EXERCISES FOR MA8203 ALGEBRAIC GEOMETRY

UPDATED LAST: MARCH 3, 2021

The numbered exercises come from Daniel Perrin's textbook.

Chapter I Exercises. Due 1 February

• 1

- 2
- 7, assume k is infinite
- 8

Chapter II Exercises. Due 1 March

- 1
- 5: you can use Macaulay2 to help find the resolution in part (c)

Chapter III Exercises. Due 15 March

- Exercises about sheaves from class.
 - (1) Let \mathcal{F} be a sheaf on a topological space X and let $U \subseteq X$ be open. Show that $\mathcal{F}|_U$ is a sheaf on U.
 - (2) Let $\pi : X \to Y$ be a continuous map of topological spaces and let \mathcal{F} be a sheaf on X. Show that $\pi_*\mathcal{F}$, defined by $\pi_*\mathcal{F}(V) = \mathcal{F}(\pi^{-1}(V))$, is a sheaf on Y.
 - (3) Let \mathcal{F} be a sheaf of rings on a topological space X.
 - (a) If $p \in X$, show that \mathcal{F}_p is a ring.
 - (b) If (X, \mathcal{O}_X) is a ringed space, and \mathcal{F} is an \mathcal{O}_X -module, show that \mathcal{F}_p is an $\mathcal{O}_{X,p}$ -module.
 - (4) Show that a sequence $\mathcal{F}' \to \mathcal{F} \to \mathcal{F}''$ of sheaves of abelian groups on X is exact if and only if $\mathcal{F}'(U) \to \mathcal{F}(U) \to \mathcal{F}''(U)$ is exact for every open set $U \subseteq X$.
- Exercises about algebraic varieties from class. (added 3/3)
 - (5) Let (X, \mathcal{O}_X) be an algebraic variety and let $x \in X$. Prove that $\mathcal{O}_{X,x}$ is a local ring with maximal ideal $m = \{f \in \mathcal{O}_{X,x} \mid f(x) = 0\}.$
 - (6) Let (X, \mathcal{O}_X) be an algebraic variety. Show that \mathcal{O}_X is a coherent sheaf. (7) Show that the homomorphism
 - () Show that the homomorphism

 $\varphi: (k[X_0, ..., X_n]_{FX_0})_0 \to k[X_1, ..., X_n]_{{}^{\flat}F}$

defined by $P/(FX_0)^r \mapsto ({}^{\flat}P)/({}^{\flat}F)^r$ is an isomorphism of rings, where $F \in k[X_0, ..., X_n]$ is homogeneous. (Refer to the end of the notes from class on 2 March; this is a piece of the proof of III.8.4, to show that a projective variety is an algebraic variety.)

- Exercises A, 1
- Exercises B, 2 (added 3/3)