
MA8109 Stochastic processes and differential equations

Fall 2015 – Synopsis

This note is intended to provide a synopsis of the course: What has been covered,
basic definitions and important results, etc.

The note will keep on growing as the lectures move ahead. Ideally, a new version
will be posted every week.

Notation

Here I summarize some notation used throughout.

– N, Z,Q, R, C are the sets of natural numbers (starting at 1), integers, rational
numbers, real numbers, and complex numbers respectively. Also,N0 =

{
0
}∪N,

and R= [−∞,∞].
– I write lim and lim instead of the more common liminf and limsup.
– B is the σ-algebra of Borel sets on R or R (depending on context).
– I use := to mean “is defined as”, and =: if the term being defined is on the right.
– Ac is the complement Ω\ A. The “universal” setΩ needs to be understood.
– AtB is the union A∪B of two disjoint sets A and B .

–
∞⊔

n=1
An is the union of a sequence of pairwise disjoint sets.

– Y X , where X and Y are sets, is the set of functions X → Y .
– As a special case, Y N is the set of all sequences (y1, y2, . . .) in Y .
– [S] equals 1 if the statement S is true, 0 otherwise (indicator bracket).
– [A] is the indicator function of the set A, defined by [A](x) = [x ∈ A].
– If a ∈Rwe write a+ := max(a,0) and a− := (−a)+ =−min(a,0).

Then a± ≥ 0, a+a− = 0, a = a+−a−, and |a| = a++a−.
– If f is a function, define f ± by f ±(x) = f (x)±.
– I write ∂t , ∂x for partial derivatives wrt. t and x respectively; also ∂xx for the

second order derivative.
– I prefer Evans’ notation L2 andM2 over Øksendal’s V and W.
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A recurring example is coin tossing spaceΩ= {
0,1

}N, consisting of all infinite
sequences of zeroes and ones, representing coin tosses (zero for tails, one for
head) if you wish.

An algebra onΩ, (or perhaps more precisely, an algebra of subsets ofΩ) is a set A
of subsets ofΩ so that

- ;∈A
- A ∈A implies Ac ∈A
- A,B ∈A implies A∪B ∈ s A

For each n ∈N, there is an algebra Fn of subsets ofΩ, defined as the events
determined by (ω1, . . . ,ωn): Thus A ∈F if and only if whenever ω ∈ A and ω′ ∈Ω
ωk =ω′

k for k = 1, . . . ,n implies ω′ ∈ A. Or put differently, if πn : Ω→ {
0,1

}n is the
projection map onto the first n coordinates, the members of Fn are the inverse
images of sets B ⊆ {

0,1
}n . Thus Fn has 22n

members.

If we think of independent coin tosses with an unbiased coin, elementary
probability theory dictates a probability P (π−1

n (B)) = 2−n #B when B ⊆ {
0,1

}n

(here #B is the number of members of B).

The algebras Fn form an increasing sequence of algebras, and so their union

F∗ :=
∞⋃

n=1
Fn

is an algebra too: It consists of all finitely determined events.

The strong law of large numbers implies that

lim
n→∞

1

n

n∑
k=1

ωk = 1

2
a. s.,

where “a. s.” stands for “almost surely”, meaning “with probability 1”.

Note that we are unable to even give this statement a precise meaning within our
current framework so far, since it is a statement regarding an event not in F∗
(worse, it is utterly independent of any finite number of cointosses ωk ).

Our next task is to remedy this.



σ-algebras and measures

1 Definition. A σ-algebra onΩ (or perhaps more precisely, a σ-algebra of subsets
ofΩ) is a set F of subsets ofΩ so that

- ;∈F
- A ∈F implies Ac ∈F
- An ∈F for n = 1,2, . . . implies

∞⋃
k=1

Ak ∈F

Because any intersection of σ-algebras is itself a σ-algebra, there exists a smallest
σ-algebra F :=σ(F∗) containing F∗, called the σ-algebra generated by F∗.

We want to extend P to a probability measure on F.

2 Definition. A measure on F is a map µ : F→ [0,∞] satisfying

– µ(;) = 0
– An ∈F pairwise disjoint for n ∈N implies µ

( ∞⊔
n=1

An

)
=

∞∑
n=1

µ(An)

3 Definition.

– A measurable space is a pair (Ω,F) whereΩ is a set and F a σ-algebra onΩ.
– A measure space is a triple (Ω,F,µ) where (Ω,F) is a measurable space and µ a

measure on F.
– A probability space is a measure space (Ω,F, ) where P is a probability measure.

4 Definition. A monotone class is a set M of subsets ofΩ satisfying

– If An ∈M and An ⊆ An+1 for all n ∈N, then
∞⋃

n=1
An ∈M,

– If An ∈M and An ⊇ An+1 for all n ∈N, then
∞⋂

n=1
An ∈M.

5 Lemma (Monotone Class Lemma) If A is an algebra onΩ and M is a montone
class with A⊆M, then A⊆σ(M).

From this we get

6 Theorem (Uniqueness of extension) Let A be an algebra. Any two finite
measures which agree on all members of A, also agree on all members of σ(A).

Returning to cointossing space (Ω,F) withΩ= {
0,1

}N, we conclude that there
cannot be more than one probability measure on this space extending the
function P defined previously on F∗.

That there in fact exists such a measure is non-trivial, but true. Thanks to the
uniqueness theorem, we do not need worry too much about which of several
possible methods of construction we use; they must all produce the same
measure.

Lebesgue measure

This is another measure of great importance. It is defined on the σ-algebra B of
Borel subsets of R, which is the σ-algebra generated by the set of intervals (or
equivalently, open intervals – or closed intervals – or half open intervals (a,b] – or
open sets – or closed sets – or . . . ). We shall write λ for Lebesgue measure. It is the
unique Borel measure (meaning a measure on B) so that λ((a,b]) = b −a for all
a ≤ b. (These do not form an algebra, so the uniqueness theorem does not apply
directly – but the set of all finite unions of such integrals does, if we also include
intervals of the form (−∞, a] and (a,∞).)
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7 Definition. A measurable function on a measurable space (Ω,F) is a function
f : Ω→R so that f −1(−∞, a[)−∞, a] ∈F for all a ∈R. (Then f −1(B) ∈F for all
Borel sets B , because the sets B satisfying the condition is a σ-algebra.)

A random variable (R. V.) on a probability space (Ω,F,P ) is a measurable function
on (Ω,F). (We usually use uppercase letters such as X for random variables.)

8 Lemma If a sequence of measurable functions converges pointwise to some
limit, then the limit is measurable.

We can now define a random variable U on coin tossing space:

U (ω) =
∞∑

n=1
ωn 2−n .

Think of it as using the coin tosses ωn as the digits in the binary expansion of
U (ω) ∈ [0,1].

We write P (U ≤ u) as shorthand notation for P (
{
ω ∈Ω : U (ω) ≤ u

}
).

It turns out that P (U ≤ u) = u for all u ∈ [0,1]. (Easily proved for dyadic rational u,
that is, u = m/2k for integers m, k; then it follows for all u, beacuse P (U ≤ u) = u is
a monotone function of u.) In other words, U is uniformly distributed on the
interval [0,1]. We shall call such a random variable a standard uniform variable.
From it, we can build random variables of any desired distribution.

9 Definition. The distribution of a random variable X on (Ω,F,P ) is the Borel
measure µX given by

µx (B) = P (X ∈ B) = P (X −1(B)).

It is uniquely determined by the cumulative distribution function

FX (x) =µX ([−∞, x]) = P (X ≤ x).

In particular, the distribution of a standard uniform variable U is Lebesgue
measure on [0,1]:

µU (B) =λ(B ∩ [0,1]) (B ∈B).



Integration

We define the integral for certain measurable functions f on a measure space
(Ω,F,µ):

10 Definition. A simple function is a measurable function which takes only a
finite number of values. Such a function can be written

ϕ=
n∑

k=1
ak [Ak ]

with ak ∈R and Ak ∈F. We can always choose the ak to be distinct and nonzero
and the Ak to be nonempty and mutually disjoint. This may be called the
canonical representation of ϕ. It is unique up to permutation of the indices. For a
non-canonical representation, we must take care not to subtract infinities. So we
disallow a j =−∞, ak =∞ and A j ∩ Ak 6= ;.

11 Definition. The integral of a simple function such as above is∫
Ω
ϕdµ=

n∑
k=1

akµ(Ak ).

Here and elsewhere we use the convention that 0 · (±∞) = 0. If the sum contains
terms equal to both −∞ and +∞, we do not define the integral of ϕ. Note that the
integral of a nonnegative simple function is always defined. Its value may be ∞.

12 Definition. The integral of a nonnegative measurable function f is∫
Ω

f dµ= sup
{∫
Ω
ϕdµ : ϕ is simple and 0 ≤ϕ≤ f

}
.

13 Theorem (The Monotone Convergence Theorem (MCT)) If fn is a measurable
function and 0 ≤ fn ≤ fn+1 for n ∈N then∫

Ω
lim

n→∞ fn dµ= lim
n→∞

∫
Ω

fn dµ.

(Note that both limits exist by monotonicity, and the limit function on the left is
measurable.)

14 Theorem (Fatou’s lemma) If fn ≥ 0 is measurable for all n ∈N then∫
Ω

lim
n→∞

fn dµ≤ lim
n→∞

∫
Ω

fn dµ.

After showing that any nonnegative measurable function is a pointwise limit of a
non-decreasing sequence of nonnegative simple function, we have no difficulty
using MCT to show that the integral is additive, and in the end, we get an integral
that is linear, given by

15 Definition. The integral of a measurable function f is defined to be∫
Ω

f dµ=
∫
Ω

f + dµ−
∫
Ω

f − dµ.

If both integrals on the right have infinite value, we do not define the integral. If
they are both finite, we call f integrable.

16 Theorem (The Dominated Convergence Theorem (DCT)) If fn is measurable
and | fn | ≤ g for all n ∈N where g is integrable, and if the sequence converges
pointwise, then ∫

Ω
lim

n→∞ fn dµ= lim
n→∞

∫
Ω

fn dµ.

The Riemann integral (or the Darboux integral – the two are equivalent, even
though they are constucted in slightly different ways) is the integral you learned in
basic calculus based on Riemann sums. Any Riemann integrable function is
Lebesgue integrable, and the Riemann integral equals the Lebesgue integral. (I am
sure you are much relieved.) But it is trivial to find Lebesgue integrable functions
which are not Riemann integrable: The indicator function [Q] of the rational
numbers is one example. Note that Q is countable, and so λ(Q) = 0, since the
Lebesgue measure of any singleton set is zero. But [Q] is discontinuous
everywhere, whereas Riemann integrable functions are continuous almost
everywhere (i.e., except on a set of measure zero).
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The expectation of a random variable X : Ω→R is simply its integral with respect
to probability measure:

E [X ] :=
∫
Ω

X dP.

If g : R→R is any Borel measurable function, then g (X ) is another random
variable. (Strictly speaking, we should write it as a function composition g ◦X ,
since we are really talking about the function ω 7→ X (g (ω)), but common
convention suggest hiding ω as much as possible.)

Recalling the definition of the distribution µX of X , we find

E [g (X )] =
∫
R

g dµX .

(This is almost trivial when g is a simple function, and the general case follows by
the bootstrapping procedure, noting that a nonnegative measurable g is the limit
of an increasing sequence of simple functions and employing MCT.)

Thus we recover the usual formula from elementary probability.

We can create a random variable X with any given distribution µ, and
corresponding cumulative distribution F (x) :=µ(

[−∞, x]
)

by letting U be a
standard uniform variable and setting

X (ω) = F̃
(
U (ω)

)
, F̃ (u) = min

{
x ∈R : F (x) ≥ u

}
.

In particular, we can create a standard Gaussian variable in this way, using the
standard Gaussian density function ϕ and cumulative distributionΦ:

ϕ(x) = 1p
2π

e−x2/2, Φ(x) =
∫ x

−∞
ϕ(t )d t .

Note that if X is a standard Gaussian variable, then σX +µ is a Gaussian variable
with variance σ2 and expectation (mean) µ.

Stochastic independence: We generalize the notion of independence from events:
algebras Ak with k = 1, . . . ,n are called independent when

P
( n⋂

k=1
Ak

)
=

n∏
k=1

P (Ak ) whenever Ak ∈Ak for k = 1, . . . ,n,

and an infinite collection of algebras is called independent if every finite
subcollection is independent.

The σ-algebra generated by a random variable X is the set of events{
X ∈ B

}= X −1(B) where B ⊆R is a Borel set. A collection of random variables is
called independent if the σ-algebras they generate are independent.

In coin tossing space, all the algebras corresponding to a single coin toss,
Fn = {;,

{
ωn = 0

}
,
{
ωn = 1

}
,Ω

}
, are independent by construction.

With a bit of work, we can also conclude that the σ-algebras corresponding to
disjoint sets of coin tosses, such as

σ
( ∞⋃

k=1
F(2k−1)2n

)
, with n = 0,1,2, . . .,

are independent. It follows that the random variables

Un :=
∞∑

k=1
ω(2k−1)2n 2−n

are independent.

In proving the above, the following is useful:

17 Lemma If algebras (Ai )i∈I are independent, then the generated σ-algebras
σ(Ai ) are also independent.

The proof is by showing that you can replace the Ai by σ(Ai ) one by one without destroying
independence, by noting that the set of sets A which are independent of all the A j for j 6= i
is a monotone class, and using the monotone class lemma. Since the main condition for
independence involves only a finite number of algebras at a time, this is sufficient.



Characteristic functions

The characteristic function of a stochastic variable X : Ω→Rn is the function of
ξ ∈Rn given by the expectation E [e iξ·X ] where · denotes the ordinary scalar
product. We calculate

E [e iξ·X ] =
∫
Ω

e iξ·X =
∫
Rn

e iξ·x dµX (x) = µ̂X (ξ),

where µ̂X is the Fourier transform of µX .

The conventions for Fourier transforms vary, of course – here we have chosen to drop the
factor (2π)−n/2 that is commonly included, and we also use the plus sign in the exponent
where a minus sign is quite common. But the present definition matches the conventional
definition of characteristic function.

From the theory of distributions (in analysis, not probability – also called
generalized functions) we can learn the important fact that two distributions with
the same characteristic function are in fact identical.

Differentiating under the integral sign yields important formulas like

E [X j ] = ∂

∂ξ j
µ̂X (0)

and higher analogues such as

E [X j Xk ] = ∂2

∂ξ j∂ξk
µ̂X (0)

and so on.

These can be proved directly from the definition of derivative, using DCT – provided that X j
and X j Xk are integrable.



Gaussian families

(Note: We stick to Gaussian variables with expectation zero for now.)

The characteristic function of a single standard Gaussian is

µ̂N (ξ) = 1p
2π

∫
R

e−x2/2+iξd x = e−ξ
2/2

p
2π

∫
R

e−(x−iξ)2/2 d x = e−ξ
2/2.

The second integral above can be evaluated by using Cauchy’s integral theorem around a
rectangular contour with corners at ±M and ±M − iξ and letting M →∞.

We generalize this to m linear combinations of n independent standard Gaussians
Nk :

X j =
n∑

k=1
a j k Nk

which we can write as a matrix equation X = AN where the X j form a column
vector X , the Nk form a column vector N , and A is an m ×n matrix with real
entries. We calculate

µ̂X (ξ) = E(e iξTAN ) = e−ξ
TA ATξ/2 = e−ξ

TCξ/2,

where C = A AT is called the covariance matrix, since its j ,k entry is in fact
E(X j Xk ) (as is seen by differentiating with respect to ξ j and ξk ).

Let us define that a variable X : Ω→Rn is Gaussian with covariance matrix C if its
characteristic function is the one above. Here C is symmetric and non-negative
definite, which means ξTCξ≥ 0 for all ξ ∈Rn .

Next, a possibly infinite collection of random variables is called a Gaussian family
(with expectation zero) if any finite collection of them forms a Gaussian
n-dimensional variable.

The linear span of a Gaussian family is again a Gaussian family. And if you wish to
include variables with a non-zero expectation, just throw the constant functions
into the mix and take more linear combinations.

Gaussian families and Hilbert spaces

L2(Ω,F,µ) is the set of square integrable functions, which in terms of expectations
means that X ∈ L2 if and only if E(X 2) <∞.

If X ,Y ∈ L2 then X Y is integrable too, and the Cauchy–Schwarz inequality holds:

|E(X Y )| ≤ E(X 2)1/2E(Y 2)1/2.

We define the L2 norm ‖·‖2 and inner product 〈·, ·〉 by

‖X ‖2 = E(X 2)1/2, 〈X ,Y 〉 = E(X Y ), X ,Y ∈ L2.

It should be clear that this defines a real inner product space. Less obvious, but
still true, is that it is complete, so it is in fact a real Hilbert space.

You may be more familiar with the theory of complex Hilbert spaces. Real Hilbert space
theory is mostly the same, except that you don’t need to worry about complex conjugation.

There is one small problem, though: The axioms of normed spaces require that ‖X ‖ = 0
only if X = 0. But ‖X ‖2 = 0 only yields X = 0 almost surely. So to really get a proper normed
space, we need to consider the elements of the space to be equivalence classes of random
variables, where X and Y are considered equivalent if X = Y a.s.

Clearly, any Gaussian family is contained in L2. It turns out that n members of a
Gaussian family are independent if and only if they are mutually orthogonal. This
is remarkable because pairwise independence does not imply independence of n
variables in general, but in a Gaussian family this implication does hold. Also, it
allows us to bring the whole Hilbert space theory with orthogonal projections, etc.,
to bear on problems in Gaussian families.



Brownian motion

A stochastic process is just a family (X t )t∈T of stochastic variables, where T can be
any set.

In practice for us, T will usually be the interval [0,∞) or an initial segment of that interval.
But in many applications such as spatially distributed random fields, T will be a subset of
Rn instead.

The process is called Gaussian if the variables form a Gaussian family.

Brownian motion is a Gaussian stochastic process (Bt )t≥0 with expectation zero
and stationary, independent increments, and normalized so that E(B 2

1 ) = 1.

Equivalently (and this we shall adopt as the definition): It is a Gaussian process
with expectation zero satisfying

E(Bs Bt ) = s ∧ t

for all s, t ≥ 0. Here s ∧ t := min
{

s, t
}
.

We can construct Brownian motion on coin tossing space by starting with a
countably infinite collection of independent standard Gaussian variables on this
space, indexed as Nk,n .

To make a long story short, we begin by setting

Bn =
n∑

j=1
N0, j

and noting that these do satisfy the requirements of a Brownian motion restricted
to integer t .

By induction, assume we have defined Bn/2k for all n ∈N0 and some k ∈N0, then
we interpolate and add some randomness to the middle points:

B(2n+1)/2k+1 = 1

2
(Bn/2k +B(n+1)/2k )+2−(k+2)/2Nk+1,n

The motivation for this is a small bit of Hilbert space geometry.

Finally, we define Bk,t by setting Bk,n/2k = Bn/2k and interpolating linearly between
these points, and we take the limit as k →∞.

The result is not only Brownian motion as defined above; but also, the above series
will almost surely converge uniformly on bounded intervals, so that the limit
function is continuous.

In summary, this version of Brownian motion has continous paths (almost surely).

This construction is known as Lévy’s construction. But it is less well known than it
deserves to be.
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We finished the Lévy construction of Brownian motion. Along the way, we used

18 Lemma (Borel–Cantelli) If (An) is a sequence of events with
∑∞

n=1, then
P (An i.o.) = 0.

Here “i.o.” stands for “infinitely often”, and the event in question is

∞⋂
n=1

∞⋃
k=n

Ak .

The proof consists of noting that P
(⋃∞

k=n Ak
)≤∑∞

k=n P (Ak ) → 0 when n →∞,
because of the assumed convergence.

Here is a useful scaling law for standard Brownian motion: If (Bt )t≥0 is a standard
Brownian motion and B̃t =

p
aBt/a where a > 0 is a constant, then (B̃t )t≥0 is a

standard Brownian motion as well.

We also have a simple restarting law: If (Bt )t≥0 is a standard Brownian motion and
t0 > 0 is fixed, then B̃t = Bt−t0 −Bt0 defines another standard Brownian motion.

Quadratic variation

To begin with, note that if 0 = t0 < t1 < t2 < ·· · < tn = t , then (from a fairly trivial
calculation)

E
(n−1∑

k=0
(Btk+1 −Btk )2

)
= t .

A bit more work shows that in fact

n−1∑
k=0

(Btk+1 −Btk )2 → t

in L2 norm as the mesh size of the partition goes to zero, and so the above
convergence holds a.s. for some sequence of partitions with mesh size going to
zero.

We may define the quadratic variation of a function f : [a,b] →R as

QV( f ; [a,b]) = lim
n−1∑
k=0

(
f (tk+1)− f (tk )2)

where the limit superior is defined by taking the supremum over all partitions with
mesh size < δ and then taking the limit δ→ 0.

Then it follows that for Brownian motion, QV(Bt ; [0, t ]) ≥ t a.s.

This is in stark contrast to functions of bounded (linear) variation, which have zero
quadratic variation. In particular, differentiable functions do have bounded
variation, so the paths of Brownian motion are almost surely nowhere
differentiable.



First steps toward the Itô integral: An example

We start out very naïvely, trying to make sense of the integral
∫ t

0 Bs dBs . Remember
that we found

n−1∑
k=0

(Btk+1 −Btk )2 → t

in L2 norm, i.e.,

n−1∑
k=0

Btk+1 (Btk+1 −Btk )−
n−1∑
k=0

Btk (Btk+1 −Btk ) → t

However, both sums on the left are reasonable candidates for an approximation to∫ t
0 Bs dBs !

The first sum is a Stratonovich sum, and can be used to define the Stratonovich
integral. The second sumis an Itô sum, and can be used to define the Itô integral.

We can easily evaluate the sum of the two sums:

n−1∑
k=0

Btk+1 (Btk+1 +Btk )−
n−1∑
k=0

Btk (Btk+1 −Btk ) =
n−1∑
k=0

(
B 2

tk+1
−B 2

tk

)= B 2
t −B 2

0 = B 2
t .

And so we find that

n−1∑
k=0

Btk+1 (Btk+1 −Btk ) → 1
2 (B 2

t + t ) (Stratonovich),

n−1∑
k=0

Btk (Btk+1 −Btk ) → 1
2 (B 2

t − t ) (Itô).



The Itô integral

Let Ft be the smallest σ-algebra for which Bs is measurable for all s ≤ t .

A stochastic process (X t )t≥0 is called adapted if X t is Ft -measurable for all t . We
call it (B×F)-measurable on [S,T ] if the function (t ,ω) 7→ X t (ω) is measurable
with respect to the σ-algebra B×F, where B is the Borel σ-algebra on [S,T ]. With
1 ≤ p <∞, we say the process is an Lp process if

E
(∫ T

S
X p

t d t
)
=

∫ T

S
E(X p

t )d t <∞.

Note that the first equality is just Tonelli’s theorem. Following Evans’ lead, we write

Lp ([S,T ])

for the space of all processes defined above. We shall mostly be interested in the
cases p = 2 and p = 1.

A step process (elementary process in Øksendal) has the form

t 7→
n−1∑
k=0

Xk [tk ≤ t < tk+1],

where S = t0 < t1 < ·· · < tn = T .

It is adapted if and only if Xk is Ftk -measurable for all k; then it is clearly
(B×F)-measurable, and it is in L2 if and only if E(X 2

k ) <∞ for all k. In this case,
we define the Itô integral:∫ T

S

n−1∑
k=0

Xk [tk ≤ t < tk+1]dBt =
n−1∑
k=0

Xk (Btk+1 −Btk ).

Notice that if Xk = Btk , this is an Itô sum for
∫ T

S Bt dBt . To get a Stratonovich sum, we would
have to put Xk = Btk+1 , but then the corresponding elementary process is not adapted.

The Itô integral turns out to be an isometry from L2 to L2(Ω,F,P ):

E

((∫ T

S
X t dBt

)2
)
=

∫ T

S
E(X 2

t )d t

for any step process X ∈L2. Therefore, the Itô integral can be extended by
continuity to the L2 closure of the space of elementary adapted processes; and this
closure turns out to be all of L2([S,T ])

Elementary properties of the Itô integral include linearity, additivity
(
∫ T

S +∫ U
T = ∫ U

S ), and

E
(∫ T

S
X t dBt

)
= 0.

Further, the integral is FT -measurable, meaning in particular that the stochastic
process (∫ t

0
Xs dBs

)
t≥0

is an adapted process.
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Noted the Lebesgue–Radon–Nikodym theorem, of which we mainly need the
Radon–Nikodym part, that if µ and ν are finite (or σ-finite) measures with ν¿µ,
then there is a unique function called the Radon–Nikodym derivative and written
dν/dµ so that

ν(A) =
∫

A

dν

dµ
dµ

for all measurable sets A.

The notation is meant to encourage the highly illegal practice of cancelling the dµ factors,
after which the resulting equality is trivially true.

Conditional expectation

Recall the definition of conditinal probability: P (A |B) = P (A∩B)/P (B). Clearly,
the function A 7→ P (A |B), which we may also write P (· |B), is itself a probability
measure.

The expectation of a random variable X with respect to this probability measure is
its conditional expectation. It is given by

E(X |B) = 1

P (B)

∫
B

X dP.

Next, if we partitionΩ into disjoint pieces, as in

Ω=
n⊔

k=1
Bk ,

we can associate E(X |Bk ) with the piece Bk . Make a piecewise constant function:

Y (ω) =
n∑

k=1
E(X |Bk ) [ω ∈ Bk ].

This is measurable with respect to the σ-algebra G generated by the sets Bk ,
k = 1, . . . ,n, and you may verify that∫

A
Y dP =

∫
A

X dP for all A ∈G

(for it is true when A = Bk , and any A ∈G is a disjoint union of some of the sets Bk ).
Moreover Y is the only G-measurable function satisfying this property. This
motivates

19 Definition. Let X be a random variable with E(|X |) <∞ (i.e., X ∈ L1), and G⊆F

a σ-algebra. Then the conditional expectation of X with respect to G (or we may
say given G) is the unique G-measurable L1-function E(X |G) satisfying∫

A
E(X |G)dP =

∫
A

X dP for all A ∈G.

The proof idea is to note that if X ≥ 0 then A 7→ ∫
A X dP is a measure on G which is

(trivially) absolutely continuous with respect to P (restricted to G), and then
E(X |G) is just the Radon–Nikodym derivative of this measure with respect to P
(restricted to G).

20 Lemma The conditional expectation of X with respect to G is the unique
G-measurable function E(X |G) satisfying

E
(
E(X |G)Y

)= E(X Y )

for every bounded G-measurable variable Y (i.e., for every Y ∈ L∞(G)).

Proof: The relation holds by definition if Y is the indicator function of a set A ∈G.
By linearity, it holds for simple G-measurable Y , and by approximation it holds for
all Y ∈ L∞(G).

Conversely, if it does hold for all Y ∈ L∞(G) then selecting Y to be the indicator
function of some set A ∈G, we recover the original definition of E(X |G).

Put differently,
E

(
(X −E(X |G))Y

)= 0

for all such Y , which looks like the definition of an orthogonal projection.

Indeed, if X ∈ L2 then E(X |G) is in fact the orthogonal projection of X in the
subspace L2(Ω,G,P |G|).

Given two functions Y , Z ∈ L∞(G), we find

E
(
E(X |G)Y Z

)= E(X Y Z ),

and this shows that in fact

E(X Y |G) = E(X |G)Y for X ∈ L1(F), Y ∈ L∞(G).

A similar argument gives the same formula if X ∈ L2(F), Y ∈ L2(G).



Martingales

For this, we need the concept of filtration, which is simply a family (Mt )t≥0 of
σ-algebras where s < t implies Ms ⊆Mt . (The obvious example is Ft , associated
with Brownian motion.)

21 Definition. A stochastic process (Mt )t≥0 is called a martingale if
E(Mt |Ms ) = Ms for all t ≥ s ≥ 0.

The terminology comes from gaming. Assuming Mt is your accumulated winnings at time
t , the martingale property says that the game is fair in the sense that your future expected
winnings given your winnings at time s are the same as your current winnings.

22 Proposition The Itô integral
∫ t

0 X t dBt , where X ∈L2([0,T ]), is a martingale.

To prove this, do it for an elementary adapted process first. The rest is an
approximation argument.

We can generalize the Itô integral in two ways: The first is to replace the filtration
(Ft ) by any filtration H= (Ht )t≥0, so that the integrand X is H-adapted. We then
write X ∈L2

H
([0,T ]). We must also require that the Brownian motion B is a

martingale with respect to H.

The other generalization is much less straightforward, but important: It is enough
to assume X ∈M2

H
([0,T ]), which is the set of H-adapted measurable processes

satisfying ∫ T

0
X 2

t d t <∞ a.s.

Once more, we can approximate such an integrand by step processes Xn , but this
time we merely get ∫ T

0
(Xn,t −X t )2 d t → 0 a.s.

According to Øksendal we get convergence in probability, but then some subsequence will
converges a.s.

The Itô integral of a process in M2 may fail the martingale property, but like its L2

counterpart, it has a version with continuous paths.



Sixth week (W39)

(I think some of the above material was actually covered this week.)

We proved the martingale property of the Itô integral for integrands in L2. The
most important ingredient in the proof is the observation that conditional
expectation is a L1-continuous map.

The proof does not work for integrands in M2, and in fact the result is not necessarily true
for such integrands.

We also proved path continuity for (some version of) the Itô integral, but the proof did leave
me with an uneasy feeling that all is not as it should be. I think we’ll move on regardless; the
result is undoubtedly true.



Itô processes and Itô’s formula

23 Definition. A one-dimensional Itô process is given by

X t = X0 +
∫ t

0
Fs d s +

∫ t

0
Gs dBs for 0 ≤ t < T,

where F ∈M1([0,T ]) and G ∈M2([0,T ]). We often write this in the differential form:

d X t = Ft d t +Gt dBt

or even more briefly as
d X = F d t +G dB.

Bear in mind, though, that only the integral formulation is rigorous.

24 Proposition (Itô’s product formula) If d Xi = Fi d t +Gi dB for i = 1,2 then

d(X1X2) = X2 d X1 +X1 d X2 +G1G2 d t .

The final term is known as Itô’s correction.

I outlined the proof, and used it to outline a proof of the following:

25 Theorem (Itô’s formula) Assume d X = F d t +G dB where F ∈M1([0,T ]) and
G ∈M2([0,T ]), and let u = u(t , x) be given, with continuous partial derivatives ∂t u,
∂x u, and ∂xx u. Then u(t , X t ) is an Itô process, and

du(t , X t ) = ∂t u d t +∂x d X +∂xx u G2 d t

The proof does not work too well if you try to work in the L2 setting, because there
are no growth conditions on u, which caused me a lot of unnecessary anguish in
the lecture. But it works just fine in the M2 setting, because the integrals have a.s.
continuous paths, and continuous paths on [0,T ] are bounded.



A brief aside: Doob’s (sub)martingale inequality

An adapted L1 process X is called a submartingale with respect to M if

E(X t |Ms ) ≥ Xs when t > s.

Exercise: Show that if M is a martingale and 1 ≤ p <∞ then (|Mt |p )t≥0 is a
submartingale. (Hint: x 7→ |x|p is a convex function. Use Jensen’s inequality for
martingales.)

26 Theorem (Doob’s submartingale inequality) If (X t )t≥0 is a submartingale with
a.s. continuous paths and λ> 0, then

P (
{

sup
0≤s≤t

Xs >λ
}
) ≤λ−1E(X +

t ).

Proof: First, if 0 = t0 < t1 < ·· · < tn = t , define events Ak by

Ak = {
X t j ≤λ for j = 0, . . . ,k −1, X tk >λ}

,

so that

B := {
sup

0≤s≤t
Xs >λ

}= n⊔
k=0

Ak .

We now notice that Ak ∈Mtk , and calculate:

E(X +
t ) ≥

n∑
k=0

E(X +
t [Ak ]) ≥

n∑
k=0

E(X t [Ak ]) =
n∑

k=0
E

(
E(X t |Mtk )[Ak ]

)
≥

n∑
k=0

E(X tk [Ak ]) ≥
n∑

k=0
λP (Ak ) =λP (B).

Now divide up the interval [0, t ] dyadically, defining

Bm := {
sup

j=0,...,2m
X2−m j t >λ

}
and noting that the above proof shows that P (Bm) ≤λ−1E(X +

t ) for all m. Since
(Bm) form an increasing sequence, we also have

P
( ∞⋃

m=0
Bm

)
≤λ−1E(X +

t ).

But the event of the left is precisely the event whose probability we set out to
estimate, except for the discontinuous paths – which have probability zero.

27 Corollary (Doob’s martingale inequality) If (Mt )t≥0 is a martingale with a.s.
continuous paths, λ> 0 and 1 ≤ p <∞, then

P (
{

sup
0≤s≤t

Ms >λ
}
) ≤λ−p E(M p

t ).

Proof: Use the exercise above and Doob’s submartingale inequality.

Doob’s inequalities are often stated without the assumption on continuous paths. However,
then at least we need the assumption that the process is separated, which essentially means
there exists a countable set of times that can be used in the same way we used the times
2−m i to arrive at the conclusion. Since it can be shown that every stochastic process has a
separated version, this is not a terribly restrictive assumption. The rather technical details
can be found near page 56 in Doob’s classic book on stochastic processes.



Seventh week (W40)

I spent some time on the Itô integral for integrands in M2, as opposed to the easier
L2 case. In particular, I explained the notion of convergence in probability:

Sometimes written Xn
p→ X , this means that P (|Xn −X | ≥ ε) → 0 for all ε> 0. Three

useful facts:

– A sequence converging a. s. converges in probability
– If a sequence of stochastic variables converges in probability, then some

subsequence converges a.e.
– A sequence converges in probability if and only if every subsequence has a

subsequence converging a.e.

As a result, the usual convergence theorems from integration theory (MCT, DCT)
extend to sequences that converge in probability.

Back to the definition of the Itô integral:

If (X t ) ∈M2 then there are step processes (Xn,t ) so that∫ T

S
|Xn,t −X t |2 d t

P→ 0,

and in this case it turns out that the sequence
∫ T

X Xn,t d t is convergent in measure
(it is a “Cauchy sequence in measure), so that we can define the Itô integral of (X t )
by the requirement ∫ T

S
Xn,t d t

P→
∫ T

S
X t d t .



Stochastic differential equations

These are equations on the form

d X t = f (t , X t )d t + g (t , X t )dBt

where one usually considers the initial value problem, where X0 is a given random
variable.

Here f and g are given functions of two variables.

We can consider scalar equations, where f , g , and X t are real-valued, or systems,
where f and X t are vector valued, g is matrix valued, and Bt is n-dimensional BM.

A classic example is the linear growth (or decay, if r < 0) equation with a noise
term:

d Nt = r Nt d t +αNt dBt

which turns out to have the solution

Nt = N0er t+αBt−α2t/2.

Recall that any Itô integral with an L2 integrand is a martingale (not true for M2

integrands). So, with r = 0, we conclude that(
eαBt−α2t/2)

t≥0 is a martingale,

a very useful result in its own right – and verifiable by direct calculation.

28 Theorem The stochastic differential equation

d X t = f (t , X t )d t + g (t , X t )dBt

with given initial value X0 ∈ L2(Ω,F,P ) has a unique solution, provided

– f and g are measurable functions
– f and g are Lipschitz in the x variable: | f (t , x)− f (t , y)| ≤C |x − y | and similarly

for g
– f (t ,0) and g (t ,0) are bounded functions of t
– X0 ∈ L2 is independent of Bt

The solution will belong to L2
FX0

where F
X0
t =Ft ∨σ(X0) (the σ-algebra generated

by Ft and σ(X0)).

The uniqueness proof is based on Gronwall’s (or Grönwall’s) inequality, while the
existence proof is via Picard iteration:

Yn+1,t = X0 +
∫ t

0
f (t ,Yn,t )d t +

∫ t

0
g (t ,Yn,t )dBt , Y0,t = X0.

29 Lemma (Grönwall’s inequality) Assume

u(t ) ≤ A+
∫ t

0
u(s)w(s)d s

where w ≥ 0. Then

u(t ) ≤ A exp
(∫ t

0
w(s)d s

)
.

To help remember this, note that if the first inequality is an equality, then so is the
second. (Solve the equivalent differential equation!) The requirement w ≥ 0 is
important, which is why I named it w (think of a weight function).



The multidimensional Itô integral and Itô formula

Here, we consider Itô integrals of the form∫ T

S
Gt ·dBt =

∫ T

S
(G1,t dB1,t +·· ·+Gm,t dBm,t )

where Bt = (B1,t , . . . ,Bm,t ) is m-dimensional Brownian motion, which means that
B1,t , . . . , Bm,t are independent Brownian motions, all belonging to the same
Gaussian family. Furthermore, there must be given a filtration Ht for which each
Bm,t is a martingale, and the processes Gk,t must all be H-adapted.

We might generalize this to the case where Gt is a an n ×m matrix with columns G1,t , . . . ,
Gm,t , and this is indeed an important extension But the extension from the scalar case is a
trivial one, involving no surprises.

Along with the multidimensional Itô integral we get more general Itô processes:
They look like

X t = X0 +
∫ t

0
Fs d s +

∫ t

0
Gs ·dBs for 0 ≤ t < T

just like before, except now Bt is a multidimensional Brownian motion, X t is
vector valued, and Gs ·dBs =G1,s dB1,s +·· ·+Gm,s dBm,s . As before, we write this
formally as an equality of differentials:

d X t = Ft d t +Gt ·dBt .

Once again we get a product rule: If

d Xi ,t = Fi ,t d t +Gi j ,t ·dBt for i = 1,2

then

d(X1X2)t = X1,t d X2,t +X2,t d X1,t +
m∑

j=1
G1 j ,t G2 j ,t d t .

That final term is Itô’s correction term. Formally, it arises from the multiplication
rules (dB j )2 = d t – known from before – and the new rule dB j ,t dBk = 0 if i 6= j .

The proof is by noting that B̃t = (B j ,t +Bk,t )/
p

2 is a standard Brownian motion, so
we already know that (dB̃t )2 = d t , i.e. (dB j ,t +dBk,t )2 = 2d t , and expanding the
square and using the old rule twice more finishes it.

Itô’s formula: We require a function ϕ(t , x1, . . . , xn) and n Itô processes Xi ,t for
i = 1, . . . ,n: Given the right assumptions, ϕ(t , X1,t , . . . , Xn,t ) becomes an Itô process
as well. Its differential can be computed by the second order Taylor formula:

dϕ(t , X1,t , . . . , Xn,t ) = ∂tϕd t +
k∑

j=1
∂x jϕd X j ,t + 1

2

n∑
j=1

n∑
k=1

∂x j xkϕd X j ,t d Xk,t ,

inserting the values for d X j , and using the rules

d t 2 = d t dB j ,t = dB j ,t dBk,t = 0, dB 2
j ,t = d t

where j 6= k.

In the above rendition of Taylor’s formula, I have skipped all the terms ∂t x j ϕd t d X j , since
the multiplication rules will make them all zero.



Eighth week (W41)

I spent some time on Doob’s submartingale and martingale inequalities, written
up above in these notes (but not really lectured on before now).

I also outlined the proof of Khinchin’s law of iterated logarithms:

lim
t→∞

Btp
2t lnln t

= 1 a. s.

from which we also get (by replacing Bt by −Bt )

lim
t→∞

Btp
2t lnln t

=−1 a. s.

But there is more: B̃t = tB1/t is also a Brownian motion, and replacing Bt by B̃t we
get

lim
t↘0

Btp
2t lnln(1/t )

= 1 a. s. and lim
t↘0

Btp
2t lnln(1/t )

=−1 a. s.

I have an unfinished note with more details.

Itô diffusions

An Itô diffusion is a stochastic differential equation on the form

d X t = b(X t )d t +σ(X t )dBt

(or a solution to such an equation) where the given functions b and σ are notably
not explicitly time dependent.

b is called the drift coefficient, and σ is the diffusion coefficient (or the dispersion
coefficient, depending on who you ask).

The solution X t may be scalar or vector valued. If it is vector valued, clearly b must
be vector valued too; think of it as a vector field with b(x) indicating the average
velocity of a particle located at x, while σ(x) indicates the influence on the particle
by a noisy environment.

Of central importance is the stationarity of increments, which is quite easy to see,
and the Markov property, which says that the future history of X t given its
trajectory up to time t0 depends only on X t0 . Since X t0 is itself a random variable,
this gets technical pretty fast. That technicality will be the topic for next week.


