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Solutions to exercise set 1

1 Before starting: The order conditions up to order 3 is given by:

p = 1,
∑
i

bi = 1,

p = 2,
∑
i

bici =
1

2
,

p = 3,
∑
i

bic
2
i =

1

3
,

∑
ij

biaij =
1

6
,

where ci =
∑

j=1 aij . Thus a21 = c2 − γ.

a) • All order 2 methods satisfies

b1 =
c2 − 1

2

c2 − γ
, b2 =

1
2 − γ
c2 − γ

.

• With these values of bi the last order 4 condition is reduced to

γ2 − γ +
1

6
= 0 ⇒ γ =

1

2
±
√

3

6
,

and the c2 satisfying the first of the order 3 conditions becomes

c2 =
1

2
∓
√

3

6
.

Altogether, the two methods becomes:
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√
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√
3
3

1
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√
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1
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• For the methods to be stiffly accurate we require c2 = 1, and then b1 = 1−γ,
b2 = γ, which is satisfied for all γ’s satisfying

γ2 − 2γ +
1

2
= 0 γ =

1

2
∓
√

3

6
,

resulting in the methods

1∓
√
2
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√
2
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√
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√
2
2

1 ±
√
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Solutions to exercise set 1

b) In general, each stage of an SDIRK method applied to the linear test equation
y′ = λy can be expressed as

Yi = (1− γz)−1(yn +
i−1∑
j=1

aijYj), i = 1, 2, . . . , s.

thus the stability functions for these methods will always be something like

R(z) =
P (z)

(1− γz)s
,

where P ∈ Ps. For s = 2 the general order 2 method has the following stability
function:

R(z) =
(γ2 − 2γ + 1

2)z2 − (2γ − 1)z + 1

(1− γz)2
.

and then it is just to plug in the values for γ. Notice that for the stiffly accurate
methods, the z2 term of the numerator is 0, thus R(z)→ 0 whenever |z| → ∞.

c) The method is A-stable if

• |R(iy)| ≤ 1 for all real y,

• All poles of R(z) are in C+.

The latter is obviously true for γ ≥ 0. The first is true if

E(y) = |Q(iy)|2 − |P (iy)|2 ≤ 0, for all real y,

when R(z) = P (z)/Q(z). Which in our case simply becomes

E(y) = y4
(

4γ3 − 5γ2 + 2γ − 1

4

)
.

The methods are A-stable for γ ≥ 1/2. In conclusion, the order 3 method is

A-stable only for γ = 1
2 +

√
3
6 , the stiffly accurate methods are both A-stable

(and L-stable). However, when γ = 1 +
√
2
2 , get c1 > 1 which means that we

use function evaluation taken outside the step, which should be avoided.

d) See the enclosed python file.

2 a) For the definition of an algebraically stable method, see HW, p.182, def. 12.5
(and the preceeding theorem). Let B = diag(b1, b2, . . . , bs) and

M = BA+ATB − bbT

That M is nonnegative definite, means that

xTMx ≥ 0 for all x.

Let x = [1, 0, . . . , 0]T . For a method with an explicit first stage (a1j = 0)

xTMx = −b21 < 0

if b1 6= 0. So no, the method is not B-stable.
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Solutions to exercise set 1

b) Of the order three methods: If γ = 1
2+
√
3
6 , the method is B-stable, if γ = 1

2−
√
3
6 ,

it is not (check the sign of the eigenvalues of the M -matrix).

None of the stiffly accurate order 2 methods are B-stable.

3 See HW, p. 181, Example 12.3.

4 Given

y′1 = y1 y1(0) = 1

y′2 = z − y2, y2(0) = 0

z′ = z + y2 − 2w z(0) = 1

0 = y1 − ey2 , w(0) = 0

Differentiate the algebraic constraint:

0 = y′1 − ey2y′2 = y1 − exp(y2)(z − y2),
0 = y′1 − ey2y′2(z − y2)− ey2(z′ − y′2) = y1 − ey2((z − y2)2 + 2y2 − 2w),

and the latter can obviously be solved wrt w, and is, together with the first three
differential equations an index 1 problem. So we have differentiated the algebraic
constraint twice to get an index 1 DAE, the index of the original problem is then 3.

The index could also be found by writing the equation in Hessenberg form, with

y′ = f(y, z), z′ = g(y, z, w), h(y) = 0

and using that

hyfzgw =
[
1 −ey2

]0

1

[−2
]

= 2ey2 6= 0.

The solution is, starting with the first equation:

y1 = et, y2 = t, z = t+ 1, w = t.

5 a) Differentiate the first equation, and subtract the two:

z(t) = g(t)− f ′(t), y(t) = f(t)− ηt(g(t)− f ′(t)).

b) Backward Euler becomes

yn+1 + ηtn+1zn+1 = f(tn+1)
yn+1 − yn

h
+ ηtn+1

zn+1 − zn
h

+ (1 + η)zn+1 = g(tn+1).

Using that yn + ηtnzn = f(tn) from the previous step, and tn+1 = tn + h, we
can show that

zn+1 =
η

1 + η
zn + g(tn+1)−

f(tn+1 − f(tn)

h
.

The last two terms are as expected. But the first term will only go to 0 for
n→∞ if η > −1/2, if η < −1/2 the solution will diverge.
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Solutions to exercise set 1

c) The transformed problem will simply be

ŷ = f(t), ŷ′ + ẑ = g(t)

for which Backward Eulers method becomes

ŷn+1 = f(tn+1), ẑn+1 = g(tn+1)−
f(tn+1)− f(tn)

h

which converges to the exact solution when h→ 0.

6 a) See the rather poor, but enclosed matlab file.

b) From the matlab file, we got something like:

DAE SSF ODE

Error in ax2: 2.8 · 10−7 5.2 · 10−7 6.2 · 10−7

Number of steps: 557 197 5467

Number of rejected steps: 84 17 160

Number of function evaluations: 1096 432 10884

Number of jacobians: 12 1 38

So, the state space form (SSF) is trivial to solve, the DAE is reasonable, while
the index reduced ODE is about 10 times as hard to solve as the DAE.

c) This is strictly speaking only interesting in the case of the ODE. In that case,
the Jacobian is given by

J =

 −2ax 1

2a(y − ax2 + cos(t))− 4a2x2 2ax

 −2ax 1

−4a2x2 + 2a cos(t) 2ax


for y = ax2, which neatly enough has the eigenvalues ±

√
2a cos(t). This means

that there are solutions close to the stable manifold y = ax2 will not be attracted
to it, on the contrary. And since the numerical solution will move a bit away
from the stable solution, the integrator has to deal with these solutions as well.

In fact, for this simple problem, it is possible to find the exact solutions, which
are in some arbitrary point t0, x0, y0:

x(t) = (t− t0)(y0 − ax20) + x0 + sin(t)− sin(t0)

y(t) = y0 − ax20 − ax(t)2

which is unstable whenever y0 6 ax20.
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