
MA8109 Stochastic processes and differential equations

Fall 2015 – Synopsis

This note is intended to provide a synopsis of the course: What has been covered,
basic definitions and important results, etc.

The note will keep on growing as the lectures move ahead. Ideally, a new version
will be posted every week.

Notation

Here I summarize some notation used throughout.

– N, Z,Q, R, C are the sets of natural numbers (starting at 1), integers, rational
numbers, real numbers, and complex numbers respectively. Also,N0 = {0}∪N,
and R= [−∞,∞].

– I write lim and lim instead of the more common liminf and limsup.
– B is the σ-algebra of Borel sets on R or R (depending on context).
– I use := to mean “is defined as”, and =: if the term being defined is on the right.
– Ac is the complement Ω\ A. The “universal” setΩ needs to be understood.
– AtB is the union A∪B of two disjoint sets A and B .

–
∞⊔

n=1
An is the union of a sequence of pairwise disjoint sets.

– Y X , where X and Y are sets, is the set of functions X → Y .
– As a special case, Y N is the set of all sequences (y1, y2, . . .) in Y .
– [S] equals 1 if the statement S is true, 0 otherwise (indicator bracket).
– [A] is the indicator function of the set A, defined by [A](x) = [x ∈ A].
– If a ∈Rwe write a+ := max(a,0) and a− := (−a)+ =−min(a,0).

Then a± ≥ 0, a+a− = 0, a = a+−a−, and |a| = a++a−.
– If f is a function, define f ± by f ±(x) = f (x)±.



First week (W34)

A recurring example is coin tossing spaceΩ= {0,1}N, consisting of all infinite
sequences of zeroes and ones, representing coin tosses (zero for tails, one for
head) if you wish.

An algebra onΩ, (or perhaps more precisely, an algebra of subsets ofΩ) is a set A
of subsets ofΩ so that

- ;∈A
- A ∈A implies Ac ∈A
- A,B ∈A implies A∪B ∈ s A

For each n ∈N, there is an algebra Fn of subsets ofΩ, defined as the events
determined by (ω1, . . . ,ωn): Thus A ∈F if and only if whenever ω ∈ A and ω′ ∈Ω
ωk =ω′

k for k = 1, . . . ,n implies ω′ ∈ A. Or put differently, if πn : Ω→ {0,1}n is the
projection map onto the first n coordinates, the members of Fn are the inverse
images of sets B ⊆ {0,1}n . Thus Fn has 22n

members.

If we think of independent coin tosses with an unbiased coin, elementary
probability theory dictates a probability P (π−1

n (B)) = 2−n #B when B ⊆ {0,1}n (here
#B is the number of members of B).

The algebras Fn form an increasing sequence of algebras, and so their union

F∗ :=
∞⋃

n=1
Fn

is an algebra too: It consists of all finitely determined events.

The strong law of large numbers implies that

lim
n→∞

1

n

n∑
k=1

ωk = 1

2
a. s.,

where “a. s.” stands for “almost surely”, meaning “with probability 1”.

Note that we are unable to even give this statement a precise meaning within our
current framework so far, since it is a statement regarding an event not in F∗
(worse, it is utterly independent of any finite number of cointosses ωk ).

Our next task is to remedy this.



σ-algebras and measures

1 Definition. A σ-algebra onΩ (or perhaps more precisely, a σ-algebra of subsets
ofΩ) is a set F of subsets ofΩ so that

- ;∈F
- A ∈F implies Ac ∈F
- An ∈F for n = 1,2, . . . implies

∞⋃
k=1

Ak ∈F

Because any intersection of σ-algebras is itself a σ-algebra, there exists a smallest
σ-algebra F :=σ(F∗) containing F∗, called the σ-algebra generated by F∗.

We want to extend P to a probability measure on F.

2 Definition. A measure on F is a map µ : F→ [0,∞] satisfying

– µ(;) = 0
– An ∈F pairwise disjoint for n ∈N implies µ

( ∞⊔
n=1

An

)
=

∞∑
n=1

µ(An)

3 Definition.

– A measurable space is a pair (Ω,F) whereΩ is a set and F a σ-algebra onΩ.
– A measure space is a triple (Ω,F,µ) where (Ω,F) is a measurable space and µ a

measure on F.
– A probability space is a measure space (Ω,F, ) where P is a probability measure.

4 Definition. A monotone class is a set M of subsets ofΩ satisfying

– If An ∈M and An ⊆ An+1 for all n ∈N, then
∞⋃

n=1
An ∈M,

– If An ∈M and An ⊇ An+1 for all n ∈N, then
∞⋂

n=1
An ∈M.

5 Lemma (Monotone Class Lemma) If A is an algebra onΩ and M is a montone
class with A⊆M, then A⊆σ(M).

From this we get

6 Theorem (Uniqueness of extension) Let A be an algebra. Any two finite
measures which agree on all members of A, also agree on all members of σ(A).

Returning to cointossing space (Ω,F) withΩ= {0,1}N, we conclude that there
cannot be more than one probability measure on this space extending the
function P defined previously on F∗.

That there in fact exists such a measure is non-trivial, but true. Thanks to the
uniqueness theorem, we do not need worry too much about which of several
possible methods of construction we use; they must all produce the same
measure.

Lebesgue measure

This is another measure of great importance. It is defined on the σ-algebra B of
Borel subsets of R, which is the σ-algebra generated by the set of intervals (or
equivalently, open intervals – or closed intervals – or half open intervals (a,b] – or
open sets – or closed sets – or . . . ). We shall write λ for Lebesgue measure. It is the
unique Borel measure (meaning a measure on B) so that λ((a,b]) = b −a for all
a ≤ b. (These do not form an algebra, so the uniqueness theorem does not apply
directly – but the set of all finite unions of such integrals does, if we also include
intervals of the form (−∞, a] and (a,∞).)



Second week (W35)

7 Definition. A measurable function on a measurable space (Ω,F) is a function
f : Ω→R so that f −1(−∞, a[)−∞, a] ∈F for all a ∈R. (Then f −1(B) ∈F for all
Borel sets B , because the sets B satisfying the condition is a σ-algebra.)

A random variable (R. V.) on a probability space (Ω,F,P ) is a measurable function
on (Ω,F). (We usually use uppercase letters such as X for random variables.)

8 Lemma If a sequence of measurable functions converges pointwise to some
limit, then the limit is measurable.

We can now define a random variable U on coin tossing space:

U (ω) =
∞∑

n=1
ωn 2−n .

Think of it as using the coin tosses ωn as the digits in the binary expansion of
U (ω) ∈ [0,1].

We write P (U ≤ u) as shorthand notation for P ({ω ∈Ω : U (ω) ≤ u}).

It turns out that P (U ≤ u) = u for all u ∈ [0,1]. (Easily proved for dyadic rational u,
that is, u = m/2k for integers m, k; then it follows for all u, beacuse P (U ≤ u) = u is
a monotone function of u.) In other words, U is uniformly distributed on the
interval [0,1]. We shall call such a random variable a standard uniform variable.
From it, we can build random variables of any desired distribution.

9 Definition. The distribution of a random variable X on (Ω,F,P ) is the Borel
measure µX given by

µx (B) = P (X ∈ B) = P (X −1(B)).

It is uniquely determined by the cumulative distribution function

FX (x) =µX ([−∞, x]) = P (X ≤ x).

In particular, the distribution of a standard uniform variable U is Lebesgue
measure on [0,1]:

µU (B) =λ(B ∩ [0,1]) (B ∈B).



Integration

We define the integral for certain measurable functions f on a measure space
(Ω,F,µ):

10 Definition. A simple function is a measurable function which takes only a
finite number of values. Such a function can be written

ϕ=
n∑

k=1
ak [Ak ]

with ak ∈R and Ak ∈F. We can always choose the ak to be distinct and nonzero
and the Ak to be nonempty and mutually disjoint. This may be called the
canonical representation of ϕ. It is unique up to permutation of the indices. For a
non-canonical representation, we must take care not to subtract infinities. So we
disallow a j =−∞, ak =∞ and A j ∩ Ak 6= ;.

11 Definition. The integral of a simple function such as above is∫
Ω
ϕdµ=

n∑
k=1

akµ(Ak ).

Here and elsewhere we use the convention that 0 · (±∞) = 0. If the sum contains
terms equal to both −∞ and +∞, we do not define the integral of ϕ. Note that the
integral of a nonnegative simple function is always defined. Its value may be ∞.

12 Definition. The integral of a nonnegative measurable function f is∫
Ω

f dµ= sup
{∫
Ω
ϕdµ : ϕ is simple and 0 ≤ϕ≤ f

}
.

13 Theorem (The Monotone Convergence Theorem (MCT)) If fn is a measurable
function and 0 ≤ fn ≤ fn+1 for n ∈N then∫

Ω
lim

n→∞ fn dµ= lim
n→∞

∫
Ω

fn dµ.

(Note that both limits exist by monotonicity, and the limit function on the left is
measurable.)

14 Theorem (Fatou’s lemma) If fn ≥ 0 is measurable for all n ∈N then∫
Ω

lim
n→∞

fn dµ≤ lim
n→∞

∫
Ω

fn dµ.

After showing that any nonnegative measurable function is a pointwise limit of a
non-decreasing sequence of nonnegative simple function, we have no difficulty
using MCT to show that the integral is additive, and in the end, we get an integral
that is linear, given by

15 Definition. The integral of a measurable function f is defined to be∫
Ω

f dµ=
∫
Ω

f + dµ−
∫
Ω

f − dµ.

If both integrals on the right have infinite value, we do not define the integral. If
they are both finite, we call f integrable.

16 Theorem (The Dominated Convergence Theorem (DCT)) If fn is measurable
and | fn | ≤ g for all n ∈N where g is integrable, and if the sequence converges
pointwise, then ∫

Ω
lim

n→∞ fn dµ= lim
n→∞

∫
Ω

fn dµ.

The Riemann integral (or the Darboux integral – the two are equivalent, even
though they are constucted in slightly different ways) is the integral you learned in
basic calculus based on Riemann sums. Any Riemann integrable function is
Lebesgue integrable, and the Riemann integral equals the Lebesgue integral. (I am
sure you are much relieved.) But it is trivial to find Lebesgue integrable functions
which are not Riemann integrable: The indicator function [Q] of the rational
numbers is one example. Note that Q is countable, and so λ(Q) = 0, since the
Lebesgue measure of any singleton set is zero. But [Q] is discontinuous
everywhere, whereas Riemann integrable functions are continuous almost
everywhere (i.e., except on a set of measure zero).


