(η̃ṽ)x̃ − 1
6βṽx̃ x̃ x̃ = O(α2, αβ, β2)

η̃x̃ + ṽt̃ − 1
2βṽx̃ x̃ t̃ + αṽ ṽx̃ = O(α2, αβ, β2)

where ṽ = fx̃ , the non-dimensional horizontal velocity at the bottom.
Horizontal velocity at non-dimensional height θ is

φ̃x̃
∣∣
z̃=θ = w̃ = ṽ − θ2

2 ṽx̃ x̃β +O(β2)

New system:

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ + 1
2

(
θ2 − 1

3

)
βw̃x̃ x̃ x̃ = O(α2, αβ, β2)

η̃x̃ + w̃t̃ + αw̃w̃x̃ + 1
2β
(
θ2 − 1

)
w̃x̃ x̃ t̃ = O(α2, αβ, β2)
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η̃t̃ + w̃x̃ + α(η̃w̃)x̃ + 1
2

(
θ2 − 1

3

)
βw̃x̃ x̃ x̃ = O(α2, αβ, β2)

w̃t̃ + η̃x̃ + αw̃w̃x̃ + 1
2β
(
θ2 − 1

)
w̃x̃ x̃ t̃ = O(α2, αβ, β2)

Note the first-order relations

η̃t̃ + w̃x̃ = O(α, β)
w̃t̃ + η̃x̃ = O(α, β)

Differentiate first one:

η̃t̃ x̃ x̃ + w̃x̃ x̃ x̃ = O(α, β)

New system:

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ + 1
2

(
θ2 − 1

3

)
βη̃x̃ x̃ t̃ = O(α2, αβ, β2)

w̃t̃ + η̃x̃ + αw̃w̃x̃ + 1
2β
(
θ2 − 1

)
w̃x̃ x̃ t̃ = O(α2, αβ, β2)
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How to find associated densities and fluxes?

Idea:

∂

∂ t̃
M̃ +

∂

∂x̃
q̃M = O(α2, αβ, β2)

∂

∂ t̃
Ĩ +

∂

∂x̃
q̃I = O(α2, αβ, β2)

∂

∂ t̃
Ẽ +

∂

∂x̃
q̃E = O(α2, αβ, β2)
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Mass conservation

Consider the total mass in a control volume, given by

M =

∫ x2

x1

∫ η

−h0

dzdx

=

∫ x2

x1

(h0 + η)dx

h0

η( x,t)g

x

z
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Mass conservation

Consider the total mass in a control volume, given by

M =

∫ x2

x1

∫ η

−h0

dzdx

=

∫ x2

x1

(h0 + η)dx

Mass flux is given by

qM(x) =
∫ η

−h0

φx(x , z) dz

h0

η( x,t)g

x

z
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Mass conservation

Consider the total mass in a control volume, given by

M =

∫ x2

x1

∫ η

−h0

dzdx

=

∫ x2

x1

(h0 + η)dx

Mass flux is given by

qM(x) =
∫ η

−h0

φx(x , z) dz

Mass conservation:

d
dt
M =

[
qm
]x1

x2
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Mass conservation

Mass conservation:

d
dt

∫ x2

x1

∫ η

−h0

dzdx =

[ ∫ η

−h0

φx(x , z) dz
]x1

x2

In non-dimensional form:

d
dt̃

∫ x2/`

x1/`

∫ 1+αη̃

0
dz̃dx̃ = α

[ ∫ 1+αη̃

0
φ̃x̃(x̃ , z̃) dz̃

]x1/`

x2/`

Integrate with respect to z̃:

d
dt̃

∫ x2/`

x1/`

(1 + αη̃)dx̃ = α

[ ∫ 1+αη̃

0

{
ṽ − z̃2

2 βṽx̃ x̃ +O(β2)
}

dz̃
]x1/`

x2/`

= α

[
ṽ + αṽ η̃ − β

6 ṽx̃ x̃ +O(αβ, β2)

]x1/`

x2/`
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Mass conservation

Take average over interval:

1
x2/`−x1/`

∫ x2/`

x1/`

η̃t̃dx̃ =
1

x2/`−x1/`

[
w̃ + αw̃ η̃ − β

2 (θ
2 − 1

3 )w̃x̃ x̃

]x1/`

x2/`

+O(αβ, β2)

In the limit:

η̃t̃ + w̃x + α(w̃ η̃)x̃ − β
2 (θ

2 − 1
3 )w̃x̃ x̃ x̃ = O(αβ, β2)

=⇒ mass density and flux are given in dimensional form by

M = h0 + η,

and

qM = h0w + ηw +
h3

0

2

(
θ2 − 1

3

)
wxx .
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Momentum conservation

Pressure is given by

P = Patm + g(η − z) + 1
2

(
(z + h0)

2 − h2
0
)
wxt

Change of momentum I is equal to
net influx of momentum through the boundaries
plus net force on the boundary

d
dt
I =

[
qI + pressure force

]x1

x2
,

h0

η( x,t)

x

z

qm

pressure



River bores Surface waves Boussinesq models Application to bores KdV equation Integrable models Breaking criterion References

Momentum conservation

Then the momentum balance is

∂

∂ t̃
Ĩ +

∂

∂x̃
q̃I = O(α2, αβ, β2).

Dimensional forms of momentum density and momentum flux are

I = (h0 + η)w +
1
2

(
θ2 − 1

3

)
h3

0wxx

and

qI = h0w2 +
g
2
(h0 + η)2 − h3

0

3
wxt .
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Energy conservation

Change of energy E is equal to
net influx of energy through the boundaries
plus net work done on the boundary

d
dt
E =

[
qI + work done by pressure force

]x1

x2
,

d
dt

∫ x2

x1

∫ η

−h0

{ 1
2 |∇φ|2 + g(z + h0)

}
dzdx =

[ ∫ η

−h0

{ 1
2 |∇φ|2 + g(z + h0)

}
φx dz +

∫ η

−h0

φxP dz
]x1

x2
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Energy conservation

Then the energy balance is

∂

∂ t̃
Ẽ +

∂

∂x̃
q̃E = O(α2, αβ, β2).

The dimensional forms of the energy density and energy flux are
given by

E = 1
2 g(h0 + η)2 + 1

2 h0w2

and
qE = g(h2

0 + 2h0η)w + 1
2

(
θ2 − 1

3

)
c2

0h3
0wxx .
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Application to bores
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Previous work on undular bore

Favre, Ondes des translation, Dunod, Paris, 1935:
Careful experiments.

Classification of bores into undular, undular with breaking, and
turbulent.
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Previous work on undular bore

Lemoine, La Houille Blanche, 1948:
Comparison of energy loss with linear energy flux.

h0

x

Linear

z
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Previous work on undular bore

Benjamin, Lighthill, Proc. Roy. Soc. London A 1954:
"A cnoidal wave-train can be present behind the bore provided that
some quanitity of energy intermediate between zero and the classical
value is dissipated by friction at the bore itself."

h0

x

cnoidal

z
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Previous work on undular bore

Benjamin, Lighthill, Proc. Roy. Soc. London A 1954:
"A cnoidal wave-train can be present behind the bore provided that
some quantity of energy intermediate between zero and the classical
value is dissipated by friction at the bore itself."

KdV equation:
ut + ux + uux + uxxx = 0

Normalization:

1
3

Q2
(

dη
dx

)2

+ gη3 − 2Rη2 + 2Sη −Q2 = 0

Q is volume flow rate
R is energy per unit mass
S is momentum flow rate
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Previous work on undular bore

Sturtevant, Phys. Fluids 1965 :
"the calculations show that there is actually an increase at the front of
the bore of both momentum and energy."

Computations based on Favre’s data show that there is a loss of both
momentum and energy in the inertial frame of reference.

=⇒ Excess energy is dissipated by bottom boundary layer.
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New results

We use the KdV-KdV system

ηt + h0wx + (wη)x + 1
6 h3

0 wxxx = 0

wt + g ηx + wwx + 1
6 gh2

0 ηxxx = 0
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Development of an undular bore with initial amplitude a0 = 0.1m
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New results

KdV-KdV system

ηt + h0wx + (wη)x + 1
6 h3

0 wxxx = 0

wt + g ηx + wwx + 1
6 gh2

0 ηxxx = 0

Momentum and energy are

I =

∫ x2

x1

{
(h0 + η)w +

h3
0

6 wxx

}
dx

E =
1
2

∫ x2

x1

{
h0w2 + g(h2

0 + 2h0η + η2)
}

dx
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New results

BBM-BBM system

ηt + h0wx + (wη)x − 1
6 h2

0 ηxxt = 0

wt + g ηx + wwx − 1
6 h2

0 wxxt = 0

Momentum and energy are

I =

∫ x2

x1

{
(h0 + η)w +

h3
0

6 wxx

}
dx

E =
1
2

∫ x2

x1

{
h0w2 + g(h2

0 + 2h0η + η2)
}

dx
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New results: Energy conservation
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Net energy  flux

Shallow−water  energy change

Dispersive energy change

Comparison of the rate of change of energy vs. the net energy flux.
The initial bore amplitude was a0 = 0.25m
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New results: Energy conservation

a0 F1 − F2
dEsw

dt % diff.
0.1 3.64 3.635 0.2
0.2 8.58 8.53 0.6
0.3 15.07 14.88 1.3
0.4 23.35 22.90 1.9
0.5 33.69 32.81 2.6
0.6 46.35 44.86 3.2
0.7 61.63 59.29 3.8
0.8 79.82 76.36 4.3
0.9 101.24 96.35 4.8
1.0 126.20 119.55 5.3

Column 1 shows bore amplitude a0,
Column 2 shows net energy flux.
Column 3 shows rate of change of energy in shallow-water theory.
Column 4 shows the percentage difference.
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New results: Energy conservation

a0 F1 − F2
dEsw

dt % diff. dEdisp
dt % diff.

0.1 3.64 3.635 0.2 3.64 0.00
0.2 8.58 8.53 0.6 8.58 0.00
0.3 15.07 14.88 1.3 15.08 0.06
0.4 23.35 22.90 1.9 23.36 0.04
0.5 33.69 32.81 2.6 33.69 0.00
0.6 46.35 44.86 3.2 46.35 0.00
0.7 61.63 59.29 3.8 61.63 0.00
0.8 79.82 76.36 4.3 79.84 0.03
0.9 101.24 96.35 4.8 101.30 0.06
1.0 126.20 119.55 5.3 126.28 0.06

Column 1 shows bore amplitude a0, note that h0 = 1.
Column 2 shows net energy flux.
Column 3 shows rate of change of energy in shallow-water theory.
Column 4 shows percentage difference.
Column 5 shows rate of change of energy in dispersive theory.
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New results: backward velocity case u2 = −2ms−1

Rate of energy change in the the shallow water model compared to
the net energy flux.

a0
h0

F1 − F2
d
dt Esw diff.

kgm/s3 kgm/s3 %
0.1 0.84 0.83 0.90
0.2 2.19 2.13 2.67
0.3 4.20 4.01 4.64
0.4 7.04 6.58 6.46
0.5 10.87 9.99 8.05
0.6 15.88 14.38 9.41
0.7 22.26 19.92 10.53
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New results: backward velocity case u2 = −2ms−1

Rate of energy change in dispersive model compared to the net
energy flux.

a0
h0

F1 − F2
d
dt Esw diff. d

dt Edisp diff.
kgm/s3 kgm/s3 % kgm/s3 %

0.1 0.84 0.83 0.90 0.84 0.00
0.2 2.19 2.13 2.67 2.19 0.01
0.3 4.20 4.01 4.64 4.20 0.02
0.4 7.04 6.58 6.46 7.04 0.03
0.5 10.87 9.99 8.05 10.87 0.04
0.6 15.88 14.38 9.41 15.88 0.05
0.7 22.26 19.92 10.53 22.27 0.05
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New results: conservation of momentum

Numerical experiments show that change in momentum is equal to
the net influx.

a0
h0

Net Mom flux d
dt M

kgms−2 kgms−2

0.1 1.13 1.13
0.2 2.59 2.59
0.3 4.40 4.40
0.4 6.59 6.59
0.5 9.19 9.19
0.6 12.23 12.23
0.7 15.74 15.74
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Applications to KdV equation
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KdV equation in dimensional form

ηt + c0ηx + 3
2

c0
h0
ηηx +

c0h2
0

6 ηxxx = 0

Mass density:
M = h0 + η

Mass flux:
qM = c0

(
η + 3

4h0
η2 +

h2
0

6 ηxx

)

Momentum density:

I = c0

(
η + 3

4h0
η2 +

h2
0

6 ηxx

)

Momentum flux:

qI = c2
0

(
h0
2 + η + 3

2h0
η2 +

h2
0

3 ηxx

)
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KdV equation in dimensional form

Energy density:
E = c2

0

(
h0
2 + η + 1

h0
η2
)

Energy flux:
qE = c3

0

(
η + 7

4h0
η2 +

h2
0

6 ηxx

)

Total head:
H = gη2

2h0
+ g(h0 + η)
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Steady KdV equation in traveling reference frame:

1
3 Q2

(
dη
dx

)2
+ gη3 − 2Rη2 + 2Sη −Q2 = 0
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h0 = 1.1, ζ1 = 0.3, ζ2 = −0.1 and ζ3 = −0.15
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Integrable models
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Integrable models

Kaup system:

ηt + h0wx + (ηw)x +
h3

0

3
wxxx = 0,

wt + gηx + wwx = 0,

Hamiltonian:

HKaup =

∫ ∞

−∞

{
g
2η

2 + 1
2 (h0 + η)w2 − h3

0
6 w2

x

}
dx

KdV equation:

ηt + c0ηx + 3
2

c0
h0
ηηx +

c0h2
0

6 ηxxx = 0

Hamiltonian:
HKdV =

∫ ∞

−∞

{ 1
3 h3

0η
2
x − η3}dx
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Energy conservation

Different normalization of potential energy:

...a particle located at the level of the undisturbed free surface has
zero potential energy, and the total potential energy is zero when no
wave motion is present ...

h0

η( x,t)

x

z

x1 x2

FPFP

qE qE

d
dt

∫ x2

x1

∫ η

−h0

{ 1
2 |∇φ|2 + gz

}
dzdx =

[ ∫ η

−h0

{ 1
2 |∇φ|2 + gz

}
φx dz +

∫ η

−h0

φxP dz
]x1

x2
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Energy conservation for Kaup system

Then the energy balance is

∂

∂ t̃
Ẽ +

∂

∂x̃
q̃E = O(α2, αβ, β2).

The dimensional forms of the energy density and energy flux are
given by

E = ρ
{

g
2η

2 + 1
2 (h0 + η)w2 +

h3
0

3 wwxx +
h3

0
6 w2

x

}

and
qE = ρ

{
h0
2 w3 + gηw(h0 + η) +

gh3
0

3 ηwxx − h3
0

3 wwxt

}

We have
HKaup =

∫ ∞

−∞
E(x , t)dx
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Breaking criterion for undular
bores in Boussinesq theory
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Velocity profile

u(x , z, t) = φx(x , z, t) ≈ w(x , t) + 1
2

(
(h0θ)

2 − z2)wxx(x , t) .

h0

a0

η

z

U

u(z)

the bottom, yields

φ̃(x̃, z̃, t̃) =

∞∑

0

(−1)m
z̃2m

(2m)!

∂2mf̃(x̃, t̃)

∂x̃2m
βm , (2.2)

where f̃ = f̃0 is the non-dimensional velocity potential on the bottom. Substituting the expression
(2.2) into the free surface conditions one obtains the system

η̃t̃ + ṽx̃ + α(η̃ṽ)x̃ − 1
6βṽx̃x̃x̃ = O(αβ, β2) ,

ṽt̃ + η̃x̃ + αṽṽx̃ − 1
2βṽx̃x̃t̃ = O(αβ, β2) .

(2.3)

The velocity ṽ in (2.3) is the horizontal velocity at the bottom, and it is given as the first term
in the expansion

φ̃x̃(x̃, z̃, t̃) = ṽ(x̃, t̃)− 1
2βz̃

2ṽx̃x̃(x̃, t̃) +O(β2) . (2.4)

Equation (2.4) can be used to derive systems of equations for which the horizontal velocity
is modeled at a non-dimensional depth θ rather then on the bottom. Denoting by ũθ(x̃, t̃) =
φ̃x̃(x̃, z̃, t̃)|z=θ the non-dimensional horizontal velocity at z̃ = θ, the relation

ṽ = ũθ + 1
2βθ

2ũθx̃x̃ +O(β2) . (2.5)

is found when inverting (2.4). Replacing ṽ in (2.3) with the right-hand side of equation (2.5) gives
the non-dimensional versions of equations (1.1) after some further manipulation using higher-order
terms. If the velocity ũθ(x̃, t̃) is known, the vertical distribution of the horizontal velocity is found
from

ũ(x̃, z̃, t̃) = φ̃x̃(x̃, z̃, t̃) = ũθ(x̃, t̃) + 1
2β(θ

2 − z̃2)ũθx̃x̃(x̃, t̃) +O(β2) , (2.6)

which appears when substituting (2.5) for ṽ in equation (2.4).

It will now be explained how the derivation above can be used to develop an effective criterion
for convective wave breaking. Convective breaking generally occurs when the fluid velocity near
the crest of a wave exceeds the propagation speed of the wave. In the example at hand, namely
the undular bore propagating into still water, the first wave is generally the largest, and it moves

4
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Breaking criterion

A wave solution
(
w(x , t), η(x , t)

)
starts to break if

w(x , t) + 1
2

{
h2

0θ
2 −

(
h0 + η(x , t)

)2
}

wxx(x , t) > U.
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