EXERCISES FOR MA8203 ALGEBRAIC GEOMETRY

UPDATED LAST: APRIL 29, 2021

The numbered exercises come from Daniel Perrin's textbook.
$(\boldsymbol{\star})$ indicates exercise that may be asked on final exam (added 21/4)
Chapter I Exercises. Due 1 February

- ($\boldsymbol{\star}) 1$
- ($\boldsymbol{\star}) 2$
- (\star) 7 , assume k is infinite
- 8

Chapter II Exercises. Due 1 March

- ($\boldsymbol{\star}) 1$
- (\star) 5: you can use Macaulay2 to help find the resolution in part (c)

Chapter III Exercises. Due 15 March

- Exercises about sheaves from class.
(1) (\star) Let \mathcal{F} be a sheaf on a topological space X and let $U \subseteq X$ be open. Show that $\left.\mathcal{F}\right|_{U}$ is a sheaf on U.
(2) (\star) Let $\pi: X \rightarrow Y$ be a continuous map of topological spaces and let \mathcal{F} be a sheaf on X. Show that $\pi_{*} \mathcal{F}$, defined by $\pi_{*} \mathcal{F}(V)=\mathcal{F}\left(\pi^{-1}(V)\right)$, is a sheaf on Y.
(3) (\star) Let \mathcal{F} be a sheaf of rings on a topological space X.
(a) If $p \in X$, show that \mathcal{F}_{p} is a ring.
(b) If $\left(X, \mathcal{O}_{X}\right)$ is a ringed space, and \mathcal{F} is an \mathcal{O}_{X}-module, show that \mathcal{F}_{p} is an $\mathcal{O}_{X, p^{-}}$module.
(4) (\star) Show that a sequence $0 \rightarrow \mathcal{F} \rightarrow \mathcal{G}$ of sheaves of abelian groups on X is exact if and only if $0 \rightarrow \mathcal{F}(U) \rightarrow \mathcal{G}(U)$ is exact for every open set $U \subseteq X$. Bonus: give an example to show a similar statement is not true for surjections. (corrected $14 / 3$)
- Exercises about algebraic varieties from class. (added 3/3)
(5) (\star) Let $\left(X, \mathcal{O}_{X}\right)$ be an algebraic variety and let $x \in X$. Prove that $\mathcal{O}_{X, x}$ is a local ring with maximal ideal $m=\left\{f \in \mathcal{O}_{X, x} \mid f(x)=0\right\}$.
(6) (\star) Let $\left(X, \mathcal{O}_{X}\right)$ be an algebraic variety. Show that \mathcal{O}_{X} is a coherent sheaf.
(7) Show that the homomorphism

$$
\varphi:\left(k\left[X_{0}, \ldots, X_{n}\right]_{F X_{0}}\right)_{0} \rightarrow k\left[X_{1}, \ldots, X_{n}\right]_{b}
$$

defined by $P /\left(F X_{0}\right)^{r} \mapsto\left({ }^{b} P\right) /\left({ }^{b} F\right)^{r}$ is an isomorphism of rings, where $F \in k\left[X_{0}, \ldots, X_{n}\right]$ is homogeneous. (Refer to the end of the notes from class on 2 March; this is a piece of the proof of III.8.4, to show that a projective variety is an algebraic variety.)

- Exercises A, 1
- Exercises B, 2 (added 3/3) Also, after doing this exercise, try the following two examples (added 14/3):
(a) Let $R=k[X]$ and $M=R /\left(X^{2}\right)$. Write out the resolution of M.
(b) Let $R=k[X, Y]$ and $M=k$. Write out the resolution of M.

Chapter IV Exercises. Due 19 April (Added 26/3)
(a) (\star) Exercise IV, \#1 on affine intersections (page 83)
(b) Exercise IV, \#2 on projective intersections (page 84)
(c) (\star) Give your own example which illustrates the dimension theorem (Theorem 3.7 on page 78-79).
(d) Appendix C: Problems, Problem I. 1 (a,b,c,d,e) on page 216. This is about products of affine algebraic varieties.

Chapter V Exercises. Due 19 April (Added 26/3)
(a) (\star) Prove: If V is an algebraic variety and $x \in V$ is a point, then x is non-singular in V if and only if the local ring $\mathcal{O}_{V, x}$ is regular.
(b) (\star) Exercise $\# 2$, choose one or two of the examples (page 98)
(c) Exercise \#7 (page 99)

Chapter VI Exercises. Due 4 May (Added 18/4, tentative list)
(a) (\star) Let $Z=\{P\}$ where $P=(0,0) \in k^{2}$. Give a finite scheme structure $\left(Z, \mathcal{O}_{Z}\right)$ that is not an algebraic variety.
(b) Prove the exercises about the b and \sharp operators from class. In particular, show that if $F, G \in k[X, Y, T]$ have no common components, then $F_{b}, G_{b} \in$ $k[X, Y]$ have no common components.
(c) (\star) Explicitly compute the intersection multiplicity $\mu_{P}(F, G)$ when $P=$ $(1,0), F=Y$, and $G=X^{2}+Y^{2}-1$.
(d) (\star) Give examples to show why all the assumptions of Bézout's theorem are necessary for the statement.
(e) (\star) In the affine plane, we know that the lines $X=0$ and $X=1$ do not intersect. In \mathbb{P}^{2} show how the corresponding projective lines $X=0$ and $X=T$ intersect at a point (by changing the line at infinity).
(f) (\star) Show that Bézout's theorem holds for the curves $F=X^{2}-2 X T+Y^{2}$ and $G=X T-Y^{2}$.
(g) Show that Bézout's theorem holds for the curves $F=T Y-X^{2}$ and $G=$ $T^{2} Y-X^{3}$
(h) Challenging bonus project to think about: Investigate intersecting the trefoil and quadrifoil with regards to Bézout's theorem.

A few more exercises. Due 4 May (Added 29/4)
(a) Let X be a topological space with open cover $\mathcal{U}=\left\{U_{0}, U_{1}, U_{2}\right\}$, and let \mathcal{F} be a sheaf of abelian groups on X. Examine the Cech complex in this case: write out the differentials and show that $C(\mathcal{U}, \mathcal{F})$ is a complex.
(b) Let X be a projective algebraic variety and $0 \rightarrow \mathcal{F}^{\prime} \rightarrow \mathcal{F} \rightarrow \mathcal{F}^{\prime \prime} \rightarrow 0$ be an exact sequence of coherent sheaves on X. Prove $\chi(\mathcal{F})=\chi\left(\mathcal{F}^{\prime}\right)=\chi\left(\mathcal{F}^{\prime \prime}\right)$, where $\chi(\mathcal{F})=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim}_{k} H^{i}(X, \mathcal{F})$ is the Euler-Poincaré characteristic.
(c) Describe the structure sheaf of the scheme Spec $k \times k$.
(d) Describe the structure sheaf of the scheme $\operatorname{Spec} \mathbb{Z}_{(2)}$.
(e) Give an example of an affine scheme that is not an affine algebraic variety.

