MA8109 Stochastic processes and differential equations
Fall 2015 - Synopsis

This note is intended to provide a synopsis of the course: What has been covered,
basic definitions and important results, etc.

The note will keep on growing as the lectures move ahead. Ideally, a new version
will be posted every week.

Notation
Here I summarize some notation used throughout.

- N, Z,Q, R, C are the sets of natural numbers (starting at 1), integers, rational
numbers, real numbers, and complex numbers respectively. Also, Ny = {0} UN,
and R = [—o0,00].

— T'write lim and lim instead of the more common liminf and limsup.

- B is the o-algebra of Borel sets on R or R (depending on context).

— Tuse:=tomean “is defined as”, and =: if the term being defined is on the right.

— ACisthe complement Q\ A. The “universal” set Q) needs to be understood.

— AU Bis the union AU B of two disjoint sets A and B.

[o.0]
- |] Ax is the union of a sequence of pairwise disjoint sets.
n=1
— YX where X and Y are sets, is the set of functions X — Y.
— As aspecial case, YN is the set of all sequences (y1,)2,...) in Y.
— [S] equals 1 if the statement S is true, 0 otherwise (indicator bracket).
- [Al is the indicator function of the set A, defined by [A](x) = [x € Al.
- If a € Rwe write a* := max(a,0) and a~ := (—a)* = —min(a,0).
Then a*=>0,ata” =0,a=a*—a ,and |a|=a" +a".
— If f is a function, define f* by f*(x) = f(x)*.



First week (W34)

A recurring example is coin tossing space Q = {0, 1}, consisting of all infinite
sequences of zeroes and ones, representing coin tosses (zero for tails, one for
head) if you wish.

An algebra on Q, (or perhaps more precisely, an algebra of subsets of Q) is a set A
of subsets of Q2 so that

-peA
- Ae Aimplies A€ A
- A,Be Aimplies AUB € sA

For each n € N, there is an algebra J, of subsets of Q, defined as the events
determined by (w1, ...,wy): Thus A € F if and only if whenever w € A and v’ € Q
Wi = w;c for k=1,...,nimplies o' € A. Or put differently, if 7,,: Q — {0,1}" is the
projection map onto the first n coordinates, the members of F;, are the inverse
images of sets B < {0, 1}". Thus F,, has 22" members.

If we think of independent coin tosses with an unbiased coin, elementary
probability theory dictates a probability P(r;,,' (B)) = 27" #B when B < {0, 1}" (here
#B is the number of members of B).

The algebras J,, form an increasing sequence of algebras, and so their union

s

Fyi= &

n=1

is an algebra too: It consists of all finitely determined events.

The strong law of large numbers implies that

where “a.s.” stands for “almost surely”, meaning “with probability 1”.

Note that we are unable to even give this statement a precise meaning within our
current framework so far, since it is a statement regarding an event not in J,
(worse, it is utterly independent of any finite number of cointosses wy).

Our next task is to remedy this.



o-algebras and measures

1 Definition. A o-algebra on Q (or perhaps more precisely, a o-algebra of subsets
of Q) is a set F of subsets of Q so that

-peF
- Ae Fimplies A€ F o
- ApeFforn=1,2,...implies | J Ax e F

k=1

Because any intersection of o-algebras is itself a o-algebra, there exists a smallest
o-algebra 3 := 0(J,) containing J,, called the o-algebra generated by F .

We want to extend P to a probability measure on J.

2 Definition. A measureon J isamap pu: J — [0,00] satisfying

- u(@)=0 o o0
- A, € F pairwise disjoint for n € N implies p( An) = Z w(Ay)
=1 n=1

n =

3 Definition.

— A measurable space is a pair (Q,F) where Q is a set and F a o-algebra on Q.

— A measure spaceis a triple (Q,J, u) where (Q,J) is a measurable space and u a
measure on J.

— A probability space is a measure space (Q2,J,) where P is a probability measure.

4 Definition. A monotone class is a set M of subsets of Q satisfying

o0
- IfAyeMand A, S Aps forall neN, then | J A, €M,

n=1

o0
- IfAyeMand A, 2 Apq forall neN, then (] A, € M.

n=1

5 Lemma (Monotone Class Lemma) If A is an algebra on Q) and M is a montone
class with A €M, then A < o (M).

From this we get

6 Theorem (Uniqueness of extension) Let A be an algebra. Any two finite
measures which agree on all members of A, also agree on all members of o (A).

Returning to cointossing space (Q, ) with Q = {0,1}"Y, we conclude that there
cannot be more than one probability measure on this space extending the
function P defined previously on F,.

That there in fact exists such a measure is non-trivial, but true. Thanks to the
uniqueness theorem, we do not need worry too much about which of several
possible methods of construction we use; they must all produce the same
measure.

Lebesgue measure

This is another measure of great importance. It is defined on the o-algebra B of
Borel subsets of R, which is the o-algebra generated by the set of intervals (or
equivalently, open intervals — or closed intervals — or half open intervals (a, b] - or
open sets — or closed sets —or ...). We shall write A for Lebesgue measure. It is the
unique Borel measure (meaning a measure on B) so that A((a, b]) = b— a for all

a < b. (These do not form an algebra, so the uniqueness theorem does not apply
directly — but the set of all finite unions of such integrals does, if we also include
intervals of the form (—oo, a] and (a,0).)



Second week (W35)

7 Definition. A measurable function on a measurable space (Q, ) is a function
f:Q— Rsothat f‘l(—oo, al)—oo,al € F for all a € R. (Then f‘l(B) € ¥ for all
Borel sets B, because the sets B satisfying the condition is a o-algebra.)

A random variable (R.V.) on a probability space (2, J, P) is a measurable function

on (Q,J). (We usually use uppercase letters such as X for random variables.)

8 Lemma If a sequence of measurable functions converges pointwise to some
limit, then the limit is measurable.

We can now define a random variable U on coin tossing space:
o0
Uw) =) w,27"
n=1

Think of it as using the coin tosses w,, as the digits in the binary expansion of
U(w) €10,1].

We write P(U < u) as shorthand notation for P({w € Q: U(w) < u}).

It turns out that P(U < u) = u for all u € [0, 1]. (Easily proved for dyadic rational u,
that is, u = m/2¥ for integers m, k; then it follows for all u, beacuse P(U < u) = u is
a monotone function of u.) In other words, U is uniformly distributed on the
interval [0, 1]. We shall call such a random variable a standard uniform variable.
From it, we can build random variables of any desired distribution.

9 Definition. The distribution of a random variable X on (QQ,J, P) is the Borel
measure [y given by
Ux(B)=P(X€B) = P(X~'(B)).

It is uniquely determined by the cumulative distribution function
Fx(x) = px([-00,x]) = P(X < x).

In particular, the distribution of a standard uniform variable U is Lebesgue
measure on [0, 1]:
py(B) =A(BNI0,1]) (BeB).



Integration

We define the integral for certain measurable functions f on a measure space
Q3 w:

10 Definition. A simple function is a measurable function which takes only a
finite number of values. Such a function can be written

Z ai [Ag]

with ay € R and Ay € F. We can always choose the ay to be distinct and nonzero
and the A to be nonempty and mutually disjoint. This may be called the
canonical representation of ¢. It is unique up to permutation of the indices. For a
non-canonical representation, we must take care not to subtract infinities. So we
disallow a; = —00, ay =ocoand AjN Ay # @.

11 Definition. The integral of a simple function such as above is

n
f pdu=) arp(Ap).
Q k=1

Here and elsewhere we use the convention that 0- (+oo0) = 0. If the sum contains
terms equal to both —oco and +o00, we do not define the integral of ¢. Note that the
integral of a nonnegative simple function is always defined. Its value may be co.

12 Definition. The integral of a nonnegative measurable function f is
f fdu= sup{f @du: @issimpleand0< ¢ < f}.
Q Q

13 Theorem (The Monotone Convergence Theorem (MCT)) If f;, is a measurable
function and 0 < f;, < f+1 for n € N then

fm}gn fndu= ,}ggofgfndu-
(Note that both limits exist by monotonicity, and the limit function on the left is
measurable.)

14 Theorem (Fatou’s lemma) If f,, = 0 is measurable for all n € N then

lim f,dy< lim fn au.

Q n—oo n—oo

After showing that any nonnegative measurable function is a pointwise limit of a
non-decreasing sequence of nonnegative simple function, we have no difficulty
using MCT to show that the integral is additive, and in the end, we get an integral
that is linear, given by

15 Definition. The integral of a measurable function f is defined to be

[ rau={ rdu-[ s~ dp.

If both integrals on the right have infinite value, we do not define the integral. If
they are both finite, we call f integrable.

16 Theorem (The Dominated Convergence Theorem (DCT)) If f;, is measurable
and | f,| < g for all n € N where g is integrable, and if the sequence converges
pointwise, then

f lim f,dy= hmffndu
Q

n—oo

The Riemann integral (or the Darboux integral — the two are equivalent, even
though they are constucted in slightly different ways) is the integral you learned in
basic calculus based on Riemann sums. Any Riemann integrable function is
Lebesgue integrable, and the Riemann integral equals the Lebesgue integral. (I am
sure you are much relieved.) But it is trivial to find Lebesgue integrable functions
which are not Riemann integrable: The indicator function [Q] of the rational
numbers is one example. Note that Q is countable, and so A(Q) = 0, since the
Lebesgue measure of any singleton set is zero. But [Q] is discontinuous
everywhere, whereas Riemann integrable functions are continuous almost
everywhere (i.e., except on a set of measure zero).



Third week (W36)
The expectation of a random variable X: Q — Ris simply its integral with respect
to probability measure:
E[X]:= f XdP.
Q

If g: R — R is any Borel measurable function, then g(X) is another random
variable. (Strictly speaking, we should write it as a function composition go X,
since we are really talking about the function w — X(g(w)), but common
convention suggest hiding w as much as possible.)

Recalling the definition of the distribution ux of X, we find

Elg(X)] =[Egdux.

(This is almost trivial when g is a simple function, and the general case follows by
the bootstrapping procedure, noting that a nonnegative measurable g is the limit
of an increasing sequence of simple functions and employing MCT.)

Thus we recover the usual formula from elementary probability.

We can create a random variable X with any given distribution u, and
corresponding cumulative distribution F(x) := ,u([—oo, x]) by letting U be a
standard uniform variable and setting

X =F(Uw), F(u)=min{xeR: F(x) = u}.

In particular, we can create a standard Gaussian variable in this way, using the
standard Gaussian density function ¢ and cumulative distribution ®:

X
Px) = \/%e‘xz’z, q)(x)zf p(ndr.
v/ —00

Note that if X is a standard Gaussian variable, then 0 X + i is a Gaussian variable
with variance o2 and expectation (mean) p.

Stochastic independence: We generalize the notion of independence from events:
algebras Ay with k=1,..., n are called independent when

n n
P(ﬂ Ak) =[] P(Ay)  whenever A€ Agfork=1,...,n,
k=1 k=1

and an infinite collection of algebras is called independent if every finite
subcollection is independent.

The o-algebra generated by a random variable X is the set of events
{X € B} = X~}(B) where B < R is a Borel set. A collection of random variables is
called independent if the o-algebras they generate are independent.

In coin tossing space, all the algebras corresponding to a single coin toss,
In=1{0,{w, =0}, {w, = 1},Q}, are independent by construction.

With a bit of work, we can also conclude that the o-algebras corresponding to
disjoint sets of coin tosses, such as

o0
0'( \rf(gk_l)zn), withn=0,1,2,...,
k=1
are independent. It follows that the random variables
o0
Un = Z w(zk,l)znz n
k=1
are independent.
In proving the above, the following is useful:

17 Lemma If algebras (A;);c; are independent, then the generated o -algebras
o(A;) are also independent.

The proofis by showing that you can replace the A; by o (A ;) one by one without destroying
independence, by noting that the set of sets A which are independent of all the A ; for j # i
is a monotone class, and using the monotone class lemma. Since the main condition for
independence involves only a finite number of algebras at a time, this is sufficient.



Characteristic functions

The characteristic function of a stochastic variable X : Q — R” is the function of
¢ € R” given by the expectation E[e’*X] where - denotes the ordinary scalar
product. We calculate

Ele*X] = fQ e’ X = fR e dux(x) = fix(©),

where f[Ix is the Fourier transform of uy.

The conventions for Fourier transforms vary, of course — here we have chosen to drop the
factor (27r) /2 that is commonly included, and we also use the plus sign in the exponent
where a minus sign is quite common. But the present definition matches the conventional
definition of characteristic function.

From the theory of distributions (in analysis, not probability — also called
generalized functions) we can learn the important fact that two distributions with
the same characteristic function are in fact identical.

Differentiating under the integral sign yields important formulas like

0
E[Xj]= @ﬂx(o)
j

and higher analogues such as
2

0
E[X;Xi] = mﬂx(o)

and so on.

These can be proved directly from the definition of derivative, using DCT - provided that X;
and X; X are integrable.



Gaussian families
(Note: We stick to Gaussian variables with expectation zero for now.)

The characteristic function of a single standard Gaussian is

2
. 1 —x2/2+iE et 2 —(x—i&)2/2 —&2
pN(E)z—fex dx = e dx=e .
vamr JR v2n JR

The second integral above can be evaluated by using Cauchy’s integral theorem around a
rectangular contour with corners at + M and +M — i and letting M — oo.

We generalize this to m linear combinations of n independent standard Gaussians
Ni:

n
Xj=)_ ajkNk
k=1

which we can write as a matrix equation X = AN where the X; form a column
vector X, the N form a column vector N, and A is an m x n matrix with real
entries. We calculate

A i&T T oaqaT AT
[ix (&) = E(e'¢ ANy = g4 447812 _ =81 Cer2

where C = AAT is called the covariance matrix, since its J, k entry is in fact
E(X;X}) (as is seen by differentiating with respect to ¢; and ¢g).

Let us define that a variable X: Q — R” is Gaussian with covariance matrix C if its
characteristic function is the one above. Here C is symmetric and non-negative
definite, which means & T C¢ = 0 for all & € R”.

Next, a possibly infinite collection of random variables is called a Gaussian family
(with expectation zero) if any finite collection of them forms a Gaussian
n-dimensional variable.

The linear span of a Gaussian family is again a Gaussian family. And if you wish to
include variables with a non-zero expectation, just throw the constant functions
into the mix and take more linear combinations.

Gaussian families and Hilbert spaces

L2(Q, T, ) is the set of square integrable functions, which in terms of expectations
means that X € L? if and only if E(X?) < co.

If X,Y € I? then XY is integrable too, and the Cauchy-Schwarz inequality holds:
|E(XY)| < E(XH)?E(y?)Y2,
We define the L? norm | - ||» and inner product ¢, -) by
IXllo = EX?)Y2, (X,Y)=E(XY), X Yel?

It should be clear that this defines a real inner product space. Less obvious, but
still true, is that it is complete, so it is in fact a real Hilbert space.

You may be more familiar with the theory of complex Hilbert spaces. Real Hilbert space
theory is mostly the same, except that you don’'t need to worry about complex conjugation.

There is one small problem, though: The axioms of normed spaces require that || X|| =0
only if X = 0. But || X |2 = 0 only yields X = 0 almost surely. So to really get a proper normed
space, we need to consider the elements of the space to be equivalence classes of random
variables, where X and Y are considered equivalent if X = Y a.s.

Clearly, any Gaussian family is contained in L2. It turns out that n members of a
Gaussian family are independent if and only if they are mutually orthogonal. This
is remarkable because pairwise independence does not imply independence of n
variables in general, but in a Gaussian family this implication does hold. Also, it
allows us to bring the whole Hilbert space theory with orthogonal projections, etc.,
to bear on problems in Gaussian families.



Brownian motion

A stochastic process is just a family (X;) ;7 of stochastic variables, where T can be
any set.

In practice for us, T will usually be the interval [0,c0) or an initial segment of that interval.
But in many applications such as spatially distributed random fields, T will be a subset of
R™ instead.

The process is called Gaussian if the variables form a Gaussian family.

Brownian motion is a Gaussian stochastic process (B;) ;¢ with expectation zero
and stationary, independent increments, and normalized so that E (Bf) =1,

Equivalently (and this we shall adopt as the definition): It is a Gaussian process
with expectation zero satisfying

E(BsB;) =sAt
for all s, = 0. Here s A t:= minf{s, t}.

We can construct Brownian motion on coin tossing space by starting with a
countably infinite collection of independent standard Gaussian variables on this
space, indexed as Ny ;.

To make a long story short, we begin by setting
n
By=) Noj
j=1

and noting that these do satisfy the requirements of a Brownian motion restricted
to integer t.

By induction, assume we have defined B,,,,« for all n € Ny and some k € Ny, then
we interpolate and add some randomness to the middle points:

1
_ —(k+2)/2
Bonsnyoka = E(Bn/zk +B(pi1y2e) +2 Ni11,n

The motivation for this is a small bit of Hilbert space geometry.

Finally, we define By ; by setting By ,,;»x = B, »« and interpolating linearly between
these points, and we take the limit as k — co.

The result is not only Brownian motion as defined above; but also, the above series
will almost surely converge uniformly on bounded intervals, so that the limit
function is continuous.

In summary, this version of Brownian motion has continous paths (almost surely).

This construction is known as Lévy’s construction. But it is less well known than it
deserves to be.



