Examination paper for
MA8109 Stochastic Processes and Differential Equations

Academic contact during examination: Harald Hanche-Olsen
Phone: 7359 3525

Examination date: December 7, 2015
Examination time (from–to): 09:00–13:00
Permitted examination support material: C: Approved simple calculator. English dictionaries or bilingual dictionaries to/from English are allowed. No further written or printed support materials are allowed.

Other information:
Please note: This exam is given in English only.
Answers are accepted in English or a Scandinavian language.
There is a list of useful formulas at the end of this exam.
It is OK to use a result stated earlier in a problem, even if you have not managed to prove it.
The problems are not necessarily given in increasing order of difficulty.

Language: English
Number of pages: 2
Number of pages enclosed: 1

Checked by:

__
Date Signature
Problem 1

a. Let $(B_t)_{t \geq 0}$ be a standard Brownian motion, and define $A_t = B_t - tB_1$ for $0 \leq t \leq 1$. Compute the expectations $E(A_t)$ and $E(A_sA_t)$, and verify in particular that $E(A_t^2) = t - t^2$.

b. A stochastic process defined for $t \in [0, 1]$ with continuous paths and the same probability law as the process (A_t) above, is called a Brownian bridge. Verify that one can also construct a Brownian bridge by setting $A_1 = 0$ and

$$A_t = (1 - t)B_t/(1-t), \quad 0 \leq t < 1.$$

Conversely, use this to show how Brownian motion can be constructed from a Brownian bridge. (Hint: $t/(1-t)$ is a strictly increasing function of t for $0 \leq t < 1$.)

Problem 2

a. What is a martingale? State the martingale representation theorem.

b. What is a stopping time?

Let $(\mathcal{F}_t)_{t \geq 0}$ be the filtration associated with n-dimensional Brownian motion. Let $(M_t)_{t \geq 0}$ be a martingale and τ a stopping time, both with respect to (\mathcal{F}_t). Assuming that $E(M_t^2) < \infty$ for all $t \geq 0$, show that the stopped process $(M_{\tau \wedge t})_{t \geq 0}$ is a martingale.

(By definition, $\tau \wedge t = \min(\tau, t)$. The martingale representation theorem will be useful.)

c. With the same assumptions as in b, assume further that $M_{\tau \wedge t}$ is bounded, i.e., there exists some constant C so that $|M_{\tau \wedge t}| \leq C$ a.s. (almost surely) for all t. Assume also that $\tau < \infty$ a.s. Show that then $E(M_\tau) = E(M_0)$.

(Hint: Consider $M_{\tau \wedge n}$ and let $n \to \infty$.)

d. Now let $(B_t)_{t \geq 0}$ be one-dimensional Brownian motion, and let τ be the first exit time from $(-\infty, 1)$. It follows from the law of iterated logarithms that $\tau < \infty$ a.s. Put $M_t^\alpha = e^{\alpha B_t - \alpha^2 t/2}$, where $\alpha > 0$. Then $(M_t^\alpha)_{t \geq 0}$ is a martingale. You do not need to prove the above assertions.

Show that $E(\tau) = \infty$. (Hint: What is M_τ^α? Assume that $E(\tau) < \infty$. Use the inequality $e^x \geq 1 + x$ and get a contradiction when α is sufficiently small.)
Problem 3

a. The Itô diffusion

\[\begin{align*}
 dX_t &= Y_t \, dt \\
 dY_t &= -X_t \, dt + dB_t
\end{align*} \] (1)

represents the motion of a harmonic oscillator, \(X_t \) being the position of a mass on the end of a spring, and \(Y_t \) being the velocity of the mass. (Clearly, some rescaling of \(X, Y, \) and \(t \) has been done, whereby the mass and the spring stiffness have been normalized to 1.) What is the physical interpretation of the noise term \(dB_t? \)

The quantity \(U_t = \frac{1}{2}(X_t^2 + Y_t^2) \) represents the energy of the mass–spring system. Find an expression for \(dU_t \), and use it to compute \(E(U_t) \) given initial data \(X_0 = x, Y_0 = y. \)

b. Writing \(Z_t = (X_t, Y_t)^T \), we can write (1) as

\[dZ_t = HZ_t \, dt + \sigma dB_t \]

for a \(2 \times 2 \) matrix \(H \) and column vector \(\sigma \). Solve this given the initial condition \(Z_0 = (x, y)^T \). (Hint: Differentiate \(e^{-tH}Z_t \). Note that \(H^2 = -I \). To compute \(e^{tH} \), split the power series into even and odd powers.)

Compute \(E(U_t) \) explicitly using this solution, thus verifying your result from point a.

c. What is the infinitesimal generator for the given Itô diffusion? Use it to determine a partial differential equation satisfied by \(u(t, x, y) = E^{(x,y)}(U_t) \), where \(E^{(x,y)} \) means expectation assuming \((X_0, Y_0) = (x, y). \)

Verify that the explicit answer from point b does indeed satisfy the equation.
List of useful formulas

Note: The list does not state the requirements for the formulas to be valid.

1D Gaussian variable: \(X \in \mathcal{N}(\mu, \sigma^2) \);

(i) \(\mathbb{E}\left((X - \mu)^4\right) = 3\sigma^4 \),

(ii) \(\Phi_X(u) = e^{in-\sigma^2u^2/2} \),

(iii) \(f_X(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{(x-\mu)^2/(2\sigma)} \).

Conditional Expectations:

(i) If \(Y \) is \(\mathcal{H} \)-measurable, then \(\mathbb{E}(Y X | \mathcal{H}) = Y \mathbb{E}(X | \mathcal{H}) \).

(ii) If \(X \) is independent of \(\mathcal{H} \), then \(\mathbb{E}(X | \mathcal{H}) = \mathbb{E}(X) \).

(iii) If \(\mathcal{G} \subset \mathcal{H} \), then \(\mathbb{E}(\mathbb{E}(X | \mathcal{H}) | \mathcal{G}) = \mathbb{E}(X | \mathcal{G}) \).

Itô Isometry: \(\mathbb{E}\left|\int_0^T f(t, \omega) dB_t(\omega)\right|^2 = \int_0^T \mathbb{E}|f(t, \omega)|^2 dt = \|f\|_{L^2(\Omega \times [0,T])}^2 \).

2D Itô Formula: The “Rules” and
\[
dg(t, X_t, Y_t) = \frac{\partial g}{\partial t} dt + \frac{\partial g}{\partial x} dX_t + \frac{\partial g}{\partial y} dY_t + \frac{1}{2} \frac{\partial^2 g}{\partial x^2} (dX_t)^2 + \frac{\partial^2 g}{\partial x \partial y} dX_t dY_t + \frac{1}{2} \frac{\partial^2 g}{\partial y^2} (dY_t)^2.
\]

The Generator for \(dX_t = \beta_t(X_t) dt + \sigma(X_t) dB_t \):

\[
A(f)(x) = \sum_{i=1}^n \beta_i(x) \frac{\partial f}{\partial x_i}(x) + \frac{1}{2} \sum_{i,j=1}^n \text{tr}\left(\sigma(x)\sigma(x)^T D^2 f(x)\right), \quad \left(D^2 f(x)\right)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(x).
\]

Dynkin’s formula: \(\mathbb{E}^x\left(f(X_T)\right) = f(x) + \mathbb{E}^x\left(\int_0^T A f(X_s) ds\right) \).

Potential Solutions: \(\nabla^2 f = 0 \) for all \(x \in \mathbb{R}^n, \ |x| \neq 0 \):

- \(n = 2 \): \(f(x) = \log|x| \),
- \(n > 2 \): \(f(x) = |x|^{2-n} \).

Grönwall’s inequality: If \(v(t) \leq C + A \int_0^t v(s) ds \ldots \), then \(v(t) \leq Ce^{At} \).