Norwegian University of Science and Technology
Department of Mathematical

MA8404 Numerical solution of time dependent differential equations

Sciences

1 About the Lipschitz condition, the one-sided Lipschitz-condition, and logarithmic norms.

In this exercise, only the 2 -norm is considered. We will also for simplicity assume that all conditions are valid for all $y, v \in \mathbb{R}^{m}$ and all relevant intervals $t \in\left(t_{0}, t_{\text {end }}\right)$.
a) Consider the system of equations

$$
\begin{array}{ll}
y_{1}^{\prime}=-100 y_{1}+y_{2}, & y_{1}(0)=1 \\
y_{2}^{\prime}=y_{1}-100 y_{2}, & y_{2}(0)=0
\end{array}
$$

Find the exact solution of the problem.
For ODEs $y^{\prime}=f(t, y)$ we have the following well known result:

$$
\|f(t, y)-f(t, v)\| \leq L\|y-v\| \quad \Rightarrow \quad\|y(t)-v(t)\| \leq e^{L\left(t-t_{0}\right)}\left\|y\left(t_{0}\right)-v\left(t_{0}\right)\right\|, \quad t>t_{0}
$$

b) Use this to find a bound for $\|y(1)-v(1)\|_{2}$ when $v(t)$ is the solution of the ODE (1) with initial values $v_{1}(0)=1, v_{2}(0)=1 / 10$.

The function $f(t, y)$ satisfies a one-sided Lipschitz condition if, for all t,

$$
\begin{equation*}
\langle f(t, y)-f(t, v), y-v\rangle_{2} \leq \mu\|u-v\|_{2}^{2}, \quad \forall u, v \in \mathbb{R}^{m} . \tag{2}
\end{equation*}
$$

where μ is called a one-sided Lipschitz constant. It can be proved that if (2) is satisfied, then

$$
\begin{equation*}
\|y(t)-v(t)\|_{2} \leq e^{\mu\left(t-t_{0}\right)}\left\|y\left(t_{0}\right)-v\left(t_{0}\right)\right\|_{2}, \quad t>t_{0} \tag{3}
\end{equation*}
$$

see Theorem 2.4 in the Lecture notes on the numerical solution of ODEs. Further, it can be proved that if $f(t, y)=A y$, then the smallest possible one-sided Lipschitz constant for f is the logarithmic norm

$$
\begin{equation*}
\mu_{2}(A)=\lim _{h \rightarrow 0, h>0} \frac{\|I+h A\|_{2}-1}{h} \tag{4}
\end{equation*}
$$

and in particular that

$$
\begin{equation*}
\mu_{2}(A)=\lambda_{\max }\left(\frac{A+A^{T}}{2}\right) \tag{5}
\end{equation*}
$$

c) Use (3) to find a better bound for $\|y(1)-v(1)\|_{2}$ of $\left.\mathbf{b}\right)$. Compare with the exact solution.
d) (Optional) Prove the statements related to (4) and (5).

2 About the practical use of B-series and rooted trees
a) Kutta's method from 1901 is definitely the most famous of all explicit RungeKutta pairs. Its Butcher tableau is given by

0				
$\frac{1}{2}$	$\frac{1}{2}$			
$\frac{1}{2}$	0	$\frac{1}{2}$		
1	0	0	1	
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

Verify that the method is of order 4 by confirming that it obeys all the eight order conditions.
b) Show that an explicit Runge-Kutta method of order 3 with 3 stages has to satisfy

$$
\begin{equation*}
3 a_{32} c_{2}^{2}-2 a_{32} c_{2}-c_{2} c_{3}+c_{3}^{2}=0 \tag{6}
\end{equation*}
$$

c) Characterize all 3rd-order explicit Runge-Kutta methods with 3 stages which satisfy $a_{31}=0$, that is, which satisfy $a_{32}=c_{3}$. How many free parameters are there?
d) Write down the order conditions corresponding to the following rooted trees:

Also, write down the order of the trees.
Hint: Use the result (7) of the next exercise.

3 In the lecture note, it is proved that the B-series of the exact solution of the ODE $y^{\prime}=f(y)$ can be written as

$$
y\left(t_{0}+h\right)=B\left(e, y_{0} ; h\right), \quad \text { with } \quad e(\tau)(h)=\frac{1}{\gamma(\tau)} h^{\rho(\tau)}
$$

Show that

$$
\begin{equation*}
\gamma(\bullet)=1, \quad \gamma(\tau)=\rho(\tau) \prod_{i=1}^{\kappa} \gamma\left(\tau_{i}\right), \quad \text { when } \quad \tau=\left[\tau_{1}, \tau_{2}, \ldots, \tau_{\kappa}\right] \tag{7}
\end{equation*}
$$

At this point, it could also be a good idea to compare our definition of B-series with the definition used in GNI, III.1, def.1.8.

4 For a better understanding of the B-series
a) Consider ODEs of the form

$$
y^{\prime}=y^{2}
$$

For which trees $\tau \in T$ will the elementary differentials $F(\tau)(y)=0$?
What if

$$
y^{\prime}=A y+g(t), \quad A \text { constant matrix } ?
$$

b) (Optional) Derive a B-series for the exact solution of a split ODE:

$$
y^{\prime}=f(y)+g(y) .
$$

Hint: You may need bi-colored trees, one color for each of f and g.

