EXAM SOLUTIONS

Let k be an algebraically closed field.

Problem 1 (Problem 1.1). Let \mathcal{F} be a sheaf on a topological space X. Suppose that for every $\mathfrak{p} \in X$, $\mathcal{F}_{\mathfrak{p}} = 0$. Show that $\mathcal{F} = 0$.

Solution: Let $W \subseteq X$ be an open set and take $t \in \mathcal{F}(W)$. For each $\mathfrak{p} \in W$, the image of $t \mathcal{F}_{\mathfrak{p}}$ is 0, so there exists a neighbourhood $U_{\mathfrak{p}} \subseteq W$ of \mathfrak{p} such that $t \mid_{U_{\mathfrak{p}}} = 0$. Since the $\{U_{\mathfrak{p}}\}_{\mathfrak{p}\in W}$ is an open cover of W, t = 0.

Problem 2 (Problem 2.2). Show that every point in \mathbb{P}^2_k is an algebraic set.

Solution: Let $\mathfrak{p} = [a_0 : a_1 : a_2]$. Assume without loss of generality that $a_0 \neq 0$. Let $I = (a_0x_1 - a_1x_0, a_0x_2 - a_1x_0)$. We claim that $\{\mathfrak{p}\} = \mathcal{Z}(I)$. Clearly, $\mathfrak{p} \in \mathcal{Z}(I)$. To see reverse inclusion, suppose $\mathfrak{q} = [b_0 : b_1 : b_2] \in \mathcal{Z}(I)$ This means that

$$a_0b_1 - a_1b_0 = 0$$
 $a_0b_2 - a_2b_0 = 0.$

Set $\lambda = b_0/a_0$. The above relations then imply that

$$b_1 = \lambda a_1$$
 $b_2 = \lambda a_2.$

Since $b_0 = \lambda a_0$, we conclude that $\mathfrak{p} = \mathfrak{q}$.

Problem 3 (Problem 3.4). Let V be an irreducible projective variety over k. Let S be the singular points of V. Show that S is closed.

Solution: Let $V \subseteq \mathbb{P}^n$, and suppose that $V = V^+(f_1, \ldots, f_m)$ with $f_i \in k[x_0, \ldots, x_n]$. A point $\mathfrak{p} \in V$ is singular if and only if the Jacobian matrix

$$M(\mathfrak{p}) = \left\lfloor \frac{\partial f_i}{\partial x_j}(\mathfrak{p}) \right\rfloor$$

has rank less than $n - \dim V$. Now $M(\mathfrak{p})$ has rank less than $n - \dim V$ if and only if the $n - \dim V \times n - \dim V$ minors of $M(\mathfrak{p})$ vanish for every. Therefore, the singular locus is the vanishing locus of all $n - \dim V \times n - \dim V$ minors of the Jacobian matrix. Since the each minor is a polynomial, the Singular locus is thus algebraic. \Box

Problem 4 (Problem 3.6). Let \mathcal{F} be a coherent sheaf over a variety V. Prove that (a) implies (b)

- (a) Each stalk $\mathcal{F}_{\mathfrak{p}}$ is a free $\mathcal{O}_{V,\mathfrak{p}}$ -module for every $\mathfrak{p} \in V$.
- (b) There is an open cover $V = \bigcup U_i$ such that for each i,

$$\mathcal{F}\mid_{U_i}\cong\mathcal{O}_V^{n_i}\mid_{U_i}$$

Solution: Take $\mathfrak{p} \in V$. We claim there exists a neighbourhood $U \subseteq V$ of \mathfrak{p} such that $\mathcal{F} \mid_U \cong \mathcal{O}_V^n \mid_U$. Let $W \subseteq V$ be an affine open set with $\mathfrak{p} \in W$. Let $R = \mathcal{O}_V(W)$ and $M = \mathcal{F}(W)$. Note that M is a finitely generated R-module since \mathcal{F} is coherent. Now $\mathfrak{p} \in \operatorname{spec} R$ and $M_{\mathfrak{p}} = \mathcal{F}_{\mathfrak{p}}$, and $R_{\mathfrak{p}} = \mathcal{O}_{V,\mathfrak{p}}$.

generated *R*-module since \mathcal{F} is coherent. Now $\mathfrak{p} \in \operatorname{spec} R$ and $M_{\mathfrak{p}} = \mathcal{F}_{\mathfrak{p}}$, and $R_{\mathfrak{p}} = \mathcal{O}_{V,\mathfrak{p}}$. Let $\frac{e_1}{f_1}, \ldots, \frac{e_n}{f_n}$ be an $R_{\mathfrak{p}}$ basis of $M_{\mathfrak{p}}$ with $e_i \in M$ and $f_i \in R \setminus \mathfrak{p}$. Set $t = f_1 \ldots f_n$. Now each $\frac{e_i}{f_i}$ exists in M_t , so we can define a map

$$\varphi \colon R_t^n \to M_t.$$

The map $\varphi_{\mathfrak{p}}$ is an isomorphism, and so $(\ker \varphi)_{\mathfrak{p}} = (\operatorname{coker} \varphi_{\mathfrak{p}}) = 0$. Since $\ker \varphi$ and $\operatorname{coker} \varphi$ are finitely generated R_t -modules, there exists an element $a \in R_t$ that annihilates these modules. In particular

$$\varphi_a \colon (R_t^n)_a \to (M_t)_a$$

is an isomorphism. Let $U = D(a) \subseteq \operatorname{spec} R_t \subseteq \operatorname{spec} R \subseteq V$. It follows that φ_a induces an isomorphism between $\mathcal{O}_V \mid U \cong \mathcal{F} \mid U$.

Problem 5 (Problem 5.1). Let k be an algebraically closed field, and let $V \subseteq \mathbb{P}_k^d$ be a projective hypersurface. This means that $V = V^+(f)$ with homogenous $f \in k[x_0, \ldots, x_d]$ and the ideal (f) is radical. Compute

$$H^i(\mathcal{O}_V(n))$$

for all $i, n \in \mathbb{Z}$. To make life easier, you may suppose that $d \geq 2$.

Solution: Let $t = \deg f$. Let $X = \mathbb{P}^d$ and let $S = k[x_0, \ldots, x_d]$. For every *n*, there is a short exact sequence of modules

$$0 \to S(-t) \xrightarrow{f} S \to S/fS \to 0.$$

This yields a short exact sequence of sheaves

$$0 \to \mathcal{O}_X(n-t) \xrightarrow{f} \mathcal{O}(n) \to \mathcal{O}_V \to 0.$$

Note that we are abusing notation: above we consider $\mathcal{O}_V = \widetilde{k[V]}$ as a sheaf over X. The sheaf cohomology is the same though if we consider it as a sheaf over V. We now look at the associated long exact sequence, and then look at the various cases.

For i = 0, since $H^0(\mathcal{O}_X(n)) = S_n$ and $H^1(\mathcal{O}_X(n)) = 0$ we have

$$0 \to S_{n-t} \xrightarrow{f} S_n \to H^0(\mathcal{O}_V(n)) \to 0$$

which tells us that

$$H^0(\mathcal{O}_V(n)) \cong S_n/fS_{n-t} = (S/fS)_n.$$

Next, recall that

$$H^{d}(\mathcal{O}_{X}(n)) = S^{*}_{-d-n-1} \qquad H^{d-1}(\mathcal{O}_{X}(n)) = H^{d+1}(\mathcal{O}_{X}(n)) = 0.$$

Applying this to the long exact sequence in cohomology

$$0 \to H^{d-1}(\mathcal{O}_V(n)) \to H^d(\mathcal{O}_X(n-t)) \xrightarrow{f} H^d(\mathcal{O}_X(n)) \to H^d(\mathcal{O}_V(n)) \to 0$$

yields

$$0 \to H^{d-1}(\mathcal{O}_V(n)) \to S^*_{-d-n+t-1} \xrightarrow{f} S^*_{-d-n-1} \to H^d(\mathcal{O}_V(n)) \to 0.$$

We now look at the k-dual of this sequence.

$$0 \to H^d(\mathcal{O}_V(n))^* \to S_{-d-n-1} \xrightarrow{f} S_{-d-n+t-1} \to H^{d-1}(\mathcal{O}_V(n))^* \to 0.$$

We conclude that

$$0 = H^{d}(\mathcal{O}_{V}(n))^{*} = H^{d}(\mathcal{O}_{V}(n)) \qquad H^{d-1}(\mathcal{O}_{V}(n))^{*} \cong (S/fS)_{-d-n+t-1}.$$

and so we conclude that

$$H^d(\mathcal{O}_V(n)) \cong (S/fS)^*_{-d-n+t-1}$$

Lastly, $H^i(\mathcal{O}_V(n)) = 0$ for all n and $i \neq 0, d-1$.

Alternative Solution: Using the same notation as above, there is a short exact sequence of modules

$$0 \to S(-t) \xrightarrow{f} S \to S/fS \to 0.$$

Let $\mathfrak{m} = S_+$. This gives rise to a long exact sequence of local cohomology modules

$$\cdots \to H^i_{\mathfrak{m}}(S(-t)) \xrightarrow{f} H^i_{\mathfrak{m}}(S) \to H^i_{\mathfrak{m}}(S/fS) \to \cdots$$

Recall that $H^i_{\mathfrak{m}}(S) = 0$ for all $i \neq d+1$ and

$$H^{d+1}_{\mathfrak{m}}(S)_n = S^*_{-d-n-2}$$

and so the same arguments as above, give us the that $H^i_{\mathfrak{m}}(S/f) = 0$ for all $i \neq d$ and

$$H^d_{\mathfrak{m}}(S/fS)_n = (S/fS)_{-d-n+t-1}$$

Using the isomorphism

$$H^{i+1}_{\mathfrak{m}}(S/fS) \cong \bigoplus_{n \in \mathbb{Z}} H^{i}(\mathcal{O}_{V}(n))$$

for all $i \geq 1$.

EXAM SOLUTIONS

All that remains is the i = 0 case. Here, recall that we have a short exact sequence

$$0 \to H^0_{\mathfrak{m}}(S/fS)_n \to (S/fS)_n \to \mathcal{O}_V(n)(V) \to H^1_{\mathfrak{m}}(S/fS)_n \to 0.$$

Since we shows that $H^0_{\mathfrak{m}}(S/fS) = H^1_{\mathfrak{m}}(S/fS) = 0$, the result is clear.

Problem 6 (Problem 6.3). Let V be a nonsingular projective curve over \mathbb{C} . Suppose that every invertible sheaf over V is isomorphic to $\mathcal{O}_V(n)$ for some $n \in \mathbb{Z}$. Show that V is birational to $\mathbb{P}^1_{\mathbb{C}}$.

Solution: We claim that there are to points $\mathfrak{p}, \mathfrak{q} \in V$ with $\mathfrak{p} \neq \mathfrak{q}$ and $\mathfrak{p} \sim \mathfrak{q}$. Given points $\mathfrak{p} \sim \mathfrak{q}$. Using the fact that \mathbb{C} is uncountable, we know that V is also uncountable. By assumption, there are only countable isomorphism classes of invertible sheaves. Thus there exist distinct $\mathfrak{p}, \mathfrak{q} \in V$, such that $\mathcal{L}(\mathfrak{p}) \cong \mathcal{L}(\mathfrak{q})$. Since the Picard group and the class group of V are isomorphic, we conclude that $\mathfrak{p} \sim \mathfrak{q}$.