
MA8109 Stochastic processes and differential equations

Fall 2015 – Synopsis
This note is intended to provide a synopsis of the course: What has been cov-

ered, basic definitions and important results, etc.
The note will keep on growing as the lectures move ahead. Ideally, a new ver-

sion will be posted every week.
Notation

Here I summarize some notation used throughout.
– N, Z, Q, R, C are the sets of natural numbers (starting at 1), integers, rational

numbers, real numbers, and complex numbers respectively. Also, N0 = {0}∪N,
and R= [−∞,∞].

– I write lim and lim instead of the more common liminf and limsup.
– B is the σ-algebra of Borel sets on R or R (depending on context).
– I use := to mean “is defined as”, and =: if the term being defined is on the right.
– Ac is the complement Ω\ A. The “universal” setΩ needs to be understood.
– AtB is the union A∪B of two disjoint sets A and B .

–
∞⊔

n=1
An is the union of a sequence of pairwise disjoint sets.

– Y X , where X and Y are sets, is the set of functions X → Y .
– As a special case, Y N is the set of all sequences (y1, y2, . . .) in Y .
– [S] equals 1 if the statement S is true, 0 otherwise (indicator bracket).
– [A] is the indicator function of the set A, defined by [A](x) = [x ∈ A].
– If a ∈Rwe write a+ := max(a,0) and a− := (−a)+ =−min(a,0).

Then a± ≥ 0, a+a− = 0, a = a+−a−, and |a| = a++a−.
– If f is a function, define f ± by f ±(x) = f (x)±.
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First week (W34)

A recurring example is coin tossing space Ω= {0,1}N, consisting of all infinite se-
quences of zeroes and ones, representing coin tosses (zero for tails, one for head)
if you wish.

An algebra onΩ, (or perhaps more precisely, an algebra of subsets ofΩ) is a set
A of subsets ofΩ so that
- ;∈A
- A ∈A implies Ac ∈A
- A,B ∈A implies A∪B ∈ s A

For each n ∈ N, there is an algebra Fn of subsets of Ω, defined as the events
determined by (ω1, . . . ,ωn): Thus A ∈ F if and only if whenever ω ∈ A and ω′ ∈ Ω
ωk = ω′

k for k = 1, . . . ,n implies ω′ ∈ A. Or put differently, if πn : Ω→ {0,1}n is the
projection map onto the first n coordinates, the members of Fn are the inverse
images of sets B ⊆ {0,1}n . Thus Fn has 22n

members.
If we think of independent coin tosses with an unbiased coin, elementary prob-

ability theory dictates a probability P (π−1
n (B)) = 2−n #B when B ⊆ {0,1}n (here #B

is the number of members of B).
The algebras Fn form an increasing sequence of algebras, and so their union

F∗ :=
∞⋃

n=1
Fn

is an algebra too: It consists of all finitely determined events.
The strong law of large numbers implies that

lim
n→∞

1

n

n∑
k=1

ωk = 1

2
a. s.,

where “a. s.” stands for “almost surely”, meaning “with probability 1”.
Note that we are unable to even give this statement a precise meaning within

our current framework so far, since it is a statement regarding an event not in F∗
(worse, it is utterly independent of any finite number of cointosses ωk ).

Our next task is to remedy this.
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σ-algebras and measures

1 Definition. A σ-algebra onΩ (or perhaps more precisely, a σ-algebra of subsets
ofΩ) is a set F of subsets ofΩ so that
- ;∈F
- A ∈F implies Ac ∈F
- An ∈F for n = 1,2, . . . implies

∞⋃
k=1

Ak ∈F
Because any intersection of σ-algebras is itself a σ-algebra, there exists a smallest
σ-algebra F :=σ(F∗) containing F∗, called the σ-algebra generated by F∗.

We want to extend P to a probability measure on F.

2 Definition. A measure on F is a map µ : F→ [0,∞] satisfying
– µ(;) = 0
– An ∈F pairwise disjoint for n ∈N implies µ

( ∞⊔
n=1

An

)
=

∞∑
n=1

µ(An)

3 Definition.
– A measurable space is a pair (Ω,F) whereΩ is a set and F a σ-algebra onΩ.
– A measure space is a triple (Ω,F,µ) where (Ω,F) is a measurable space and µ a

measure on F.
– A probability space is a measure space (Ω,F, ) where P is a probability measure.

4 Definition. A monotone class is a set M of subsets ofΩ satisfying

– If An ∈M and An ⊆ An+1 for all n ∈N, then
∞⋃

n=1
An ∈M,

– If An ∈M and An ⊇ An+1 for all n ∈N, then
∞⋂

n=1
An ∈M.

5 Lemma (Monotone Class Lemma) If A is an algebra on Ω and M is a montone
class with A⊆M, then A⊆σ(M).

From this we get

6 Theorem (Uniqueness of extension) Let A be an algebra. Any two finite mea-
sures which agree on all members of A, also agree on all members of σ(A).

Returning to cointossing space (Ω,F) withΩ= {0,1}N, we conclude that there can-
not be more than one probability measure on this space extending the function P
defined previously on F∗.

That there in fact exists such a measure is non-trivial, but true. Thanks to the
uniqueness theorem, we do not need worry too much about which of several pos-
sible methods of construction we use; they must all produce the same measure.

Lebesgue measure

3

This is another measure of great importance. It is defined on the σ-algebra B

of Borel subsets of R, which is the σ-algebra generated by the set of intervals (or
equivalently, open intervals – or closed intervals – or half open intervals (a,b] – or
open sets – or closed sets – or . . . ). We shall write λ for Lebesgue measure. It is the
unique Borel measure (meaning a measure on B) so that λ((a,b]) = b − a for all
a ≤ b. (These do not form an algebra, so the uniqueness theorem does not apply
directly – but the set of all finite unions of such integrals does, if we also include
intervals of the form (−∞, a] and (a,∞).)
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Second week (W35)

7 Definition. A measurable function on a measurable space (Ω,F) is a function
f : Ω→ R so that f −1(−∞, a[)−∞, a] ∈ F for all a ∈ R. (Then f −1(B) ∈ F for all
Borel sets B , because the sets B satisfying the condition is a σ-algebra.)

A random variable (R. V.) on a probability space (Ω,F,P ) is a measurable func-
tion on (Ω,F). (We usually use uppercase letters such as X for random variables.)

8 Lemma If a sequence of measurable functions converges pointwise to some
limit, then the limit is measurable.

We can now define a random variable U on coin tossing space:

U (ω) =
∞∑

n=1
ωn 2−n .

Think of it as using the coin tosses ωn as the digits in the binary expansion of
U (ω) ∈ [0,1].

We write P (U ≤ u) as shorthand notation for P ({ω ∈Ω : U (ω) ≤ u}).
It turns out that P (U ≤ u) = u for all u ∈ [0,1]. (Easily proved for dyadic rational

u, that is, u = m/2k for integers m, k; then it follows for all u, beacuse P (U ≤ u) = u
is a monotone function of u.) In other words, U is uniformly distributed on the
interval [0,1]. We shall call such a random variable a standard uniform variable.
From it, we can build random variables of any desired distribution.

9 Definition. The distribution of a random variable X on (Ω,F,P ) is the Borel
measure µX given by

µx (B) = P (X ∈ B) = P (X −1(B)).

It is uniquely determined by the cumulative distribution function

FX (x) =µX ([−∞, x]) = P (X ≤ x).

In particular, the distribution of a standard uniform variable U is Lebesgue mea-
sure on [0,1]:

µU (B) =λ(B ∩ [0,1]) (B ∈B).

5

Integration

We define the integral for certain measurable functions f on a measure space
(Ω,F,µ):

10 Definition. A simple function is a measurable function which takes only a fi-
nite number of values. Such a function can be written

ϕ=
n∑

k=1
ak [Ak ]

with ak ∈ R and Ak ∈ F. We can always choose the ak to be distinct and nonzero
and the Ak to be nonempty and mutually disjoint. This may be called the canon-
ical representation of ϕ. It is unique up to permutation of the indices. For a non-
canonical representation, we must take care not to subtract infinities. So we dis-
allow a j =−∞, ak =∞ and A j ∩ Ak 6= ;.

11 Definition. The integral of a simple function such as above is∫
Ω
ϕdµ=

n∑
k=1

akµ(Ak ).

Here and elsewhere we use the convention that 0 · (±∞) = 0. If the sum contains
terms equal to both −∞ and +∞, we do not define the integral of ϕ. Note that the
integral of a nonnegative simple function is always defined. Its value may be ∞.

12 Definition. The integral of a nonnegative measurable function f is∫
Ω

f dµ= sup
{∫
Ω
ϕdµ : ϕ is simple and 0 ≤ϕ≤ f

}
.

13 Theorem (The Monotone Convergence Theorem (MCT)) If fn is a measurable
function and 0 ≤ fn ≤ fn+1 for n ∈N then∫

Ω
lim

n→∞ fn dµ= lim
n→∞

∫
Ω

fn dµ.

(Note that both limits exist by monotonicity, and the limit function on the left is
measurable.)

14 Theorem (Fatou’s lemma) If fn ≥ 0 is measurable for all n ∈N then∫
Ω

lim
n→∞

fn dµ≤ lim
n→∞

∫
Ω

fn dµ.
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After showing that any nonnegative measurable function is a pointwise limit of a
non-decreasing sequence of nonnegative simple function, we have no difficulty
using MCT to show that the integral is additive, and in the end, we get an integral
that is linear, given by

15 Definition. The integral of a measurable function f is defined to be∫
Ω

f dµ=
∫
Ω

f + dµ−
∫
Ω

f − dµ.

If both integrals on the right have infinite value, we do not define the integral. If
they are both finite, we call f integrable.

16 Theorem (The Dominated Convergence Theorem (DCT)) If fn is measurable
and | fn | ≤ g for all n ∈ N where g is integrable, and if the sequence converges
pointwise, then ∫

Ω
lim

n→∞ fn dµ= lim
n→∞

∫
Ω

fn dµ.

The Riemann integral (or the Darboux integral – the two are equivalent, even
though they are constucted in slightly different ways) is the integral you learned
in basic calculus based on Riemann sums. Any Riemann integrable function is
Lebesgue integrable, and the Riemann integral equals the Lebesgue integral. (I am
sure you are much relieved.) But it is trivial to find Lebesgue integrable functions
which are not Riemann integrable: The indicator function [Q] of the rational num-
bers is one example. Note thatQ is countable, and so λ(Q) = 0, since the Lebesgue
measure of any singleton set is zero. But [Q] is discontinuous everywhere, whereas
Riemann integrable functions are continuous almost everywhere (i.e., except on a
set of measure zero).
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Third week (W36)

The expectation of a random variable X : Ω→R is simply its integral with respect
to probability measure:

E [X ] :=
∫
Ω

X dP.

If g : R→ R is any Borel measurable function, then g (X ) is another random vari-
able. (Strictly speaking, we should write it as a function composition g ◦ X , since
we are really talking about the function ω 7→ X (g (ω)), but common convention
suggest hiding ω as much as possible.)

Recalling the definition of the distribution µX of X , we find

E [g (X )] =
∫
R

g dµX .

(This is almost trivial when g is a simple function, and the general case follows by
the bootstrapping procedure, noting that a nonnegative measurable g is the limit
of an increasing sequence of simple functions and employing MCT.)

Thus we recover the usual formula from elementary probability.

We can create a random variable X with any given distributionµ, and correspond-
ing cumulative distribution F (x) :=µ(

[−∞, x]
)

by letting U be a standard uniform
variable and setting

X (ω) = F̃
(
U (ω)

)
, F̃ (u) = min{x ∈R : F (x) ≥ u}.

In particular, we can create a standard Gaussian variable in this way, using the
standard Gaussian density function ϕ and cumulative distributionΦ:

ϕ(x) = 1p
2π

e−x2/2, Φ(x) =
∫ x

−∞
ϕ(t )d t .

Note that if X is a standard Gaussian variable, then σX +µ is a Gaussian variable
with variance σ2 and expectation (mean) µ.

Stochastic independence: We generalize the notion of independence from events:
algebras Ak with k = 1, . . . ,n are called independent when

P
( n⋂

k=1
Ak

)
=

n∏
k=1

P (Ak ) whenever Ak ∈Ak for k = 1, . . . ,n,

and an infinite collection of algebras is called independent if every finite subcol-
lection is independent.

The σ-algebra generated by a random variable X is the set of events {X ∈ B} =
X −1(B) where B ⊆R is a Borel set. A collection of random variables is called inde-
pendent if the σ-algebras they generate are independent.
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In coin tossing space, all the algebras corresponding to a single coin toss, Fn =
{;, {ωn = 0}, {ωn = 1},Ω}, are independent by construction.

With a bit of work, we can also conclude that the σ-algebras corresponding to
disjoint sets of coin tosses, such as

σ
( ∞⋃

k=1
F(2k−1)2n

)
, with n = 0,1,2, . . .,

are independent. It follows that the random variables

Un :=
∞∑

k=1
ω(2k−1)2n 2−n

are independent.
In proving the above, the following is useful:

17 Lemma If algebras (Ai )i∈I are independent, then the generated σ-algebras
σ(Ai ) are also independent.

The proof is by showing that you can replace the Ai by σ(Ai ) one by one without de-
stroying independence, by noting that the set of sets A which are independent of all the A j
for j 6= i is a monotone class, and using the monotone class lemma. Since the main condi-
tion for independence involves only a finite number of algebras at a time, this is sufficient.

Characteristic functions
The characteristic function of a stochastic variable X : Ω→ Rn is the function

of ξ ∈ Rn given by the expectation E [e iξ·X ] where · denotes the ordinary scalar
product. We calculate

E [e iξ·X ] =
∫
Ω

e iξ·X =
∫
Rn

e iξ·x dµX (x) = µ̂X (ξ),

where µ̂X is the Fourier transform of µX .
The conventions for Fourier transforms vary, of course – here we have chosen to drop

the factor (2π)−n/2 that is commonly included, and we also use the plus sign in the expo-
nent where a minus sign is quite common. But the present definition matches the conven-
tional definition of characteristic function.

From the theory of distributions (in analysis, not probability – also called gen-
eralized functions) we can learn the important fact that two distributions with the
same characteristic function are in fact identical.

Differentiating under the integral sign yields important formulas like

E [X j ] = ∂

∂ξ j
µ̂X (0)

9

and higher analogues such as

E [X j Xk ] = ∂2

∂ξ j∂ξk
µ̂X (0)

and so on.
These can be proved directly from the definition of derivative, using DCT – provided

that X j and X j Xk are integrable.

Gaussian families
(Note: We stick to Gaussian variables with expectation zero for now.)
The characteristic function of a single standard Gaussian is

µ̂N (ξ) = 1p
2π

∫
R

e−x2/2+iξd x = e−ξ
2/2

p
2π

∫
R

e−(x−iξ)2/2 d x = e−ξ
2/2.

The second integral above can be evaluated by using Cauchy’s integral theorem around
a rectangular contour with corners at ±M and ±M − iξ and letting M →∞.

We generalize this to m linear combinations of n independent standard Gaus-
sians Nk :

X j =
n∑

k=1
a j k Nk

which we can write as a matrix equation X = AN where the X j form a column
vector X , the Nk form a column vector N , and A is an m×n matrix with real entries.
We calculate

µ̂X (ξ) = E(e iξTAN ) = e−ξ
TA ATξ/2 = e−ξ

TCξ/2,

where C = A AT is called the covariance matrix, since its j ,k entry is in fact E(X j Xk )
(as is seen by differentiating with respect to ξ j and ξk ).

Let us define that a variable X : Ω→Rn is Gaussian with covariance matrix C if
its characteristic function is the one above. Here C is symmetric and non-negative
definite, which means ξTCξ≥ 0 for all ξ ∈Rn .

Next, a possibly infinite collection of random variables is called a Gaussian
family (with expectation zero) if any finite collection of them forms a Gaussian
n-dimensional variable.

The linear span of a Gaussian family is again a Gaussian family. And if you wish
to include variables with a non-zero expectation, just throw the constant functions
into the mix and take more linear combinations.

Gaussian families and Hilbert spaces
L2(Ω,F,µ) is the set of square integrable functions, which in terms of expecta-

tions means that X ∈ L2 if and only if E(X 2) <∞.
If X ,Y ∈ L2 then X Y is integrable too, and the Cauchy–Schwarz inequality

holds:
|E(X Y )| ≤ E(X 2)1/2E(Y 2)1/2.
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We define the L2 norm ‖·‖2 and inner product 〈·, ·〉 by

‖X ‖2 = E(X 2)1/2, 〈X ,Y 〉 = E(X Y ), X ,Y ∈ L2.

It should be clear that this defines a real inner product space. Less obvious, but
still true, is that it is complete, so it is in fact a real Hilbert space.

You may be more familiar with the theory of complex Hilbert spaces. Real Hilbert space
theory is mostly the same, except that you don’t need to worry about complex conjugation.

There is one small problem, though: The axioms of normed spaces require that ‖X ‖ = 0
only if X = 0. But ‖X ‖2 = 0 only yields X = 0 almost surely. So to really get a proper normed
space, we need to consider the elements of the space to be equivalence classes of random
variables, where X and Y are considered equivalent if X = Y a.s.

Clearly, any Gaussian family is contained in L2. It turns out that n members
of a Gaussian family are independent if and only if they are mutually orthogonal.
This is remarkable because pairwise independence does not imply independence
of n variables in general, but in a Gaussian family this implication does hold. Also,
it allows us to bring the whole Hilbert space theory with orthogonal projections,
etc., to bear on problems in Gaussian families.

11

Brownian motion

A stochastic process is just a family (X t )t∈T of stochastic variables, where T can be
any set.

In practice for us, T will usually be the interval [0,∞) or an initial segment of that inter-
val. But in many applications such as spatially distributed random fields, T will be a subset
of Rn instead.

The process is called Gaussian if the variables form a Gaussian family.

Brownian motion is a Gaussian stochastic process (Bt )t≥0 with expectation zero
and stationary, independent increments, and normalized so that E(B 2

1 ) = 1.

Equivalently (and this we shall adopt as the definition): It is a Gaussian process
with expectation zero satisfying

E(Bs Bt ) = s ∧ t

for all s, t ≥ 0. Here s ∧ t := min{s, t }.

We can construct Brownian motion on coin tossing space by starting with a count-
ably infinite collection of independent standard Gaussian variables on this space,
indexed as Nk,n .

To make a long story short, we begin by setting

Bn =
n∑

j=1
N0, j

and noting that these do satisfy the requirements of a Brownian motion restricted
to integer t .

By induction, assume we have defined Bn/2k for all n ∈ N0 and some k ∈ N0,
then we interpolate and add some randomness to the middle points:

B(2n+1)/2k+1 = 1

2
(Bn/2k +B(n+1)/2k )+2−(k+2)/2Nk+1,n

The motivation for this is a small bit of Hilbert space geometry.
Finally, we define Bk,t by setting Bk,n/2k = Bn/2k and interpolating linearly be-

tween these points, and we take the limit as k →∞.
The result is not only Brownian motion as defined above; but also, the above

series will almost surely converge uniformly on bounded intervals, so that the limit
function is continuous.

In summary, this version of Brownian motion has continous paths (almost surely).
This construction is known as Lévy’s construction. But it is less well known

than it deserves to be.
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Fourth week (W37)

We finished the Lévy construction of Brownian motion. Along the way, we used

18 Lemma (Borel–Cantelli) If (An) is a sequence of events with
∑∞

n=1, then P (An i.o.) =
0.

Here “i.o.” stands for “infinitely often”, and the event in question is

∞⋂
n=1

∞⋃
k=n

Ak .

The proof consists of noting that P
(⋃∞

k=n Ak
)≤∑∞

k=n P (Ak ) → 0 when n →∞, be-
cause of the assumed convergence.

Here is a useful scaling law for standard Brownian motion: If (Bt )t≥0 is a standard
Brownian motion and B̃t = p

aBt/a where a > 0 is a constant, then (B̃t )t≥0 is a
standard Brownian motion as well.

We also have a simple restarting law: If (Bt )t≥0 is a standard Brownian motion and
t0 > 0 is fixed, then B̃t = Bt−t0 −Bt0 defines another standard Brownian motion.

Quadratic variation
To begin with, note that if 0 = t0 < t1 < t2 < ·· · < tn = t , then (from a fairly trivial

calculation)

E
(n−1∑

k=0
(Btk+1 −Btk )2

)
= t .

A bit more work shows that in fact

n−1∑
k=0

(Btk+1 −Btk )2 → t

in L2 norm as the mesh size of the partition goes to zero, and so the above conver-
gence holds a.s. for some sequence of partitions with mesh size going to zero.

We may define the quadratic variation of a function f : [a,b] →R as

QV( f ; [a,b]) = lim
n−1∑
k=0

(
f (tk+1)− f (tk )2)

where the limit superior is defined by taking the supremum over all partitions with
mesh size < δ and then taking the limit δ→ 0.

Then it follows that for Brownian motion, QV(Bt ; [0, t ]) ≥ t a.s.
This is in stark contrast to functions of bounded (linear) variation, which have

zero quadratic variation. In particular, differentiable functions do have bounded
variation, so the paths of Brownian motion are almost surely nowhere differen-
tiable.
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First steps toward the Itô integral: An example
We start out very naïvely, trying to make sense of the integral

∫ t
0 Bs dBs . Re-

member that we found
n−1∑
k=0

(Btk+1 −Btk )2 → t

in L2 norm, i.e.,

n−1∑
k=0

Btk+1 (Btk+1 −Btk )−
n−1∑
k=0

Btk (Btk+1 −Btk ) → t

However, both sums on the left are reasonable candidates for an approximation to∫ t
0 Bs dBs !

The first sum is a Stratonovich sum, and can be used to define the Stratonovich
integral. The second sumis an Itô sum, and can be used to define the Itô integral.

We can easily evaluate the sum of the two sums:

n−1∑
k=0

Btk+1 (Btk+1 +Btk )−
n−1∑
k=0

Btk (Btk+1 −Btk ) =
n−1∑
k=0

(
B 2

tk+1
−B 2

tk

)= B 2
t −B 2

0 = B 2
t .

And so we find that

n−1∑
k=0

Btk+1 (Btk+1 −Btk ) → 1
2 (B 2

t + t ) (Stratonovich),

n−1∑
k=0

Btk (Btk+1 −Btk ) → 1
2 (B 2

t − t ) (Itô).
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The Itô integral
Let Ft be the smallest σ-algebra for which Bs is measurable for all s ≤ t .
A stochastic process (X t )t≥0 is called adapted if X t is Ft -measurable for all t .

We call it (B×F)-measurable on [S,T ] if the function (t ,ω) 7→ X t (ω) is measurable
with respect to the σ-algebra B×F, where B is the Borel σ-algebra on [S,T ]. And
we say the process is an L2 process if

E
(∫ T

S
X 2

t d t
)
=

∫ T

S
E(X 2

t )d t <∞.

Note that the first equality is just Tonelli’s theorem.
An elementary process has the form

t 7→
n−1∑
k=0

Xk [tk ≤ t < tk+1],

where S = t0 < t1 < ·· · < tn = T .
It is adapted if and only if Xk is Ftk -measurable for all k; then it is clearly (B×

F)-measurable, and it is in L2 if and only if E(X 2
k ) < ∞ for all k. In this case, we

define the Itô integral:∫ T

S

n−1∑
k=0

Xk [tk ≤ t < tk+1]dBt =
n−1∑
k=0

Xk (Btk+1 −Btk ).

Notice that if Xk = Btk , this is an Itô sum for
∫ T

S Bt dBt . To get a Stratonovich sum,
we would have to put Xk = Btk+1 , but then the corresponding elementary process is not
adapted.

The Itô integral turns out to be an isometry of one L2 space into another:

E

((∫ T

S
X t dBt

)2
)
=

∫ T

S
E(X 2

t )d t

for any elementary, adapted L2 process X . Therefore, the Itô integral can be ex-
tended by continuity to the L2 closure of the space of elementary adapted pro-
cesses; and this closure turns out to be the space of all adapted, (B×F)-measurable
L2 processes.

Elementary properties of the Itô integral include linearity, additivity (
∫ T

S +∫ U
T =∫ U

S ), and

E
(∫ T

S
X t dBt

)
= 0.

Further, the integral is FT -measurable, meaning in particular that the stochastic
process (∫ t

0
Xs dBs

)
t≥0

is an adapted process.
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Fifth week (W38)

Noted the Lebesgue–Radon–Nikodym theorem, of which we mainly need the Radon–Nikodym
part, that if µ and ν are finite (or σ-finite) measures with ν¿ µ, then there is a
unique function called the Radon–Nikodym derivative and written dν/dµ so that

ν(A) =
∫

A

dν

dµ
dµ

for all measurable sets A.
The notation is meant to encourage the highly illegal practice of cancelling the dµ fac-

tors, after which the resulting equality is trivially true.

Conditional expectation
Recall the definition of conditinal probability: P (A|B) = P (A∩B)/P (B). Clearly,

the function A 7→ P (A |B), which we may also write P (· |B), is itself a probability
measure.

The expectation of a random variable X with respect to this probability mea-
sure is its conditional expectation. It is given by

E(X |B) = 1

P (B)

∫
B

X dP.

Next, if we partitionΩ into disjoint pieces, as in

Ω=
n⊔

k=1
Bk ,

we can associate E(X |Bk ) with the piece Bk . Make a piecewise constant function:

Y (ω) =
n∑

k=1
E(X |Bk ) [ω ∈ Bk ].

This is measurable with respect to the σ-algebra G generated by the sets Bk , k =
1, . . . ,n, and you may verify that∫

A
Y dP =

∫
A

X dP for all A ∈G

(for it is true when A = Bk , and any A ∈ G is a disjoint union of some of the sets
Bk ). Moreover Y is the only G-measurable function satisfying this property. This
motivates

19 Definition. Let X be a random variable with E(|X |) <∞ (i.e., X ∈ L1), andG⊆F

a σ-algebra. Then the conditional expectation of X with respect to G (or we may
say given G) is the unique G-measurable L1-function E(X |G) satisfying∫

A
E(X |G)dP =

∫
A

X dP for all A ∈G.
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The proof idea is to note that if X ≥ 0 then A 7→ ∫
A X dP is a measure on G which

is (trivially) absolutely continuous with respect to P (restricted to G), and then
E(X |G) is just the Radon–Nikodym derivative of this measure with respect to P
(restricted to G).

One simple consequence of the definition is that

E
(
E(X |G)Y

)= E(X Y )

for every bounded G-measurable variable Y . (This holds by definition if Y is the
indicator function of a set A ∈ G, and the rest is a standard approximation argu-
ment.) Put differently,

E
(
(X −E(X |G))Y

)= 0

for all such Y , which looks like the definition of an orthogonal projection.
Indeed, if X ∈ L2 then E(X |G) is in fact the orthogonal projection of X in the

subspace L2(Ω,G,P |G|).

Martingales
For this, we need the concept of filtration, which is simply a family (Mt )t≥0 of

σ-algebras where s < t implies Ms ⊆Mt . (The obvious example is Ft , associated
with Brownian motion.)

20 Definition. A stochastic process (Mt )t≥0 is called a martingale if E(Mt |Ms ) =
Ms for all t ≥ s ≥ 0.

The terminology comes from gaming. Assuming Mt is your accumulated winnings at
time t , the martingale property says that the game is fair in the sense that your future ex-
pected winnings given your winnings at time s are the same as your current winnings.

21 Proposition The Itô integral
∫ t

0 X t dBt , where X t is an adapted, measurable L2

process, is a martingale.

To prove this, do it for an elementary adapted process first. The rest is just approx-
imation.

To be continued . . .
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