EXAM SOLUTIONS

Let k be an algebraically closed field.
Problem 1 (Problem 1.1). Let \mathcal{F} be a sheaf on a topological space X. Suppose that for every $\mathfrak{p} \in X$, $\mathcal{F}_{\mathfrak{p}}=0$. Show that $\mathcal{F}=0$.

Solution: Let $W \subseteq X$ be an open set and take $t \in \mathcal{F}(W)$. For each $\mathfrak{p} \in W$, the image of $t \mathcal{F}_{\mathfrak{p}}$ is 0 , so there exists a neighbourhood $U_{\mathfrak{p}} \subseteq W$ of \mathfrak{p} such that $\left.t\right|_{U_{\mathfrak{p}}}=0$. Since the $\left\{U_{\mathfrak{p}}\right\}_{\mathfrak{p} \in W}$ is an open cover of W, $t=0$.

Problem 2 (Problem 2.2). Show that every point in \mathbb{P}_{k}^{2} is an algebraic set.
Solution: Let $\mathfrak{p}=\left[a_{0}: a_{1}: a_{2}\right]$. Assume without loss of generality that $a_{0} \neq 0$. Let $I=\left(a_{0} x_{1}-a_{1} x_{0}, a_{0} x_{2}-\right.$ $\left.a_{1} x_{0}\right)$. We claim that $\{\mathfrak{p}\}=\mathcal{Z}(I)$. Clearly, $\mathfrak{p} \in \mathcal{Z}(I)$. To see reverse inclusion, suppose $\mathfrak{q}=\left[b_{0}: b_{1}: b_{2}\right] \in$ $\mathcal{Z}(I)$ This means that

$$
a_{0} b_{1}-a_{1} b_{0}=0 \quad a_{0} b_{2}-a_{2} b_{0}=0
$$

Set $\lambda=b_{0} / a_{0}$. The above relations then imply that

$$
b_{1}=\lambda a_{1} \quad b_{2}=\lambda a_{2}
$$

Since $b_{0}=\lambda a_{0}$, we conclude that $\mathfrak{p}=\mathfrak{q}$.
Problem 3 (Problem 3.4). Let V be an irreducible projective variety over k. Let S be the singular points of V. Show that S is closed.

Solution: Let $V \subseteq \mathbb{P}^{n}$, and suppose that $V=V^{+}\left(f_{1}, \ldots, f_{m}\right)$ with $f_{i} \in k\left[x_{0}, \ldots, x_{n}\right]$. A point $\mathfrak{p} \in V$ is singular if and only if the Jacobian matrix

$$
M(\mathfrak{p})=\left[\frac{\partial f_{i}}{\partial x_{j}}(\mathfrak{p})\right]
$$

has rank less than $n-\operatorname{dim} V$. Now $M(\mathfrak{p})$ has rank less than $n-\operatorname{dim} V$ if and only if the $n-\operatorname{dim} V \times n-\operatorname{dim} V$ minors of $M(\mathfrak{p})$ vanish for every. Therefore, the singular locus is the vanishing locus of all $n-\operatorname{dim} V \times n-\operatorname{dim} V$ minors of the Jacobian matrix. Since the each minor is a polynomial, the Singular locus is thus algebraic.

Problem 4 (Problem 3.6). Let \mathcal{F} be a coherent sheaf over a variety V. Prove that (a) implies (b)
(a) Each stalk $\mathcal{F}_{\mathfrak{p}}$ is a free $\mathcal{O}_{V, \mathfrak{p}}$-module for every $\mathfrak{p} \in V$.
(b) There is an open cover $V=\bigcup U_{i}$ such that for each i,

$$
\left.\left.\mathcal{F}\right|_{U_{i}} \cong \mathcal{O}_{V}^{n_{i}}\right|_{U_{i}}
$$

Solution: Take $\mathfrak{p} \in V$. We claim there exists a neighbourhood $U \subseteq V$ of \mathfrak{p} such that $\left.\left.\mathcal{F}\right|_{U} \cong \mathcal{O}_{V}^{n}\right|_{U}$. Let $W \subseteq V$ be an affine open set with $\mathfrak{p} \in W$. Let $R=\mathcal{O}_{V}(W)$ and $M=\mathcal{F}(W)$. Note that M is a finitely generated R-module since \mathcal{F} is coherent. Now $\mathfrak{p} \in \operatorname{spec} R$ and $M_{\mathfrak{p}}=\mathcal{F}_{\mathfrak{p}}$, and $R_{\mathfrak{p}}=\mathcal{O}_{V, \mathfrak{p}}$.

Let $\frac{e_{1}}{f_{1}}, \ldots, \frac{e_{n}}{f_{n}}$ be an $R_{\mathfrak{p}}$ basis of $M_{\mathfrak{p}}$ with $e_{i} \in M$ and $f_{i} \in R \backslash \mathfrak{p}$. Set $t=f_{1} \ldots f_{n}$. Now each $\frac{e_{i}}{f_{i}}$ exists in M_{t}, so we can define a map

$$
\varphi: R_{t}^{n} \rightarrow M_{t}
$$

The map $\varphi_{\mathfrak{p}}$ is an isomorphism, and so $(\operatorname{ker} \varphi)_{\mathfrak{p}}=\left(\operatorname{coker} \varphi_{\mathfrak{p}}\right)=0$. Since $\operatorname{ker} \varphi$ and coker φ are finitely generated R_{t}-modules, there exists an element $a \in R_{t}$ that annihilates these modules. In particular

$$
\varphi_{a}:\left(R_{t}^{n}\right)_{a} \rightarrow\left(M_{t}\right)_{a}
$$

is an isomorphism. Let $U=D(a) \subseteq \operatorname{spec} R_{t} \subseteq \operatorname{spec} R \subseteq V$. It follows that φ_{a} induces an isomorphism between $\mathcal{O}_{V}|U \cong \mathcal{F}| U$.

Problem 5 (Problem 5.1). Let k be an algebraically closed field, and let $V \subseteq \mathbb{P}_{k}^{d}$ be a projective hypersurface. This means that $V=V^{+}(f)$ with homogenous $f \in k\left[x_{0}, \ldots, x_{d}\right]$ and the ideal (f) is radical. Compute

$$
H^{i}\left(\mathcal{O}_{V}(n)\right)
$$

for all $i, n \in \mathbb{Z}$. To make life easier, you may suppose that $d \geq 2$.
Solution: Let $t=\operatorname{deg} f$. Let $X=\mathbb{P}^{d}$ and let $S=k\left[x_{0}, \ldots, x_{d}\right]$. For every n, there is a short exact sequence of modules

$$
0 \rightarrow S(-t) \xrightarrow{f} S \rightarrow S / f S \rightarrow 0
$$

This yields a short exact sequence of sheaves

$$
0 \rightarrow \mathcal{O}_{X}(n-t) \xrightarrow{f} \mathcal{O}(n) \rightarrow \mathcal{O}_{V} \rightarrow 0
$$

Note that we are abusing notation: above we consider $\mathcal{O}_{V}=\widetilde{k[V]}$ as a sheaf over X. The sheaf cohomology is the same though if we consider it as a sheaf over V. We now look at the associated long exact sequence, and then look at the various cases.

For $i=0$, since $H^{0}\left(\mathcal{O}_{X}(n)\right)=S_{n}$ and $H^{1}\left(\mathcal{O}_{X}(n)\right)=0$ we have

$$
0 \rightarrow S_{n-t} \xrightarrow{f} S_{n} \rightarrow H^{0}\left(\mathcal{O}_{V}(n)\right) \rightarrow 0
$$

which tells us that

$$
H^{0}\left(\mathcal{O}_{V}(n)\right) \cong S_{n} / f S_{n-t}=(S / f S)_{n}
$$

Next, recall that

$$
H^{d}\left(\mathcal{O}_{X}(n)\right)=S_{-d-n-1}^{*} \quad H^{d-1}\left(\mathcal{O}_{X}(n)\right)=H^{d+1}\left(\mathcal{O}_{X}(n)\right)=0
$$

Applying this to the long exact sequence in cohomology

$$
0 \rightarrow H^{d-1}\left(\mathcal{O}_{V}(n)\right) \rightarrow H^{d}\left(\mathcal{O}_{X}(n-t)\right) \xrightarrow{f} H^{d}\left(\mathcal{O}_{X}(n)\right) \rightarrow H^{d}\left(\mathcal{O}_{V}(n)\right) \rightarrow 0
$$

yields

$$
0 \rightarrow H^{d-1}\left(\mathcal{O}_{V}(n)\right) \rightarrow S_{-d-n+t-1}^{*} \xrightarrow{f} S_{-d-n-1}^{*} \rightarrow H^{d}\left(\mathcal{O}_{V}(n)\right) \rightarrow 0
$$

We now look at the k-dual of this sequence.

$$
0 \rightarrow H^{d}\left(\mathcal{O}_{V}(n)\right)^{*} \rightarrow S_{-d-n-1} \xrightarrow{f} S_{-d-n+t-1} \rightarrow H^{d-1}\left(\mathcal{O}_{V}(n)\right)^{*} \rightarrow 0
$$

We conclude that

$$
0=H^{d}\left(\mathcal{O}_{V}(n)\right)^{*}=H^{d}\left(\mathcal{O}_{V}(n)\right) \quad H^{d-1}\left(\mathcal{O}_{V}(n)\right)^{*} \cong(S / f S)_{-d-n+t-1}
$$

and so we conclude that

$$
H^{d}\left(\mathcal{O}_{V}(n)\right) \cong(S / f S)_{-d-n+t-1}^{*}
$$

Lastly, $H^{i}\left(\mathcal{O}_{V}(n)\right)=0$ for all n and $i \neq 0, d-1$.
Alternative Solution: Using the same notation as above, there is a short exact sequence of modules

$$
0 \rightarrow S(-t) \xrightarrow{f} S \rightarrow S / f S \rightarrow 0
$$

Let $\mathfrak{m}=S_{+}$. This gives rise to a long exact sequence of local cohomology modules

$$
\cdots \rightarrow H_{\mathfrak{m}}^{i}(S(-t)) \xrightarrow{f} H_{\mathfrak{m}}^{i}(S) \rightarrow H_{\mathfrak{m}}^{i}(S / f S) \rightarrow \cdots
$$

Recall that $H_{\mathfrak{m}}^{i}(S)=0$ for all $i \neq d+1$ and

$$
H_{\mathfrak{m}}^{d+1}(S)_{n}=S_{-d-n-1}^{*}
$$

and so the same arguments as above, give us the that $H_{\mathfrak{m}}^{i}(S / f)=0$ for all $i \neq d$ and

$$
H_{\mathfrak{m}}^{d}(S / f S)_{n}=(S / f S)_{-d-n+t-1}
$$

Using the isomorphism

$$
H_{\mathfrak{m}}^{i+1}(S / f S) \cong \bigoplus_{n \in \mathbb{Z}} H^{i}\left(\mathcal{O}_{V}(n)\right)
$$

for all $i \geq 1$.

All that remains is the $i=0$ case. Here, recall that we have a short exact sequence

$$
0 \rightarrow H_{\mathfrak{m}}^{0}(S / f S)_{n} \rightarrow(S / f S)_{n} \rightarrow \mathcal{O}_{V}(n)(V) \rightarrow H_{\mathfrak{m}}^{1}(S / f S)_{n} \rightarrow 0
$$

Since we shows that $H_{\mathfrak{m}}^{0}(S / f S)=H_{\mathfrak{m}}^{1}(S / f S)=0$, the result is clear.
Problem 6 (Problem 6.3). Let V be a nonsingular projective curve over \mathbb{C}. Suppose that every invertible sheaf over V is isomorphic to $\mathcal{O}_{V}(n)$ for some $n \in \mathbb{Z}$. Show that V is birational to $\mathbb{P}_{\mathbb{C}}^{1}$.
Solution: We claim that there are to points $\mathfrak{p}, \mathfrak{q} \in V$ with $\mathfrak{p} \neq \mathfrak{q}$ and $\mathfrak{p} \sim \mathfrak{q}$. Given points $\mathfrak{p} \sim \mathfrak{q}$. Using the fact that \mathbb{C} is uncountable, we know that V is also uncountable. By assumption, there are only countable isomorphism classes of invertible sheaves. Thus there exist distinct $\mathfrak{p}, \mathfrak{q} \in V$, such that $\mathcal{L}(\mathfrak{p}) \cong \mathcal{L}(\mathfrak{q})$. Since the Picard group and the class group of V are isomorphic, we conclude that $\mathfrak{p} \sim \mathfrak{q}$.

